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Abstract—No proper norm exists to measure the distance
between two object poses essentially because a general pose is
defined by a rotation and a translation, and thus it involves mag-
nitudes with different units. As a means to solve this dimensional-
inhomogeneity problem, the concept of characteristic length has
been put forward in the area of kinematics. The idea consists in
scaling translations according to this characteristic length and
then approximating the corresponding displacement defining the
object pose in R

3 by a rotation in R
4, for which a norm exists.

This paper sheds new light on this kind of approximations which
permits simplifying optimization problem whose cost functions
involve translations and rotations simultaneously. A good example
of this kind of problems is the pointcloud registration problem in
which the optimal rotation and translation between two sets of
corresponding 3D point data, so that they are aligned/registered,
have to be found. As a result, a simple closed-form formula
for solving this problem is presented which is shown to be an
attractive alternative to the previous approaches.

Index Terms—3D rigid displacements, 4D rotations, 3D
pointcloud registration, characteristic length, quaternions, dual
quaternions.

I. INTRODUCTION

IT is well-known that there is no proper definition of norm
for rigid-body displacements because of the disparity of the

units of translations and rotations. Various approaches have
been proposed in the literature to provide ways around this
inconvenience (see [1] and the references therein). The prob-
lem is of particular relevance when performing optimizations
of cost functions that involve both translations and rotations.

Norms obviously exist for displacements that are either
pure translations or pure rotations. The existence of norms
for rotations in R

3 [2] was exploited in [3] to define a norm
for a planar displacement by approximating the displacement
in R

2 by a rotation in R
3. This work was extended in [4] to

the approximation of a displacement in R
3 by a rotation in

R
4. Since rigid displacements in R

3 can be represented using
dual quaternions, and rotations in R

4 by double quaternions,
the problem can be reduced to approximate dual quaternions
by double quaternions [5]. This kind of approximation has
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been successfully used in [6] to solve the inverse kinemat-
ics of 6R serial robots by expressing all displacements in
terms of double quaternions. An alternative approach, which
avoids the use of quaternions, consists in computing the
singular-value decomposition, or the polar decomposition, of
the homogeneous transformation matrix representing the rigid
displacement to approximate it by a rotation [7], [5]. In all
these approximations, distances are actually scaled according
to a characteristic length. This leads to a homogenization
of units which allows, in turn, for a consistent addition of
translation and rotation terms.

In [1], an exact expression for the error of the approximation
as a function of the characteristic length is derived to arrive
at the rather obvious conclusion that this approximation is
improved monotonically as the characteristic length tends to
infinity. Nevertheless, in practice, the value of the character-
istic length is limited by the numerical errors that arise if
it is set to very high values, a limit that depends on the
used floating-point representation. As a consequence, up to the
present time, the choice of the characteristic length value is
based on application-dependent rules of thumb. For example,
in [1], the synthesis of a planar mechanism is solved by taking
this value as ten times the root mean square of all involved
distances. In [6], the inverse kinematics of a 6R robot is solved
taking it as L/ε2, where ε is the desired accuracy level and L
is the maximum distance from the base to the end-effector of
the manipulator. More recently, the characteristic length used
in [8], based upon the investigations reported in [3], [9], is
24T/π, where T is the maximum translational component in
all involved displacements. This characteristic length is the
radius of the hypersphere that approximates the translational
terms by angular displacements that are lower than 7.5 degrees.
It was shown in [9] that this characteristic length yields a
good balance between translational and rotational displace-
ment terms.

Once assuming that we have solved the problem of ap-
proximating elements of SE(3) by elements of SO(4), an
additional challenge remains: the application of a metric on
SO(4) is not well-defined in this case because of the depen-
dence on the choice of the fixed reference frame. To mitigate
this problem, the concept of principal frame is introduced in
[8]. This frame is unique for a finite set of displacements and
invariant with respect to the choice of fixed coordinate frame
and the system of units. All of the displacements are then
expressed with respect to the principal frame and all distances
are measured with respect to this same frame.

http://www.iri.upc.edu/people/thomas/Soft/code-4R.zip
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There are many problems in which we have to optimize a
function that involves both translations and rotations. Hence,
it is interesting to attempt the introduction of a characteristic
length in this kind of problems to verify whether the obtained
results outperform those obtained using standard approaches.
In this sense, the pointcloud registration problem is an ex-
cellent testbed where to perform this attempt. This paper is
devoted to this analysis to conclude that the introduction of
a characteristic length in the pointcloud registration problem
leads to a simple (in the sense that it only involves the
four basic arithmetic operations) closed-form formula which
is finally independent, curiously enough, of the introduced
characteristic length. Moreover, the resulting method is faster
than all previously proposed ones.

