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Abstract

This paper proposes a control scheme for a N -DoF robotic manipulator in a

joint-regulation motion problem, dealing with disturbances (as e.g. exogenous

forces, unmodelled dynamics) that hinder task fulfilment, and also consider-

ing that not all the required states are available on-line. Existing literature

tackles this problem through Disturbance Observer (DO) strategies which im-

ply complex analysis and design methods or introducing strong assumptions.

Conversely, we propose to formulate the system as a Linear Parameter Varying

(LPV) model, which allows a straightforward application of the existing linear

control structures but without neglecting its non-linear behaviour. We make

use of the Robust Unknown Input Observer (RUIO) to obtain (for not measur-

able states) a decoupled estimation from the unknown disturbance effects, and

improve its noise reduction capabilities through the new optimal RUIO design.

The robotic manipulator is controlled with a state-feedback control law that,

making use of the LPV paradigm, has been designed to seamlessly avoid torque

saturation on manipulator’s joints through a gain shifting strategy that modifies

its compliant behaviour. Stability and performance requirements are imposed

in both RUIO and state-feedback control synthesis problems stated using the

LMI framework, applying Polya’s theorems on positive forms of the standard
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simplex to reduce its overall conservatism. Experiments, using a simulated head

system of the TIAGo robot as a testbed in various realistic scenarios, show the

benefits when compared to the existing joint-independent PD control strategy

and state-of-art EKF disturbance estimation.

Keywords: Robotic system, Linear parameter varying, Unknown-input

observer, Shifting paradigm, Robustness, Service robot

1. Introduction

Leaning on the recent advances in Artificial Intelligence and Computer Vi-

sion, robotic platforms are being increasingly introduced into industrial and

domestic environments, where their workspace, and even the tasks to be per-

formed, are shared with humans. For supporting “human-in-the-loop”, a key5

factor is to ensure their dependability under any possible scenario that might

arise (Alami et al., 2006), being one of them the existence of unknown effects

(disturbances) that might hinder task fulfilment. Thus, in this work, we address

the motion problem of a robotic manipulator under the effect of exogenous a-

priori unknown disturbances that should be rejected or compensated on-line.10

Moreover, we are going to assume that some of the required states are not

measurable, as e.g. due to faulty behaviour. We are focusing on N -Degrees of

Freedom (DoF) serial robotic manipulators for regulation tasks in their joint

space, i.e. “point-to-point” movements.

Disturbances in robotic systems correspond to multiple phenomena from in-15

ternal sources (friction, unmodeled dynamics) or interaction with the environ-

ment (collisions), presenting different behaviours and characteristics, usually

non-predictable or difficult to model. Great efforts have been made within the

research community to tackle this problem, some of them aiming at making the

control strategy robust against disturbances (as e.g. with SMC). These strate-20

gies are defined under the category of Disturbance Observers (DO), and have

been used in a wide range of platforms and for multiple purposes: from lower

limb exoskeletons for estimating the exerted torque by the wearer (Mohammed
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et al., 2016) to humanoid robots to compensate for unmodelled dynamics (Bae

and Oh, 2017) or even to improve boundary control approach in flexible manip-25

ulators (Zhao and Liu, 2020, Zhao et al., 2019a). In robotic manipulators, they

have been used for both single (Agarwal and Parthasarathy, 2016) and multi-

agent systems (Ren et al., 2018). Moreover, its integration with the control

strategy is currently being explored, for example in Kim et al. (2018), where it

is presented as a new concept for achieving a compliant behaviour under exter-30

nal contacts. On the other hand, another approach is to make a design robust

against disturbances (He et al., 2020), but this usually involves making certain

assumptions on the disturbance characteristics.

Due to the highly non-linear phenomena in robotic manipulators, the use of

linear analysis and design techniques for DO has been limited to certain stan-35

dard strategies, such as linearization around the operating point. This is the

case of the Extended Kalman Filter (EKF), which can deliver optimal perfor-

mance but only if the system behaves linearly around the operation point, as

in Mohammadi et al., 2013. During the last decades, several techniques have

emerged to deal with the control of non-linear systems, such as, e.g. Slid-40

ing Mode Control (SMC), Linear Parameter Varying (LPV) or Takagi-Sugeno

(TS) gain-scheduling control, among other. In this work, we focus on the LPV

paradigm (Shamma, 2012), which consist on characterising systems through

a set of parameters defined by exogenous (or endogenous) signals in a gain-

scheduling fashion, allowing a straightforward extension of existing linear con-45

trol techniques to non-linear systems. Its success has been also motivated by the

increasing use of Linear Matrix Inequalities (LMI) together with the application

of Lyapunov theory to formulate multiple analysis and design problems in con-

trol (e.g. stabilization and H∞) for LPV-suitable formulations. In these cases,

as including all the reachable states leads to an infinite number of constraints,50

LPV systems are usually described by confining all the possible trajectories

of the varying parameters defined by a set of vertices, leading to the polytopic

LPV formulation that considers only a family of vertex systems. Polytopic LPV

together with LMI provide a systematic approach to guarantee off-line certain
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properties, in contrast to ad hoc construction of Lyapunov candidates and trial55

and error tuning of the controller parameters required by other non-linear con-

trol techniques (Zhao et al., 2019b).

DO exploit all the measurements that can describe the state of the sys-

tem, but, as any physical entity, robots might be subjected to disturbances

that affect the closed-loop behaviour. Control literature has provided many60

model-based observers to estimate non-available information, but in the case of

system disturbances, the technique has to be robust enough against their ef-

fects. A well-known approach is to assume the dynamics of the disturbance (Ha

and Back, 2019), but, in a discrete-time domain, its effectiveness is affected by

the sampling period. Considering that this work aims at being applied to real65

robotic platforms that operate in discrete time, we will study the application of

Unknown Input Observers (UIO) structures, which can obtain a state estima-

tion disregarding the effect of disturbances and without a-priori assuming its

behaviour.

Therefore, in this work, we aim at providing a solution to the disturbance70

rejection problem considering a LPV formulation of a N -DoF serial manipula-

tor. This allows extending linear theory for analysing and designing structures

for a non-linear system, which, up to our knowledge, has not been performed for

disturbance rejection problems in robotic platforms. Solutions provided in the

literature rely on model linearization or neglecting non-linear dynamic terms,75

as e.g. in Kim et al. (2018). Considering that not all the system states are

measurable on-line, we have explored the Robust-UIO formulation (RUIO for

short) from Chadli and Karimi (2012) to provide a decoupled state estima-

tion from the disturbance effects. Using this estimation, a model-based DO

generates a compensating feed-forward action within the control scheme. To80

enhance its performance, RUIO noise reduction properties have been improved

through a novel formulation of its LMI design problem based on Kalman Ricatti

equations. To completely address the motion regulation problem, we have de-

scribed the synthesis of an optimal state-feedback controller through the Linear

Quadratic Regulator (LQR) LMI problem. Additionally, we have introduced85
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a gain shifting strategy (Rotondo et al., 2015a) aimed at seamlessly modifying

control compliance to avoid joint torque saturation effects (which represents a

worst-case scenario for the feedforward compensation of disturbances).

It should be pointed out that the LPV paradigm has not been widely ap-

plied to robotics yet, mainly due to the large number of varying parameters90

of the generated models. These issues are tackled within the LPV literature

from two different perspectives: (1) by increasing the flexibility of problem con-

straints and/or (2) by modifying the model used. Latter ones consist on reducing

over-boundness of the LPV model description by reshaping the set of varying

parameters according to their behaviour (Bruzelius et al., 2002) or approximat-95

ing the system to an LPV model with a reduced number of parameters as e.g.

in Hashemi et al. (2012), which is also one of the few application examples of

LPV techniques in robotic manipulators. On the other hand, reducing problem

conservatism by relaxing constraints lies in state-of-art methods from the field

of mathematics, usually trading-off an increase in the number of constraints. In100

this work, we propose to further exploit the use of these techniques in robotic

applications by making use of Polya’s theorems (Sala and Arino, 2007) in both

the RUIO and state-feedback controller LMI synthesis problems.

