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Abstract— This work proposes a human motion prediction
model for handover operations. We use in this work, the
different phases of the handover operation to improve the
human motion predictions. Our attention deep learning based
model takes into account the position of the robot’s End Effector
and the phase in the handover operation to predict future
human poses. Our model outputs a distribution of possible
positions rather than one deterministic position, a key feature
in order to allow robots to collaborate with humans.

The attention deep learning based model has been trained
and evaluated with a dataset created using human volunteers
and an anthropomorphic robot, simulating handover operations
where the robot is the giver and the human the receiver. For
each operation, the human skeleton is obtained with an Intel
RealSense D435i camera attached inside the robot’s head. The
results shown a great improvement of the human’s right hand
prediction and 3D body compared with other methods.

I. INTRODUCTION

Robot-Human interaction [8] and Robot-Human Collab-
oration [20] face important problems in order to be fully
integrated in our society. Robots, although very common
in structured and controlled environments, such as facto-
ries with working cells, are still far from being usual in
unstructured environments such as houses, hospitals or of-
fices, which are the majority of environments where humans
perform their activities.

One of those important problems is to anticipate the mo-
tion of the humans around the robot. Humans can anticipate
the movements of their human partners in most of daily life
tasks, such as delivering tools, playing games or opening
doors for example. We argue that providing robots with these
skills will result in more fluent and natural human-robot
interaction.

Thus, in this work we focus on the handover task between
a robot and a human partner. Furthermore, we investigate
the handover operation along its different phases. We divide
handovers in four phases: approaching, pre-contact, contact
and release, always considering that the robot is the giver
and the human the receiver.

Approaching is the the first phase, when the human moves
towards the robot to take the object, none of his arms is
raised in a grasping position. Pre-contact is the next phase,
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where the human starts to raise his arm towards the robot.
Contact phase begins when both the human and the robot are
touching the object, followed by the Release phase, when the
robot releases the object.

Fig. 1. We separate the handover operation in 4 different phases:
approaching, pre-contact, contact and release. We provide a scheme of them

In this work we will focus on the two first phases:
Approaching and Pre-contact. Since we don’t pretend to
tackle the grasping problem itself, we discard the Contact
phase in our study. The Release is also ignored since we
want to focus on the human motion, which is not relevant
during this phase.

Furthermore, we believe that the most important phase
during a handover operation is the pre-contact phase, since it
is the phase where being able to predict the future motion of
the human is most valuable. During the approaching phase,
having a rough estimation of the movement of the human
can be enough in order to prepare both human and robot for
the handover.

For this purpose we propose an attention deep learning
model that predicts the human body joint future positions
while the human is approaching the robot to pick up an
object that the robot has in its gripper. We compute the
uncertainty of each one of the human joints and also of the
human’s End Effector (HEE), information that will be very
valuable for the robot to adapt its plan for the handover task.
The new method takes into account the robot’s End Effector
(REE) pose and predicts the human joint distribution instead



Fig. 2. Left: Model predicted trajectory. Right: Ground truth trajectory. In
both cases, the blue dot shows the REE location. Both skeletons start from
the same position.

of just one position of the human, as typically done in human
motion prediction.

To train this model, we have created a dataset for acquiring
the handover data. This dataset and the experimental valida-
tion has been done with the IVO robot shown in Fig. 1 and
with a team of human volunteers that have done the picking
of an object placed in the left hand of the robot.

We have made experiments with this new attention deep
learning based method using the REE and the handover
operation phase, and we obtained very good results that
outperform the precision in the HEE and 3D human body
estimation compared with other methods.

In section II we explain the related work. In section III,
we present the model architecture, the goal conditioning and
the probability distribution model. The dataset is explained in
section IV. In section V, we describe the experimental results
and finally, in section VI we present the conclusions.

II. RELATED WORK

A. Handover task

Modeling uncertainity during human-robot operations has
been attempted before.