This paper is organised as follows: Section 2 describes the LPV modelling

of the manipulator and its polytopic representation. Section 3 is devoted to105

the estimation of exogenous force effects using state variables. The improved

formulation of the RUIO and the derivation of design conditions to minimize

noise effects are presented in Section 4, together with the introduction of Polya’s

theorems for its synthesis problem. In Section 5, the shifting control paradigm

and its formulation under Polya’s method are described. Section 6 illustrates110

the application of the complete approach to the head of TIAGo robot, provid-

ing simulation results under different settings. The final section concludes the

presented work and highlights future research developments.
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2. System Modelling

2.1. Description115

The TIAGo humanoid robot (Fig. 1) developed by PAL Robotics1 has been

used in this paper to exemplify the described methodology and techniques. This

robotic platform is meant to operate in both domestic and industrial anthropic

domains as a service robot, featuring a wide set of capabilities related with navi-

gation, perception and human-robot interaction, making it suitable for research120

purposes. It is also fully-integrated within the well-known Robotic Operating

System (ROS) ecosystem2, which offers realistic simulations through Gazebo3

using the same communication interface for controlling the real robot.

Figure 1: TIAGo robotic platform developed by PAL Robotics performing a manipulation

task.

1TIAGo robotic platform by PAL Robotics: http://tiago.pal-robotics.com/ (Accessed

July 26, 2021)
2ROS software development framework for robotics https://www.ros.org/ (Accessed July

26, 2021)
3Gazebo http://gazebosim.org/ simulator for robotic applications (Accessed July 26,

2021)
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Particularly, the focus has been put in the 2-DoF TIAGo head system. This

responds to an existing issue with its pose control strategy, based on joint-125

independent PD control, which was not able to reach desired positions when a

device (e.g. an additional RGB-D camera) was attached, i.e. under the effect of

a force associated to a mass. Head positioning is crucial to ensure the required

vision and 3D mapping features of the TIAGo robot, becoming paramount to

overcome this issue. Either way, a valid description of the methods is given130

in this work for any N -DoF mechanism with rotational joints, such as a serial

robotic manipulator.

2.2. Analytical Model

As any model-based approach, a set of analytical expressions that describe

the behaviour of the system has to be determined. For any N -DoF robotic135

manipulator with rotational joints, applying well-known Newton-Euler formu-

lation (Craig, 2009), joint torque vector τ can be defined as a function of the

joint acceleration q̈, velocity q̇ and position q vectors:

τ = M(q) q̈ + B(q) [q̇q̇] + C(q) [q̇2] + G(q) (1)

where M(q) ∈ RN×N is the mass matrix, G(q) ∈ RN the gravity effects, C(q) ∈

RN×N the centrifugal coefficients, and B(q) ∈ RN×N(N−1)/2 the Coriolis terms.140

Joint friction phenomenon has been considered as a-priori modeled, such that

their influence on the control scheme is either fully cancelled or minimised (being

a source of system noise in this latter case), and therefore it has been be omitted

in Eq. (1). This assumption has been made considering that there exist several

techniques that, from different approaches, successfully tackle this problem as145

e.g. in Colomé et al. (2015).
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(a) (b)

Figure 2: Head subsystem of the TIAGo robotic platform, represented as a two-manipulator

link.

Parameter Description Value

I1 Inertial tensor of first link diag(1.192, 1.402, 0.889) · 10−3 [kg · m2]

I2 Inertial tensor of second link diag(4.620, 4.861, 3.132) · 10−3 [kg · m2]

m1 Mass of first link 0.622 [kg]

m2 Mass of second link 0.661 [kg]

L Dist. along 1Ẑ1 between frames {1} and {2} 0.098 [m]

D1,z Dist. of CoG1 along 1Ẑ1 w.r.t. frame {1} 0.072 [m]

D2,x Dist. of CoG2 along 2X̂2 w.r.t. frame {2} 0.047 [m]

D2,y Dist. of CoG2 along 2Ŷ2 w.r.t. frame {2} 0.055 [m]

Table 1: Description and value of inertial and distance parameters of the TIAGo head sub-

system.
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Following the guidelines included in Appendix A for the TIAGo head system,

depicted in Fig. 2 along with its abstracted link scheme, we obtain the terms of

Eq. (1):

M(q) =

Izz1 +m2(s2D2,y − c2D2,x)2 + Ixx2
s2

2 + Iyy2
c22 0

0 Izz2 +m2(D2
2,x +D2

2,y)

 ,
(2a)

B(q) =

2m2(s2D2,x + c2D2,y)(s2D2,y − c2D2,x) + 2(Ixx2
− Iyy2

)s2c2

0

 , (2b)

C(q) =

 0 0

m2(c2D2,x − s2D2,y)(s2D2,x + c2D2,y) 0

 (2c)

G(q) =

 0

m2(c2D2,x − s2D2,y)g

 (2d)

being ci and si abbreviations for cos(qi) and sin(qi), respectively, and g for the

Earth gravity constant. Regarding remaining parameters, Iai represent inertial

tensor term on the a = {x, y, z} axis for the i-th link, mi the mass of the i-th link

and D2,a the distance along axis a from the base of frame {2} of to the CoG2,150

all in SI units. The value of these parameters are given by the manufacturer

and have been gathered in Table 1.

2.3. LPV Model

As proposed in Kwiatkowski et al. (2006), non-linearities can be embedded

within varying parameters using the LPV paradigm. This technique provides an155

exact representation of the original non-linear system (1), and its applicability

is constrained to the following set of conditions ∀i = {1, ..., nΦ}:

1. Varying parameter φi(x1, ..., xnx) has to be bounded in [φi, φi] for the

(bounded) variable set {x1, ..., xnx} and continuous within this interval.

2. Controllability of the system has to be ensured for any value of φi.160

From Eq. (1), expressions for joint angular accelerations can be obtained as

function of joint velocities, positions and torques. Without loss of generality,
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considering a state vector x(t) = [q̇1, q̇2, ..., q̇N , q1, q2, ..., qN ]T , and the joint

torque vector u(t) ≡ τ(t), the following state-space alike representation can be

obtained

ẋ(t) = Ac(x(t))x(t) +Bc(x(t))u(t) + gc(x(t)), (3)

where

Ac(x(t))x(t) = −M(q)−1

(B(q)[q̇q̇] + C(q)[q̇2])

02N×N

 +

0N×N 0N×N

IN×N 0N×N

 x(t)

Bc(x(t)) = [−M(q)−1 0N×N ]T

gc(x(t)) = [−M(q)−1 G(x(t)) 0N×1]T .

Note that using this formulation, state matrix Ac(t) has not a straightforward

definition decoupled from x(t), due to Coriolis and Centrifugal effects. There-

fore, its definition is not unique and has to be made a-posteriori on Eq. (1) ap-

plied to each particular system. Subscript “ c ” denotes matrices for continuous-

time systems, meaning its absence that they correspond to discrete-time forms.165

Equation (3) corresponds to a state-space alike formulation where state and

input matrices Ac and Bc, respectively, depend on state vector x(t). LPV

framework formalizes this type of systems by considering state-space matrices

as function of a set of varying parameters Φ ∈ RnΦ that are function of some

scheduling variables that are on-line measured or estimated.170

Regarding the TIAGo head system, from the joint configuration space de-
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scribed in (2a)-(2d), its state-space alike representation arises:

Ac(q2, q̇1) =


0

B(1,1)(q2)

M(1,1)(q2) q̇1 0 0

C(2,1)(q2)

M(2,2)
q̇1 0 0 0

1 0 0 0

0 1 0 0

 ,

Bc(q2) =


1/M(1,1)(q2) 0

0 1/M(2,2)

0 0

0 0

 , gcv(q2) =



G(2,1)(q2)

M(2,2)

0

0

0

 ,

where X(i,j) refers the element of matrix X in the i-th row and j-column. Notice

that from the comparison between (2b) and (2c), a further simplification can be

made by considering B(1,1)(q2) = −2C(2,1)(q2). Thus, the scheduling variables

have been defined as follows:

Φ , [φ1, φ2] = [M1,1(q2), C2,1(q2)q̇1]. (4)

Bounds for φi can be obtained from the state variables limits, also given by the

operation conditions of the TIAGo robot, both listed in Table 2. Conditions

for non-linear embedding method are held for this definition of Φ: (1) φi are

bounded considering the limits of state variables, (2) controllability property

depends only on the selection of the output model, which will be addressed in175

Section 4, as matrix A does not lose rank for any value of φi.

Remark 1. It is worth to remark that the selection of Φ is generally made

(and so in this work for the TIAGo head example) such that the minimal set of

scheduling variables is obtained, as the polytopic reconstruction has a complexity

that grows with O(2nφ). As aforementioned, further methods and criteria can be180

applied to reduce the complexity of a LPV polytopic representation of a system

through the reduction on the number of varying parameters, obtaining an ap-

proximated representation of the system.

Remark 2. In LPV literature, if any of the varying parameters is function of

endogenous variables, the model is formally denoted as quasi-LPV. Although185
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Variable Minimum Maximum

q̇i [rad/s] −3 3

q1 [◦] -75 75

q2[◦] -60 45

τi [N·m] -6 6

φ1 0.0055 0.0091

φ2 -0.0110 0.0110

Table 2: State, input torque and scheduling variables limits for TIAGo head subsystem.

this is the case for the considered N -DoF manipulator whose Φ set is defined

according to joint position and velocities, throughout this work we refer to LPV

to avoid misleading interpretations for non-expert readers.

2.4. Polytopic LPV model

In order to get the presented techniques closer to their implementation on190

a real robotic manipulator, all of them have been designed for the discrete-

time domain. According to Toth et al. (2010), the discrete-time form of a

continuous-time LPV model can be obtained if system’s matrices have been

evaluated according to a discretisation method for a sampling time Ts. More

details on the discrete-time implementation are given in Sec. 6.195

Considering the discrete-time form of (3), the LPV representation of the

system is the following one:

x(k + 1) = A(Φ)x(k) +B(Φ)u(k). (5)

Regarding gravity effects gc(x(k)) in (3), they appear as an independent term

and will be omitted for the upcoming modeling process, considering that in our

approach this term is counteracted through a feed-forward action, which will be

addressed in Sec. 3.

In order to avoid considering all the reachable states for the LPV system,

all the possible trajectories of Φ can be confined in a polytope Ω defined by a
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set of vertices:

Φ(k) ∈ Ω := Co{ω1, ..., ωn} (6)

being n = {1, ..., 2nΦ}. Thus, the state-space matrices are confined in the poly-

tope defined by their image at these vertices:

[
A(Φ) B(Φ)

]
∈ Co

{[
An Bn

]
:=

[
A(ωn) B(ωn)

]}
. (7)

Using this approach, system representation Eq. (5) can be stated as a weighted

function of their images on polytope vertex as follows:

x(k + 1) =

2nΦ∑
n=1

µn(Φ)[An(Φ)x(k) +Bn(Φ)u(k)] (8)

where µn(Φ) are the polytopic coefficients, such that:

2nΦ∑
n=1

µn(Φ) = 1, µn(Φ) ≥ 0 (9)

From the set of applicability conditions, we know that φi ∈ [φ
i
, φi], and so the

set of vertices will correspond to all the possible combination of these limits.

Thus, µn(Φ) can be defined as

µn(Φ) =

nΦ∏
m=1

ξnm(ηm0 , η
m
1 ) (10)

where,

ξnm(a, b) =

a if mod(n, 2m) ∈ {1, ..., 2m91}

b else

considering a linear interpolation between the limits.200

3. Model-based DO

This work aims at obtaining a control structure that is able to adapt its

behaviour according to an exogenous disturbance such that it does not interfere

the task fulfilment and/or some undesired effects are avoided. Particularly, a
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robotic mechanism is meant to track certain joint trajectories and might be205

affected by an external force F at any time, which will (presumably) hinder this

task. Therefore, the chosen strategy is to compensate its effects such that an

admissible tracking performance is obtained, which requires of their estimation

through a DO.

Recalling the joint configuration space in Eq. (1), F will exert a set of joint

torques τF :

τ + τF = M(q) q̈ + N(q, q̇) + G(q) (11)

modifying Eq. (5) as follows:

x(k + 1) = A(Φ)x(k) +B(Φ) (u(k) + τF (k)). (12)

Following a similar approach than the one proposed in Witczak (2014) for fault

estimation, and considering the discrete-time difference between current system

state x(k) at time instant k and the expected value given by the available model

of the system considering previous state x(k 9 1) using Eq. (12), the exerted

torque can be estimated as follows

τF (k 9 1) = B†(k 9 1)[x(k)−A(Φ(k 9 1))x(k 9 1) +B(Φ(k 9 1))u(k 9 1))], (13)

where B† represents the pseudoinverse of matrix B. Note that using the avail-210

able information at time step k it is only possible to obtain τF at time instant

k 9 1. This is often solved in the literature considering that τF (k) = ξ τF (k 9 1),

where the term ξ corresponds to a gain design parameter. In this work, it has

been considered equal to a identity matrix, i.e. a one time-step predictor.

It is worth to mention that through this approach τF (k) is generated using215

joint position and velocities from the system, considering the available sensors

on the TIAGo head system (and the vast majority of robotic mechanisms)

4. State Estimation

As the generation of τF (k) depends on the system states, these measure-

ments have to be available on-line during the complete execution of a task.
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Although this premise is generally accepted, the robotics community points out

that as robotic platforms have to operate uninterruptedly during long periods,

and considering their inherent complexity, they are prone to different types of

adverse events that should be overcome. Thus, in this work we have extended

the problem to consider a limited number of measurements during the whole

task. In the particular case of the TIAGo head, system output y has been

considered as follows:

y = C x = [q̇2, q1, q2]T . (14)

where matrix C ∈ Rny×nx . In this case, C is constant disregarding the operating

point of the system, so no LPV formulation is required. Recalling the conditions220

described in Sec. 2 to define the scheduling vector Φ through the non-linear

embedding approach, the given definition of C ensures the observability property

for any value of φi.

4.1. Robust Unknown Input Observer

The UIOs allow to obtain a decoupled estimation from the effects of an225

unknown input, disregarding its behaviour. Particularly, the Robust-UIO for

Takagi-Sugeno models (RUIO for short) presented in Chadli and Karimi (2012)

has been adapted to this problem, making use of existing strong analogies be-

tween Takagi-Sugeno and polytopic LPV representation (Rotondo et al., 2015b).

The RUIO assumes the following polytopic LPV discrete-time state-space

representation

x(k + 1) =

2nΦ∑
n=1

µn(Ψ)[Anx(k) +Bn u(k) +Rn f(k)], (15a)

y(k) = C x(k), (15b)

where f(k) ∈ Rnf stands for the unknown input vector, being nf the number

of unknown inputs considered. Matrix Rn ∈ Rnx×nf represents the influence of

f(k) in the system behaviour. These matrices are determined according to the

desired effect to represent, and provide the existence of a solution as described in
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Chadli and Karimi (2012). Recalling the state-space form including the exerted

torque from Eq. (12) and defined output model in Eq. (14):

Rn , Bn .