In [11], Hoffman et al. compare anticipatory versus re-
active agents. The first methods tend to feel more fluent
and natural to humans that collaborate with robots, stressing
the importance of being able to predict the intention of the
human partner.

In [13], Lang et al. use a Gaussian Process clustered with
a stochastic classification technique for trajectory prediction
using an object handover scenario. Real 6D hand movements
are captured during human-human handovers to classify
the grasping position of both humans using a maximum
likelihood estimation. Although obtaining interesting results,
our goal is to obtain the motion of all the body joints
or, at least, the upper body joints. Furthermore, we argue
that using human-human datasets would not represent the
real behavior of a human moving around a robot, specially
nowadays since society is not yet used to be around robots.
Other studies about the handover task which focus on human-
human handovers are [19] and [3].

In [16], Nemlekar et al. developed an efficient method for
predicting the Object Transfer Point between a robot and a
human. This method is implemented into a humanoid nursing

robot and experimentally validated in human-robot handover
tasks. Although this method only outputs the grasping point,
this method incorporates a really interesting feature to detect
the human intention: gaze, a very interesting way to read the
human intentionality.

In [18], Pandey et al, tackle the opposite problem, where
the robot is the taker and the human is the giver. The robot
must then predict where the human will handover the object
to proactively try to grab the object.

B. Human Motion Prediction

Human motion prediction is a very common problem in
the fields of computer vision and graphics design. Generally,
motion prediction considers the human 3D skeleton as raw
data. The research area can be divided in two different
groups: short-term and long-term prediction. Whereas the
first one focuses more in accurate prediction with little
disparity with the real sequence, the second one focuses more
in generating feasible human-like trajectories.

With the flourish of new deep learning techniques, new
algorithms appeared to tackle this problem.

In [15] by Martinez et al., the problem is approached as
a time series algorithm, proposing a RNN architecture able
to generate a predicted human motion sequence given a real
3D joint input sequence. Although the results obtained in this
model are quite interesting, the work raises attention in very
particular case: a non-moving skeleton can often improve
results in a L2 based metric. This is commonly the most
studied approach, used in [9], [12], [1]. The approach from
[6] is specially interesting, since the model predictions are
conditioned on the objects around the humans, such as tables
or doors.

The work done in [4] by Bütepage et al. shows how
advances in latent variable models such as Variational Au-
toencoders can be used in order to produce interesting results.
In this work, the upper body motion is predicted up to
1660 ms. The main idea is to predict the future time steps
given some previous time steps. Thus, a joint probability is
modeled, using these two variables and a number of hidden
variables who governs the unobserved dynamics.

The GANs have been widely used lately to propose new
models. In [2], Barsoum et al. take a similar approach,
modifying the structure to introduce GANs. By feeding
the network with a skeleton input sequence plus a random
z vector drawn from a uniform or Gaussian distribution
z ∼ pz , a predicted sequence is computed. To ensure that
predicted human shapes look real, they add two losses to
the architecture: consistency loss (to ensure that no drastic
movements between frames appear) and bone loss (to ensure
that bone lengths from the predicted skeleton don’t change).
In [10], GANs are used to reconstruct skeletons in sequences
with occlusion problems.

To our knowledge, the closes work to our model is
proposed by Diller et al. [7]. In that work, 3D poses of
a skeleton are predicted considering an object placed in a
table. Depending on the object type (a banana, a phone,
...) the predictions will look different. Similarly to us, they



approach the problem in a probability distribution fashion,
generating a 3D grid of possible positions for each joint.
The probability is generated by imposing a 3D heat-map
on every joint and frame on the ground truth data and then
learning that distribution, while we don’t impose any prior
knowledge to the distributions being generated. Furthermore,
we make predictions considering that our goal, the REE, is
not a static pose, since the robot’s arm will move towards
the human during the handover operation.