The structure for the RUIO is:

z(k + 1) =

2nΦ∑
n=1

µn(Φ)[Nnz(k) +Gnu(k) + Lny(k)] (16a)

z(k) = x̂(k) + Ey(k) (16b)

where z(k) corresponds to RUIO’s state vector, with the same dimensions of230

x(k), which embeds the given estimation x̂(k). Matrices Nn, Gn, Ln and E

are the observer gains to be designed by ensuring an asymptotic stability of the

observer dynamics, i.e. the estimation error converges to zero as time tends to

infinite disregarding the unknown inputs magnitude. Fig. 3 graphically repre-

sents the RUIO structure within the complete architecture.235

Remark 3. The original formulation from Chadli and Karimi (2012) does dif-

ferentiate between “unknown inputs” and “disturbances”. In this paper, we refer

to the first type as either “disturbances” or “unknown inputs”, and the second

type corresponds to “noise”. We use this nomenclature to help the reader link

these terms to the real implementation.240

4.2. Optimal RUIO

One of the main contributions of this work is the introduction of conditions

for optimal design based on Ricatti equations of the Kalman filter for the RUIO.

In the application to the real platform, process and sensor noise cannot be

avoided, therefore their effects have to be minimised such that do not hinder

the estimation of the unknown states. This formulation allows to introduce

process and sensor noise covariance through matrices Qo and Ro, that define

the quadratic criterion Jo according to the estimation error e(k) = x(k) 9 x̂(k):

Jo =

∞∑
k=0

(e(k)T Qo e(k) + eT (k)KiC Ro C
TKT

i e(k)) < γo (17)
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Figure 3: Schematic representation of the complete control architecture for the polytopic

LPV formulation of the TiaGO head system, including the Robust Unknown Input Observer

(RUIO), the State-feedback Shifting Control and Active Compensation strategies.

Proposition 1. Optimal RUIO Design. Given Qo = QTo = HT
o Ho > 0

and Ro = RTo > 0 matrices, and the optimal performance upper bound γo > 0,

the observer from Eq. (16) converges asymptotically to the state of the polytopic

discrete-time LPV model from Eq. (15) if there exists matrices sets

X = {X1, ...X2nΦ }; Xn ∈ Rnx×nx | Xn = XT
n > 0 ∀n = 1, ..., 2nΦ , (18a)

W = {W1, ...W2nΦ }; Wn ∈ Rnx×ny , (18b)

S = {S1, ...S2nΦ }; Sn ∈ Rnx×ny , (18c)
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such that the following conditions hold ∀~i ∈ I(2,2nΦ ):
−Xi1 Xi1Ai1 + Si1CAi1 −Wi1C Xi1H

T
o Wi1

(∗) −Xi2 0 0

(∗) 0 −I 0

(∗) 0 0 −R−1
o

 < 0, (19a)

(Xi1 + Si1C)Ri1 = 0, (19b)γo I I

I Xi1

 > 0 (19c)

where the symbol (∗) denotes the transpose of the element in the symmetric

position, and

I(r,h) = {~i = (i1, ..., ir) ∈ Nr |1 ≤ in ≤ h ∀n = 1, ..., r}.

The obtained solution for these matrices defines RUIO’s gains for n = 1, ..., 2nΦ :

E = X−1
n Sn, (20a)

Gn = (I +X−1
n SnC)Bn, (20b)

Nn = (I +X−1
n SnC)An −X−1

n WnC, (20c)

Ln = X−1
n Wn −NnEn. (20d)

Proof: The proof is given in Appendix B.

Note that I(r,h) is a multi-index notation to represent all the combinations of

h elements that can take (natural) values from 1 to r. Therefore, I(2,2nΦ ) rep-

resents all the possible pairwise combinations between the 2nΦ vertex imposed245

by RUIO condition in Eq. (19a). For the N -DoF mechanism case, the number

of states nx = 2N , and remaining terms are defined by the number of varying

parameters and the chosen output model.

4.3. Polya’s Theorems formulation for the RUIO

In the proposed extension of the RUIO method including optimality condi-250

tions, some feasibility issues could arise depending on the number of polytope
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vertices and the similarity between them (i.e. the variability in terms of the

scheduling parameters image). Also equality constraints from Eq. (19b) have

been found to highly increase complexity of the overall problem, as it imposes

a strict relation between terms. Although a set of positive definite variables255

X = {X1, .., Xn} has been included in the formulation to reduce overall prob-

lem conservatism, we have additionally applied Polya’s theorems on positive

forms of the standard simplex to obtain sufficient conditions, as proposed by

Sala and Arino (2007). This solution introduces a new set of constraints through

dimensionality expansions of the LMI conditions. These new inequalities are ob-260

tained as sums of matrices evaluated in a certain index combination according

to a multi-index vector in I(r,2nΦ ), where r represents a complexity parameter

of the method: larger values imply greater number of conditions, increasing

the associated computation burden but reducing the overall conservatism of the

problem. A brief description of the method has been included in Appendix265

C. Thus, combinatorial constraints from Eq. (19a) can be substituted by the

following one for a given r ≥ 2:

∑
~j∈P(~i)


−Xj1 Xj1Ai + Sj1CAj1 −Wj1C Xj1H

T
o Wj1

(∗) −Xj2 0 0

(∗) 0 −I 0

(∗) 0 0 −R−1
o

 < 0 ∀~i ∈ I+(r,2nΦ )

(21)

5. Shifting Control Design

5.1. Feedback control law

The RUIO gives a decoupled estimation for system states from the effects of

an unknown exogenous force exerted on the system, allowing to use an state-

feedback control strategy. For the polytopic discrete-time LPV system, which

can be derived from Eq. (8), the corresponding state-feedback control law is:

ufb(k) = −Kfb(Φ) x̂(k) = −
2nΦ∑
n=1

µn(Φ)Kfb,n x̂(k). (22)
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Joint trajectory references are assumed to be given by an external planning

module, according to a specific high-level objective, as e.g. for the TIAGo head

system, an object tracking algorithm based on live-image input. Associated

control actions to the trajectory references has been computed by means of the

Feedforward Scaling matrix S(Φ), defined for the considered system:

S(Φ) =

2nΦ∑
n=1

µn(Φ)[Cr (I +BnKfb,n −An)−1 Bn]−1. (23)

Note that matrix Cr is determined considering the system states to be regulated

through the control law, in this case, joint reference positions given by vector

qr(k) = [q1(k), ..., qN (k)]T . Thus, the input control action uc for the system can

be obtained as

uc(k) = ufb(k) + S(Φ)qr(k). (24)

Besides stability, control gains can be obtained according to certain criteria

regarding desired performance. Also from the Riccati equations, the well-known

quadratic optimal control, referred in the literature as Linear Quadratic Regu-

lator (LQR) problem, aims at obtaining a controller according to the quadratic

index Jc similarly defined as in Eq. (17)

Jc =

∞∑
k=0

(x(k)T Qc x(k) + xT (k)KfbRcK
T
fb x(k)) < γc. (25)

There is not an a straightforward definition to be considered for tuning of Qc

and Rc like in the observer synthesis problem. Generally, LQR design approach

is used to reduce the oscillatory behaviour of the system response by penalising

the magnitude increase of states and control actions. In this work, it has been

done through a weighted Bryson’s Rule, which gives their definition according to

the squared maximum admissible values of variables di and user-defined weights

δi:

Qc = diag
{
δ1
d1
, · · · , δ2N

d2N

}
, Rc = diag

{
δ2N+1

d2N+1
, ...,

δ2N+nu

d2N+nu

}
, (26)

where nu corresponds to the number of control inputs for the system. The270

selection of di has been done for the TIAGo Head system recalling the limits
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imposed by the real platform and summarised in Table 2 for state variables

and control input actions. The selection of δi will be detailed in Sec. 6.1, as it

corresponds to a tuning procedure on the system.

Remark 4. Bryson’s rule defines Qc and Rc on desirable maximum admissible275

values, as LQR conditions do not restrict state and action values but allow

design the controller ensuring stability according to J .