III. MODEL ARCHITECTURE

Our proposed model is inspired in the one proposed by
Mao et al. [14] where we have introduced some modifications
to achieve our goals. We modified the network in order to
use the information of the REE inspired by the work of [17]
and we also compute the pose probability distribution.

The model uses an attention deep learning based neural
network able to discover sub-sequences inside the main
sequence. Let us consider X1:N = [x1, x2, x3, ..., xN ] as
the sequence of N human poses xi ∈ Rk for each time
frame i, where K is the number of parameters required to
represent the human pose. The model goal is to predict the
poses XN+1:N+T representing the T future poses.

The sequence is divided into N−M−T+1 sub-sequences
{Xi:i+M+T−1}N−MT+1

i=1 , each one consisting of M + T .
In order to model the pose probability distribution, instead

of working with the vector X1:N = [x1, x2, x3, ..., xN ] of
human joint poses, we need to define a vector δX1:N−1 =
[x1, x2, x3, ..., xN−1]:

δX1:N−1 = X2:N −X1:N−1 (1)

This vector contains the difference frame by frame of
the human motion, which is then discretized in B bins,
considering a maximum displacement of one meter per joint.

We then tackle the problem as a classification problem by
predicting which bin corresponds to the future displacement
off the human per each joint. Each bin has a correspond-
ing associated probability, which probability distribution is
defined along each dimension of each joint.

Similarly, a vector of poses XE =
[xE,1, xE,2, xE,3, ..., xE,N ] xE,i ∈ R3 defines the position
of the REE during the same time frames.

Our approach is to create a vector δ = X −XE to work
with a gradient of distances of the human body with respect
to the REE, assuming that the predictions that are generated
closer to the REE will have a higher chance of raising the
arm.

The motion attention allows to use the history information
of the sequence in the prediction of the future sequence.
The estimate is combined with the latest observed motion
to be input into a Graph Convolutional Network based feed-
forward network, allowing to learn the spatial and temporal
dependencies in the data.

We think that the approach to identify sub-sequences can
help us in the handover task, since the task involves two
different phases: the approaching phase and the pre-contact
phase.

The model is described as a mapping from a query and a
set of key-value pairs to an output. This output is a weighted
sum of values, being the weight (the attention) assigned to
each value a function of the corresponding key and query.

To this end, the query, keys and REE are mapped to vectors
of the same dimension d with three functions fq : RKxM →
Rd, fk : RKxM → Rd and fe : R3xM → Rd, modeled with
neural networks:

q = fq(XN−M+1:N ), ki = fk(Xi:i+M−1) (2)

qe = fe(XE,N−M+1:N ), ke,i(XE,i:i+M−1)

Where q, ki ∈ Rd and qe, kei ∈ Rd with i ∈ {1, 2, ..., N −
M−T+1}. Then, the attention score is computed as follows:

ai =
(q + qe)(k

T
i + ke,i)∑N−M−T+1

i=1 (q + qe)(kTi + ke,i)
(3)

The model maps the resulting values to trajectory space
using a Discrete Cosine Transform on the temporal dimen-
sion.

The output of the attention model is then computed as the
weighted sum of values:

U =

N−M−T+1∑
i=1

aiVi (4)

where U ∈ Rk(M+T ). This initial estimate is then com-
bined with the latest sub-sequence and processed by the
prediction model to generate future poses X̂N+1:N+T .

To generate this probability distribution, we define a
LogSoftmax final layer for the probability module.