5.2. Active Compensation and Shifting Paradigm

As aforementioned, the set of torques exerted by the exogenous force τ̂F is

meant to be actively compensated without jeopardising task fulfilment. Recall-

ing the state-space alike representation from Eq. (3), gravity effects denoted by

g where omitted to construct the polytopic LPV model, on the assumption that

this term will be also counteracted. Thus, using the decoupled state estimation

computed by the RUIO x̂(k), the counter values of both τ̂F and ĝ can be ob-

tained and actively injected in uc such that joint torque vector τ is generated:

τ(k) ≡ u(k) = uc(k)− [τ̂F (k) + ĝ(k)]. (27)

Active compensation relieves the state-feedback control strategy of gener-

ating the required effort to simultaneously track desired joint trajectories and280

compensate for additional effects. This allows to ensure some stability and de-

sirable performance properties on the controller synthesis problem, considering

the nominal operation instead of all the possible ones that might arise from the

effects of unknown inputs, which in practice will not be tractable. However,

this paradigm underlies the assumption that control strategy and compensation285

mechanism can operate individually disregarding any further constraint imply-

ing both of them. In this work, we have considered actuator saturation, which

imposes that the control torque τ(k) obtained as the sum of both the active

compensation and state-feedback actions has to be bounded in order to avoid

ill-posing control performance and stability, or damaging the actuator itself.290
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Therefore, we have introduced a design strategy where the controller acknowl-

edges this saturation effects by adapting control compliance according to the

magnitude of the effects to be compensated, following the shifting paradigm as

applied by Ruiz et al. (2019).

This paradigm for LPV formulations considers an augmentation of the vary-

ing parameter set Φ with a new one Ψ ∈ RnΨ , henceforth referred as shifting

parameter set, used to alter the state-feedback control law behaviour in Eq. (22)

as follows

ufb = −Kfb(Φ) x̂(k) = −
2nΦ∑
n=1

µn(Φ)

2nΨ∑
m=1

νm(Ψ)Kfb,nm x̂(k) (28)

where νm(Ψ) are the associated polytopic weights defined following conditions

from Eq. (9). This structure has been also graphically depicted within the

complete control architecture in Fig. 3. Shifting variables have to be defined

considering the phenomena on which the control behaviour has to be modified,

in this particular case, the magnitude of the compensated effects with respect

to the torque limits. Defining the input saturated action for the i-th actuator

ui =

sign(ui)ui if abs(ui) > ui

ui if abs(ui) ≤ ui
, (29)

where ui is the saturation limit (assuming a symmetry on the effect), shifting

variable ψi is defined according to the difference between the exerted torque and

gravity effects and input saturation limits, scaled such that ψi ∈ [0, 1]:

ψi =
u2
i − [τ̂F (k) + ĝ(k)]2

u2
i

. (30)

Defining the behaviour associated with the shifting strategy relies on the295

synthesis problem of state-feedback gains Kfb,nm. Following the polytopic ap-

proach, different performances have to be associated with the limits of ψi such

that any value within these bounds has the corresponding “interpolated” one.

To avoid reaching actuator saturation limits, it is desired that as the correspond-

ing torque of the actively compensated effects increases, the state-feedback con-300

trol compliance is increased, i.e. control effort is decreased through a slower
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response of the closed-loop system. Control theory has proven for the LPV sys-

tems the influence of placing the system’s poles in some particular regions on the

performance characteristics (Ruiz et al., 2019). Particularly, system response

can be defined by its time constant τ s, for a given sampling time Ts, which can305

be determined by the magnitude of its poles. Thus, in this work, pole place-

ment conditions that constraint poles to certain regions have been introduced

into the control synthesis problem to define the system response, depending on

the values of shifting variables.

In order to ease a straightforward applicability of this method, pole place-

ment has been defined in circular regions according to the settling time of the

system Tsett,κ for a certain band with a width of κ% reference value. Thus,

given desired maximum and minimum values, respectively T sett,κ% and T sett,κ%,

their radii ρk and center σk in the complex plane can be defined as follows

∀k = 1, ..., 2Ψ:

ρk =
e−αkTs − e−βkTs

2
, (31a)

σk = ρk + e−βkTs , (31b)

where

αk =
χ|Sk| − τ s(1− |Sk|)

m
, βk =

χ|Sk| − τ s(1− |Sk|)
m

,

being

τ s = − log(κ%)

Tsett,κ%
, χ =

τ s − τ s
2

± p.

The term Sk = {k ∈ {1, ..., 2nΨ} : mod(j, 2nΨ) ∈ {1, ..., 2nΨ−1}}, being |Sk| its310

cardinality, and the user-defined variable p determine the overlapping between

fastest and slowest LMI regions. Note that all these regions are defined such

that closed-loop system poles lie in the Right-Half Plane (RHP) of the discrete

complex plane to avoid undesired oscillatory behaviours (Isermann, 2013).

The LMI framework gives a general description of regions in the complex

plane under the definition of D-stabilization (Chilali et al., 1999). The Dc,k
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circular regions considered in the shifting strategy are characterised by matrices

Lc,k =

−ρk σk

σk −ρk

 , Mc,k = Mc =

0 1

0 0

 .
Thus, under the shifting control strategy, LQR design problem (Ostertag, 2011)

defined ∀~i ∈ I(2,2nΦ ) has to be stated ∀k = 1, .., 2nΨ as follows:
−Y Y ATi1 −W

T
i1,k

BTi2 Y HT
c WT

i1,k

(∗) −Y 0 0

(∗) 0 −I 0

(∗) 0 0 −R−1
c

 < 0, (32a)

γc I I

I Y

 > 0 (32b)

and the corresponding LMI pole placement conditions have to be included intro

the control synthesis problem:

Lc,k ⊗ Y +Mc ⊗ (Ai1Y −Wi1,kBi2) +MT
c ⊗ (Ai1Y −Wi1,kBi2)T < 0, (33)

being Kfb,nm = Wn,mY
−1.315

Remark 5. The presented shifting approach assumes that the sum of gravity

and exogenous force effects to be compensated will not be greater than the ac-

tuator saturation limits, which will limit their operation to the linear region.

Although it might seem like a strong assumption to be made, robotic manipu-

lators are generally designed towards increasing their payload-weight ratio, i.e.320

reducing its inertia while increasing the maximum load it can handle. Also, the

design process of robotic manipulators generally considers the maximum forces

to be exerted by the robot according to their context of operation.

Remark 6. Under the Shifting Control paradigm, the definition given in Eq. (23)

for the Feedforward Scaling matrix S(Φ) has to be slightly modified to include325

terms Kfb,nm, akin to reformulation of the state-feedback control law in Eq. (28)

from Eq. (22).
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Remark 7. Design problems of the observer (RUIO) and control strategy (State-

Feedback Shifting Controller) have been considered separately, which is custom-

ary in control implementation problems, as e.g. in Rotondo et al. (2013). How-330

ever, the stability guarantees would be only guaranteed either by proving the sep-

aration principle or considering a joint design, being any of these two options

investigated in a future research.

5.3. Polya’s Theorems formulation for the Polytopic State-feedback Shifting Con-

troller335

The LPV description given in Eq. (5) sets an input matrix B function of Φ,

which under the polytopic approach depicted in Eq. (8) corresponds to a set of

Bn matrices. Thus, conditions from Eq. (32a) including the closed-loop form of

the system, involve the combination of every Bn with all Wn or Wn,m, meaning

that each gain has to be robust with respect to every possible input matrix,

increasing the overall conservatism of the design problem. Moreover, control

shifting approach includes additional pole placement conditions from Eq. (33),

which involve same combinations. Similarly to Section 4.3, we can relax the

LMI conditions on the design process applying Polya’s theorems. Therefore, for

r ≥ 2 for conditions from Eq. (32a) and (33) we obtain the following sufficient

conditions ∀~i ∈ I+(r,2nΦ ) and ∀k = 1, ..., 2nΨ :

∑
~j∈P(~i)


−Y Y ATj1 −W

T
j1,k

BTj2 Y HT
c WT

j1,k

(∗) −Y 0 0

(∗) 0 −I 0

(∗) 0 0 R−1
c

 < 0 (34a)

∑
~j∈P(~i)

Lc,k ⊗ Y +Mc ⊗ (Aj1Y −Wj1,kBj2) +MT
c ⊗ (Aj1Y −Wj1,kBj2)T < 0.

(34b)

Remark 8. In the controller synthesis problem, a common variable Y is used

for the candidate Lyapunov function, instead of a polytopic set as with the RUIO.

Although it increases the degree of conservatism, it will also add an additional
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combinatorial index to the existing one due to variant B. Polya’s theorems allow

a definition for any r-degree combination, but we have preferred to provide a340

unique application case to avoid misunderstandings.

6. Case Study

In this section, the implementation process of the control architecture pre-

sented in this paper is described for the TIAGo head example, providing general

guidelines to be applied for any N -DoF mechanism with rotational joints. First,345

the design problem of both the shifting controller and RUIO will be stated,

endorsing made choices. Then, simulation results are provided for a real scenario

involving TIAGo in a environment simulated in ROS.

6.1. Design problem

The polytopic set of state-space matrices for the N -DoF manipulator system350

has been discretised using the Zero-order Hold (ZoH) method, considering the

discretization behaviour of Analog-Digital conversion in both sensing and acting

devices (Toth et al., 2010). Sampling time Ts has been chosen according to the

required execution and communication times of the platform for a worst-case

scenario. TIAGo head uses Dynamixel servomotors from ROBOTIS4, specif-355

ically MX-64 model, which features current-based torque control. Executing

the code in MATLAB (2016b version), using the available Dynamixel SDK

library and considering TTL serial communication, the execution time per cy-

cle has been determined to be below 0.5 milliseconds under these conditions.

Therefore, Ts =10 [ms] has been used, where idle time contemplates the simul-360

taneous execution of other processes that would increase computation time, as

e.g. an object tracking algorithm.

Considering the overall control architecture, RUIO synthesis problem has

to be extended with a D-stabilization constraint such that there does not exist

4Dynamixel Actuator Series from ROBOTIS: http://en.robotis.com/model/page.php?

co_id=prd_dynamixel (Accessed July 26, 2021)
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Problem ρ σ

Shifting Control [0.0243, 0.0246, 0.0246, 0.0249] [0.9490, 0.9610, 0.9610, 0.9732]

RUIO 0.2890 0.2990

Table 3: LMI Circular Regions radii ρ and centers σ for observer and control synthesis prob-

lems of the TIAGo head system.

any dynamical coupling between closed-loop system and observer. Therefore,

dominant poles of the RUIO have been set to be at least 10 times faster than

the fastest pole of the shifting controller. Following D-stabilization definition,

LMI constraint is stated for Nn matrix, as it determines the error dynamics of

the RUIO:

Lo ⊗Xn +Mo ⊗NnXn +MT
o ⊗XnN

T
n < 0, (35)

where

Lo =

−ρo σo

σo −ρo

 , Mo =

0 1

0 0

 .
define a circular region, being σo and ρo determined according to aforementioned

criterion after the controller synthesis problem, and recalling that they should

lie on the RHP. For the TIAGo head system, these values have been included365

in Table 3.

A quadratic criterion has been introduced in both controller and observer

design, being upper bounded by parameter γ for any reachable state, accord-

ing to matrices Q and R. Optimality of the solution is obtained through the

minimisation of γ such that the set of LMI constraints holds. Hence, synthesis370

problems have been stated as follows:

Optimal RUIO Design

Given Qo, Ro, Lo, Mo

minimise γo

subject to (21), (19b), (19c), (35)

Shifting Controller Design
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Matrix Definition

Ro diag(32, 12, 12)·10−8

Qc
∆Qc =diag(0.99, 0.99, 0.01, 0.01)

DQc = diag(1/32, 1/32, 1/1.312 1/1.052

Rc
∆Rc = diag(0.9, 0.9)

DRc = diag(1/62, 1/62)

Table 4: Definition of tuning matrices Q and R for RUIO and shifting control synthesis

problems of the TIAGo head system.

Given Qc, Rc, Mc and Lc,k ∀k = 1, ..., 2nΨ

minimise γc

subject to (34a), (34b), (32b)

To achieve noise reduction effects for the RUIO, Qo and Ro have been defined

according to sensor and process noise. For the TIAGo head system sensors, noise

follows a zero-mean Gaussian distribution, with standard deviations σp = 1·10−4

[rad] and σv = 3 ·10−4 [rad/s] for joint position and velocity, respectively. In the375

shifting controller design Qc and Rc are defined according to a weighted Bryson’s

rule given a set of maximum admissible values for actions and states. Weights

δi have been obtained through a tuning process aimed at reducing oscillatory

behaviours in the system response to step references. These matrix definitions

for the TIAGo head example have been gathered in Table 4.380

Regarding the shifting strategy, closed-loop settling time for κ = 2% has

been chosen to lie in [0.5,20] [s], defining through Eqs. (31) sets ρk and σk

of the four LMI regions for the TIAGo head case, also included in Table 3.

Lower values of p determine greater overlapping between regions in the discrete

complex plane, and for the considered system a maximum of p = −1.3 has been385

found.

LMI conditions have been stated using YALMIP toolbox (Löfberg, 2004)

for MATLAB, and solved by the Semi-Definite Programming (SDP) algorithms
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Formulation Def. Pole plac.
Main

Total
LMI Equal.

Standard Stability 3 16 16 - 35

Polya’s (r = 3)
LQR & No Shifting 3 20 20 - 43

LQR & Shifting 3 68 68 - 139

Table 5: Number of LMI constraints for the control synthesis problem of the TIAGo head sys-

tem, regarding different formulations and performance constraints. In bold, the corresponding

one to the complete scheme.

Formulation Def. Pole plac.
Main

Total
LMI Equal.

Standard Stability 4 4 16 4 28

Polya’s (r = 5) LQR 5 4 57 4 70

Table 6: Number of LMI constraints for the RUIO synthesis problem of the TIAGo head sys-

tem, regarding different formulations and performance constraints. In bold, the corresponding

one to the complete scheme.

provided by MOSEK 5. Feasible solutions have been found in both cases, and

the number of LMI constraints has been detailed for the TIAGo head case in Ta-390

bles 5 and 6 for the Shifting Control and RUIO Designs, respectively. It should

be pointed out that in these Tables, column “Def.” considers all the constraints

regarding the definition of the problem and/or the bound of γ, “Pole plac.” for

those defining LMI regions, and “Main” for the ones that determine the overall

objective of the design, e.g. stability, optimal conditions and/or specific condi-395

tions linked to the structure definition, distinguishing between LMI and equality

(“Equal.”) constraints. These tables additionally include the same information

for each problem with and without the application of Polya’s theorems and

regarding different performance constraints.

Obtained solution for the TIAGo head has been graphically reproduced400

5MOSEK optimization software: https://www.mosek.com/ (Accesed July 26, 2021)
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(a) (b)

Figure 4: Placement of poles and defined LMI regions for closed-loop system with shifting

state-feedback control (red) and RUIO (blue) solutions in the complex plane (a), and a detail

of the closed-loop system placement of poles and LMI regions corresponding to the shifting

strategy (b).

through the representation of chosen LMI regions and the corresponding poles.

Fig. 4(a) distinguishes the LMI regions imposed for the observer (blue) and

closed-loop system (red) within the unit circle. Shifting strategy is detailed in

Fig. 4(b), where the distribution of obtained 4 LMI regions (2nu) is depicted.

6.2. Simulation results405

In this part, we focus on key aspects of the presented control architecture

through different scenarios to assess its overall performance in the joint track-

ing problem. All of them correspond to different settings in the GAZEBO

environment, where the TIAGo tracks an ArUco cube marker 6 by moving

its head (which embeds a RGB-D camera) in the presence of exogenous forces410

(Fig. 5). Results provided in this part consist on combinations of angular tra-

jectories (Step References, Curve References) and exogenous force behaviours

6ArUco: a minimal library for Augmented Reality applications based on OpenCV: https:

//www.uco.es/investiga/grupos/ava/node/26 (Accesed July 26, 2021)
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Figure 5: environment for the cube following task, together with the RGB-D camera output

and the ArUco marker detection.