Since the model now solves a classification problem, we
use a Cross Entropy loss function, since it fits this kind of
problems:

L(δX̂, gt) = 1

J(M + T )

M+T∑
t=1

J∑
j=1

−log eδX̂t,j,gt∑B
b=1 e

δX̂t,j,b

(5)

We also add a component to penalize predictions where
the final pose of the HEE is far from the REE:

L′(δX̂, gt) = L(δX̂, gt) + ωe||p̂M+T,rh − pM+T,ee||2 (6)

Where gt is the bin corresponding to the ground truth
position. Once we compute the probability distribution of
each joint, we sample the final pose by choosing the bin
with the higher probability, and then reconstructing the whole
sequence in 3D coordinates using the first frame x1 as the
starting pose:

p(δX̂N+1:N+T ) ∼ δXN+1:N+T → XN+1:N+T (7)

Our probability module is added to the general structure
as Fig. 3 describes. This module is composed by three one
dimensional convolutional layers with 512 channels, each
one followed by a ReLU activation function, except the last
one, which has 101 output channels (the number of bins
used) and is followed by a LogSoftmax layer as described.



Fig. 3. Left: The model from [14] is modified with our goals: we add the fk,e and fq,e modules (red color) to condition future samples according to
the distance between the skeleton and the REE. We also add the Probability Distribution Module (green color), able to generate a position distribution for
each joint. We sample over this distribution to obtain the skeleton output. Right: To study each handover phase separately, we classify the input data in
Approaching and Pre-contact, and train two models (Model 1 and Model 2).

IV. DATASET

A custom dataset was created consisting of human poses
during a handover operation with a real anthropomorphic
robot. This dataset was created to specifically study human-
robot interaction during the handover task. Both the robot
and the human approach towards each other and extend their
arms during the sequences. The goal for the robot is to deliver
a 10 cm side cube, which the human has to take from the
robot’s left arm End Effector. The recording ends when the
human is about to separate the object from the robot gripper.

The robot used to create this dataset is the IVO robot,
a humanoid robot with two arms, Fig. 1. A video from
the human is recorded during the operation using an Intel
RealSense D435i placed inside the robot’s head. The video
is recorded at a 10Hz rate. Fig. 4 shows how the sequences
that were recorded from a third point perspective.

The skeleton of the human is extracted from each sequence
using OpenPose (Cao et al. [5]) to extract the 2D joint
locations on the image. These 2D joints and the camera depth
map data are used to obtain the 3D coordinates of each joint.

Only the upper body (from the hips to the head) of the
human is used to avoid occlusions of the legs when the
human is close to the robot.

The volunteer had to recreate five different behaviors:
(1) picking the object standing close to the robot from
the beginning (close); (2) picking the object as they would
naturally do (natural); (3) picking the object delaying the
arm motion once they are in range to pick the object (delay);
(4) picking the object and then holding the hand still with
the object grabbed (hold); and finally, (5) picking the object
doing a free arm movement, while he/she approaches, such as
checking their smartphone, waving their hands or stretching.

The robot also performed three different behaviors: the
robot could be offering the object from the beginning,
the robot could offer the object while the human was
approaching, or the robot could approach to the human while
simultaneously offering the object while the human was
approaching.

Once all the sequences were recorded, we performed a
sanity check of the data by visual inspection. Furthermore,
since we are particularly interested in studying the handover

operation along its different phases, each frame was labeled
as Approaching or Pre-contact according to the human
intention. Once the human starts raising his arm to grab the
object, the sequence is considered to be Pre-contact. Note
that the human can start raising his arm when he is still far
from the robot. Also, the human can raise his arm while
approaching to the robot to do other tasks such as checking
his smartphone, in which case we still consider the sequence
as Approaching.

We used seven volunteers (3 women and 4 men, ages
ranging from 25 to 60 years old) to perform the recordings.
Each volunteer records all the scenarios possible, 15 sce-
narios in total, repeating once each scenario, which means
30 sequences for each volunteer, 210 sequences in total,
ranging from 4 to 30 seconds. Considering that we use sub-
sequences of 75 frames in the model and that data was
visually inspected to discard corrupted data, we end up with
2.439 samples, each one containing 75 frames.

Depending on the scenario, the human initial position is
1.3 meter in front of the robot (close scenarios), 5 meters
(scenarios where the robot moves towards the human) or 3
meters(the rest of cases), with no obstacles between the robot
and the human.