(Mass Force, Variant Force, Half-Sinus Force), which are thoughtfully described

in Appendix D. Additionally we have included a video that shows the perfor-

mance of our approach (“Polytopic State-Feedback Shifting Control with Active415

Compensation”) against the default joint-independent PD control, which can be

also found in the related website7.

Remark 9. It should be pointed out that under the same force behaviour, differ-

ent control strategies and trajectories influence its effect, as exerted joint torques

by the exogenous force depend on the relative distances to joint axes, that change420

according to angular positions.

6.2.1. Noise effect reduction

The first scenario is built for Curve References and Variant Force to evaluate

the noise reduction effect of the Optimal RUIO formulation. For the TIAGo

case, noise is propagated from the estimation of ˆ̇q1 to the state-feedback control425

7http://www.iri.upc.edu/people/asanmiguel/Projects/DO_LPVShift/
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(a) (b)

(c) (d)

Figure 6: Evolution of q̇1 and τF,1 and their estimation for RUIO standard formulation (a,c)

and optimal one for noise reduction (b,d) under the Variant Force.

and active compensation, i.e. the input action to the system, amplifying its

effect on measured variables, used in the RUIO estimation at next time step.

Figure 6 shows a side-by-side comparison between solutions under the same

conditions, showing the improvement in estimating both ˆ̇q1 and torque exerted

in Pan Joint τ̂F,1, where the noise effect is most significant. Nevertheless, RUIO430

estimation at time instant k is based on current system output, unlike classical

Kalman Filters where it is done for output at k − 1. Thus, noise reduction

cannot be as effective for RUIO as it is for Kalman Filter, as measurement noise

is directly injected into state estimation without being filtered out by observer

dynamics.435
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6.2.2. Overall performance

Performance of the complete control scheme is evaluated on Curve Refer-

ences for Mass and Variant Force scenarios. To validate our approach, we have

included in these experiments a comparison against two variations:

• EKF variation: The complete control scheme, except for the RUIO,440

replaced by an Extended Kalman Filter (EKF). As aforementioned, it is

considered in the unknown disturbance rejection literature as the state-of-

art technique. Using this approach, state-space is augmented to include

the disturbance effects into the observer model, which requires to a-priori

assume its dynamic behaviour. In discrete-time scenarios, the rate of445

change of the disturbance in EKF is assumed to be constant throughout

the operation, i.e. τ̇F (t) = 0 (Mohammadi et al., 2013), which has been

also considered for these experiments.

• PD and Active Compensation variation: using the estimation of

the RUIO and the disturbance compensation mechanism, State-feedback450

Shifting controller is substituted by an independent-joint PD controller.

This constitutes the off-the-shelf solution for regulation tasks, and is the

one implemented as the pose control strategy for the TIAGo head system.

Current PD gains embedded in joint actuators are presented in Table 7.

Figures 7 and 8 include the results for considered force scenarios, summarised455

in Table 8 using the Root Mean-Squared Error (RMSE) over the whole simula-

tion together with its value when there is not an exogenous force acting on the

system. Under the Mass Force, applied in t ≈ [25 − 35][s] as it can be seen in

Fig. 7(c), only q2 is affected, and except both the Complete Design and the

EKF variation are able to compensate for the exogenous force effects that are460

rejected during this time. It should be pointed out that the force effect on the

EKF variation produces a higher deviation from the reference trajectory when

the force is firtsly applied at 25[s] and released at 35[s], approximately. For the

Variant Force case depicted in Fig. 8, differences between the methods become
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Joint P Gain D Gain

q1 1 32

q2 5 34

Table 7: Actuator PD gains for TIAGo head system.

more significant, and the Complete Scheme presented in this paper outperforms465

the variations of the method. Overall, PD control with Active Compensation

presents less deviation than the EKF variation, which even reaches the upper

q1 limit in the interval t = [20, 25][s]. Greatest fluctuations of the EKF varia-

tion correspond to t ≈ [18 − 28][s], when the exogenous force has a magnitude

peak, as it can be seen in Fig. 8(c). This arises from the EKF design, which470

requires assuming the dynamics of the unknown disturbance, constant in these

experiments. When a significant mismatch with its real behaviour occurs, the

compensation of the estimated effects hinders the rejection capabilities of the

control scheme.

To further analyse the differences between the EKF and RUIO, Table 9 in-475

cludes the RMSE for q̇1, τF,1 and τF,2 for the Variant Force case. RUIO has

lower RMSE in all estimations, being one order of magnitude lower than EKF

for the exogenous force torques. Together with the previous results, this high-

lights the importance of avoiding any a-priori assumption on the disturbance

behaviour, moreover if it is meant to be rejected by a feedforward compensation480

strategy. Thus, using RUIO has been proved to be a more suitable option for

disturbance rejection problems than state-of-art EKF technique.

6.2.3. Actuator saturation

Finally, Shifting control is evaluated for Step References and Half-Sinus

Forces in order to emulate an scenario where the required control torque is485

close to actuator saturation limits. The complete scheme featuring the shift-

ing strategy is compared against two static state-feedback controllers, designed

also according to their settling time for a single LMI circular Region: a slower

controller with Tsett,2% = [0.5, 20][s] and a faster one with Tsett,2% = [0.5, 1][s].
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Scenario Joint Complete scheme EKF PD & Act. Comp.

No Force
q1 1.5413 1.3146 0.1192

q2 1.3196 1.2035 0.1545

Mass Applied
q1 1.3863 1.3166 0.1078

q2 1.3085 2.2115 1.5209

Variant Force
q1 1.9658 3.8871 1.9888

q2 2.8069 6.0832 4.9082

Table 8: Root Mean Squared Error (RMSE) (in [◦]) for compared control strategies under

different force scenarios.

Variable RUIO EKF

ˆ̇q1 [◦/s] 0.7528 0.8731

τ̂F,1 [N·m] 0.0043 0.0663

τ̂F,2 [N·m] 0.0041 0.0665

Table 9: Root Mean Squared Error (RMSE) of estimated values given RUIO and EKF (for

the same control strategy) under the Variant Force scenario, excluding measurement noise

effects.
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(a)

(b)

(c)

Figure 7: Desired trajectories and evolution of q1 (a) and q2 (b) under the Mass Force scenario,

depicted in terms of magnitude and orientation (c), for compared control strategies. Grey areas

in (a,b) represent the physical joint limits. 36



(a)

(b)

(c)

Figure 8: Desired trajectories and evolution of q1 and q2 (a,b) under the Variant Force scenario,

depicted in terms of magnitude and orientation (c), for compared control strategies. Grey areas

in (a,b) represent the physical joint limits. 37



Scenario Joint Complete scheme Fast cont. Slow cont.

No Force
q1 17.7408 15.6746 32.1372

q2 11.1072 9.9150 19.5654

Half-Sinus Force
q1 19.8564 15.6929 33.2427

q2 12.4489 9.9723 21.2979

Table 10: Root Mean Squared Error (RMSE) (in [◦]) for compared shifting and pole placement

strategies under different force scenarios.

Figure 9 shows the Pan trajectory together with a flag signal to indicate whether490

joint actuator saturates or not, for the complete scheme, and the slower and

faster controllers. Table 10 presents the RMSE over the whole simulation for all

these control approaches under aforementioned scenario and without an exoge-

nous force. Faster controller reaches saturation limits in Pan Joint for 0.07[s]

(Fig. 9(c)) when the Half-Sinus Force is applied, while the complete shifting495

controller does for 0.01[s] (Fig. 9(a)). Looking at the RMSE values of each

strategy it can be seen that while Fast controller presents similar values in both

scenarios, complete scheme ones slightly increase under the Half-Sinus Force,

i.e. there exist a relaxation in the tracking task to deal with the active com-

pensation while avoiding actuator saturation. Note that for the slow controller500

actuator saturation is reached for 0.27[s] (Fig. 9(b)), although it presents the

slower response time among the compared strategies. As it has been aforemen-

tioned, exerted torques depend on the manipulator pose, which determines the

relative distances between the point of application of the force and joint axes.

Thus, when the applied force gets closer to its maximum value, slow controller505

drives the system to an angular position where force is applied further from the

joint axes, increasing its exerted torque. Additionally Figure 10 has been in-

cluded to visualize the Shifting strategy in this scenario, including the evolution

of shifting variables Ψi and weights νm.
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(a)

(b)

(c)

Figure 9: Evolution of q1 under the Half-Sin Force scenario, together with the saturation limit

flag (blue regions), using the designed shifting (a), the slow (b) and the fast (c) controller

designs.

39



(a)

(b)

(c)

Figure 10: Evolution of estimated torques exerted by the exogenous force τ̂F,i and gravity

effects ĝ (a), shifting variables Ψi (b) and the associated weights νm (c) under the Half-Sin

Force scenario, for the complete control design.
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7. Conclusions and Future Work510

Existing joint-independent PD control in the TIAGo head system cannot

deal with exogenous forces in a regulation task. The approach proposed in this

paper successfully tackles this problem, as provided results in a realistic sim-

ulation case study. Moreover, guidelines to be applied on any N -DoF robotic

manipulator are given for the design and implementation phases. Embedded515

optimal conditions for the RUIO represent an improvement in the noise re-

duction properties of the observer, enhancing the overall performance. Shifting

approach allows to modify system response through the placement of closed-loop

poles in LMI regions, which has been shown to help avoiding actuator saturation

when actively compensated effects are close to input limits. The application of520

Polya’s theorems has been used to reduce the conservatism of both control and

RUIO synthesis problems through the definition of sufficient constraints, such

that feasible solutions can be found even under highly conservative constraint

and definitions.

In future works we will aim at (1) extending the system analysis, mainly525

regarding stability of the RUIO and Shifting controller together and (2) adapting

this control architecture for new scenarios and robotic manipulators with more

than 2-DoF operating in a task-relevant space. One interesting research line that

could be followed is to consider a disturbance corresponding to a force exerted

by a human, either accidentally or not. This consideration will require far more530

complex reaction and adaptation mechanisms from the control architecture, that

might be integrated through the presented gain shifting paradigm.Furthermore,

an in-depth comparison against other non-linear control strategies is needed,

specially regarding their suitability for implementation in robotic platforms.

Appendix A. ModelingAssumptions for the TIAGo head system535

To obtain the formulation of Eq. (1) for the TIAGo head system the follow-

ing customary guidelines have been considered to formulate its model as :
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• Base frame (Link 0) is placed at the top part of TIAGo torso, which

features a vertical movement. Considering that is not moving during the

trajectory following task, head base frame has been set as fixed.540

• Each link is considered as a rigid body, whose mass distribution is char-

acterised by the position of its Center of Gravity (CoG), being its inertia

tensor and mass referred to it. We use the parameters as defined by

PAL Robotics in the ROS simulation environment, listed in Table 1 and

included in Fig. 2. On the inertia tensors for both links, off-diagonal545

terms are negligible with respect to diagonal ones (by a factor of 10−4),

and therefore have been considered as null.

• The pose depicted in Fig. 2 is the zero-angle configuration of the head

system, being aligned axis 2X̂2 and 1X̂1 with 0X̂0; and 2Ŷ2 and 1Ẑ1 with

0Ẑ0.550

• External forces and torques acting on the head system have not been

considered for its dynamic characterization.

Appendix B. Proof of Proposition 1

Considering the set

P = {P1, ...P2nΦ }; Pn ∈ Rnx×nx | Pn = PTn > 0 ∀n = 1, ..., 2nΦ

for the candidate polytopic Lyapunov function

N(e(k)) =

2nΦ∑
n=1

µn(Φ) e(k)T Pn e(k),

applying the Kalman filter Riccati equation to the RUIO description given in

Eq. (15), the following inequality can be obtained ∀~i ∈ I(2,2nΦ )

NT
i1Pi2 Ni1 − Pi1 +Qo +Ki1 RoK

T
i1 < 0.
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Multiplying both sides by Xi1 = P−1
i1

and introducing the variable change Wi1 =

Xi1Ki1 leads to

−Xi1 − [(NT
i1Xi1)T (HoXi1)T Wi1 ]


−X−1

i2
0 0

0 −I 0

0 0 −Ro



NT
i1
Xi1

HoXi1

WT
i1

 < 0,

Applying Schur complement lemma, we obtain
−Xi1 Xi1 Ni1 Xi1 H

T
o Wi1

(∗) −Xi2 0 0

(∗) 0 −I 0

(∗) 0 0 −R−1
o

 < 0.

and considering Sn = XnE results in Eq. (19b), following the standard design

of the RUIO.555

Lyapunov matrix set P is bounded for all the reachable state domain ac-

cording to the optimality criterion Jo such that

2nΨ∑
n=1

µn(Ψ)Pn < γoI.

As aforementioned, multiplying at both sides by the change of variable Xn =

P−1
n leads to

γoI − I X−1
n I > 0,

from which Eq. (19c) is obtained after applying the Schur complement lemma.

Appendix C. Application of Polya’s Theorem on Combinatorial LMIs

Assessing positive-definiteness of the symmetric matrix Qi1 i2 for a polytopic

LPV system of nΦ scheduling variables implies:

Ξ =

2nΦ∑
i1=1

2nΦ∑
i2=1

µi1(Φ) µi1(Φ) xT Qi1 i2 x > 0, ∀ i ∈ I+(2,2nΦ ) (C.1)

According to Sala and Arino (2007), application of Polya’s theorems sets that for

a fixed r ≥ 2 , on the positive-definiteness conditions from Eq. (C.1), constraints
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defined as

Q̃~i =
∑

~j∈P(~i)

Qj1 j2 > 0, ∀~i ∈ I+(r,2nΦ ) (C.2)

where P(~i) denotes the permutation set of multi-index ~i,

I+(r,h) = {~i ∈ I(r,h) | im ≤ im+1, m = 1, ..., r 9 1}

are sufficient for positivity of Ξ. Note that this formulation is valid for both

continuous and discrete-time system forms as it does not impose any form of

Qj1 j2 . Also, although it has been defined for positive-definitive assessment, it560

can be equivalently used for negative case.

Appendix D. Simulation Scenarios.

• Joint Angle Trajectories

T.1 Step References given between two symmetric angular positions,

such that there exist an phase offset between joints to stress the565

dynamical coupling effects. For the TIAGo head case, Pan angle

trajectory is defined for ∓ 0.5 q
1

and Tilt one for ± 0.5 q2, with a

period of 10[s] and existing a 5[s] offset (π/2) between them.

T.2 Curve References to mimic trajectories given by an upper layer to

the control architecture, as e.g. path generator via a set of points.

In this case

q1,ref (t) = 0.7 q1 sin(0.04t),

q2,ref (t) = 0.7 q2 sin(0.08t− 26 · 10−4 t2),

evaluated each time step k as t = k Ts.

• Exogenous force behaviours. Forces have been considered to be ex-570

erted on the CoG of the second link, defined as function of a magnitude

|F| and orientation Fϕ w.r.t. the vertical axis of the manipulator base.
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F.1 Mass Force, i.e. the force corresponding to a mass attached to

the robot, addressing the issue that motivated the application of

presented approach to the TIAGo head system. Force orientation575

is constant and equal to zero and the magnitude corresponds to a

trapezoidal rounded-edge signal with a 1[s] rise time to emulate the

mass placement effect. For these simulations, placed mass is of 1[kg].

F.2 Variant Force in both magnitude and orientation, according to the

following equations for the TIAGo case:

|F|(t) = 15 · 10−2(t− 20) + 3 sin(t− 20)/(t− 20) [N]

Fϕ(t) = 45 sin(0.17t) [rad]

F.3 Half-Sinus Force in terms of magnitude, to assess control behaviour

from zero to a maximum value. For the TIAGo head case, considering580

a constant orientation of −45[◦], the maximum force value has been

set to 8.5 [N].
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