V. EXPERIMENTAL RESULTS

A. Experimental details
We use our dataset and split the subjects in training dataset

(subjects 2 to 7) and validation dataset (subject 1).
For training, we use 50 frames (5 seconds) as input and

output 25 frames (2.5 seconds). We perform an ablation study
considering each single feature of the model separately. Since
we are specially interested in the study of the different phases
of the handover, we compare the model trained with all the
data and the model trained only with data from each phase.

In order to compare with other methods, we train and
validate the other models in our dataset. All the results shown
in Table I are obtained using the same training and validation
dataset.

B. Experiments
We compute the L2 distance in Cartesian coordinates

between our predicted sequences and the ground truth se-



Fig. 4. Example of a sequence recorded for the dataset. The robot raises its left arm to offer the object to the human, who walks towards the robot too.
This figure shows the sequence from a third point perspective, the video used for the dataset is recorded with the robot’s head camera.

quences for the same input sequence. Table I contains the
computed errors along the test dataset before overfitting over
the training dataset.

We also compute how many frames in the sequence have
an error equal or less than 0.15m and 0.25m, and give the
percentage of successful frames.

Finally, we check the L2 error for the right hand of the
human (HEE), since it is the most important joint in the
handover task.

As we can see, the mean error slightly decreases when
applying the REE conditioning. However, there is a sig-
nificant improvement on the human right hand prediction,
when combining the pose distribution modeling and the REE
conditioning.

On the other hand, we see that the mean error of the
probability distribution model is very similar to the original
model. This is an interesting result because this model is
able to provide accurate samples with respect to the ground
truth sequences, but also adds a completely new feature by
modeling the probability distribution of each joint.

Finally, we train the model using only data corresponding
to the Approaching and the Pre-contact phases. The outcome
of this model is a significant improvement on accuracy
during Pre-contact phase (0.1 m compared to 0.221 m).
This comparison is even better for the human right hand
prediction (0.073 m compared to 0.26 m). We argue that
this improvement is of special interest for robot-human
collaboration task, since the prediction of the human hand is
specially useful during this phase.

On the other hand, the model trained only with Ap-
proaching data shows a similar prediction result that with
all the data (0.222 m compared with 0.221 m), which isn’t
considered problematic since at this phase, far from the Pre-
contact, the robot can handle the operation only knowing
the average position of the whole human body. However, the
accuracy on the human right is slightly improved (0.228 m
compared to 0.264 m).

VI. CONCLUSIONS

We presented an attention based neural model to charac-
terize the motion of a human skeleton 2.5 seconds in the
future, performing a handover task with a robotic partner
and obtaining the future human motion predictions and their
associated uncertainty using the information of the REE.

We used this model to study how it performs across the
different phases of the handover operation, finding that the
accuracy of the model is improved during the Pre-contact
phase. We also found that the relative distance between the
robot and the human can be used to improve the accuracy of
the human right hand prediction, one of the most important
joints to be predicted during a handover task.

One of the most useful features of the model is the
ability to generate the pose distribution probability, which
is required for developing human-robot shared planners for
handover and other collaborative tasks.



Model L2(m) % Samples ≤ 0.15m % Samples ≤ 0.25m Right Hand L2(m)

RNN [15] 1.19 4.35 12.78 1.45
Hist. Rep. Itself [14] 0.213 56.03 70.82 0.348

End Effector conditioning 0.207 58.67 72.78 0.349
Prob. Distr. modelling 0.224 58.78 71.21 0.365

End Effector cond + Prob. Distr. modelling 0.221 68.16 76.97 0.264
End Effector cond + Prob. Distr. modelling (Approaching) 0.222 66.35 76.18 0.228
End Effector cond + Prob. Distr. modelling (Pre-contact) 0.100 85.61 91.5 0.073

TABLE I
RESULTS OBTAINED ACROSS THE VALIDATION DATASET.
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