When dealing with the displacement of 3D rigid bounded
object poses, it is possible to define some metrics, also called
object norms, based only on geometric properties of the object
(for example, based on the distances between corresponding
points) that avoids the use of characteristic lengths. A good
example of this kind of metric can be found in [10], which can
be considered as a generalization of the one proposed in [11].
Actually, we can say that all the methods proposed to date to
solve the pointcloud registration problem implicitly use an ob-
ject norm because they are based on minimizing the sum of the
distances between corresponding points. This avoids having
to weigh translations and rotations differently. Thus, although
our formulation of the pointcloud registration is certainly more
complicated, the obtained solution is outstandingly simple as
it boils down to compute a pseudoinverse (which could be
performed off-line because it only depends on the coordinates
of the points in the reference poincloud) and a matrix product.

This paper is outlined as follows. Section II reviews the
pointcloud registration problem. In this section the three meth-
ods proposed in the literature for its resolution are presented in
a unified way. Although they differ in the way they represent a
spatial displacement, they minimize the same cost function. As
a consequence, despite the literature is confusing at this point,
it is not surprising that the solutions using them all coincide,
as we will see in Section V. In Section III we present the new
method based on the introduction of a characteristic distance
that allows us to approximate a homogeneous transformation
matrix by a rotation matrix. Section IV discusses the main fea-
tures of the obtained closed-form formula, including the effect
of noisy measurements. Section V analyzes the performance
of the presented method. This paper concludes in Section VI
with a summary of the main findings of this research.

II. THE POINTCLOUD REGISTRATION PROBLEM

The goal of pointcloud registration is to find the optimal
rigid transformation between two pointclouds. This problem
arises in many applications of computer vision and pattern
recognition (see [12], [13], [14] for reviews on the different
proposed methods to solve it and applications where it arises).
We herein assume that the exact correspondence between the
points in both pointclouds is known. An acceptable solution
in such a case consists in minimizing the square of the sum
of the squared Euclidean distances between corresponding

points of the two pointclouds. The methods designed following
this approach are usually called analytical methods [15],
[16], [17], [18], [19] (see [13] and [20] for performance
comparisons). The first methods for solving the general case
in which we do not have the point correspondence were
independently proposed during the early nineties in [21], [22]
and [23]. The name given in [22] for their method was the
Iterative Closest Point (ICP) method. Nowadays, the three
methods and those which have evolved from them (see, for
example, [24], [12]) are referred collectively in the literature
as ICP methods. Broadly speaking, these methods iteratively
generate hypothetical point correspondences using a local
search scheme until an optimal correspondence is obtained.
In general, these methods require a good starting estimate,
otherwise they could get trapped in local minima of the error
function. As a consequence, even if we use an ICP method,
we have to rely on a fast analytic method to obtain the rigid
transformation from which we can evaluate the error function
at each iteration.

The existing analytic methods essentially differ in the way
rigid displacements are represented. Three alternatives can be
found in the literature that consist in using:

1) A rotation matrix and a translation vector [25]. In this
case, the problem is essentially reduced to compute
the nearest rotation matrix to a 3×3 matrix using the
singular value decomposition (SVD). The method based
on this representation is reviewed in Section II-A.

2) A set of Euler parameters and a translation vector [16],
[22]. In this case, the problem is reduced to compute
the dominant eigenvector of a 4×4 matrix. The method
based on this representation is reviewed in Section II-B.

3) A set of screw parameters [18], [26]. In this case,
the problem is also reduced to compute the dominant
eigenvector of a 4×4 matrix. The method based on this
representation is reviewed in Section II-C.

Euler parameters can be arranged as the elements of a
quaternion. Thus, although the algebra of quaternions is not
strictly necessary to solve the pointcloud registration prob-
lem, the methods using the second kind of representation
are usually called quaternion-based methods. Likewise, since
screw parameters can be organized as the elements of a dual
quaternion, the methods using the third kind of representation
are called dual quaternion-based methods, despite the algebra
of dual quaternions is not strictly needed in the resolution of
the pointcloud registration problem.

The methods based on the first two representations compute
the rotation and the translation in a decoupled way. This is ac-
complished by first centering both pointclouds by subtracting
their centroid coordinates and thus reducing the problem to
optimize a rotation. Therefore, the original problem is reduced
to two parts: (a) obtaining the rotation that minimizes the
registration error between the two centered pointclouds; and
(b) computing the translation from both centroids and the
obtained rotation. To avoid this decoupling, the representation
based on screw parameters has been used to encapsulate the
rotation and the translation in a single representation. This
idea was first presented in [18], and later extended in [26].
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Unfortunately, all analytic methods are equivalent after all,
they just differ in the way the problem is represented. All
experimental comparisons have found that the differences
are negligible in practical applications with nondegenerate
data [27], [13]. This conclusion is confirmed in the analysis
included in this paper.

Finally, it is also worth mentioning here that, motivated by
the success of deep learning in high-level vision tasks, various
types of deep learning based pointcloud registration methods
have been proposed to exploit different aspects of the problem
(see [28] for a comprehensive overview of these approaches).
Nevertheless, similarly to what happens with ICP methods, it
is also important for these approaches to have a rapid way to
estimate the sought rigid transformation from which we can
evaluate the committed error.

A. The standard approach

Let {Ai} and {Bi}, i = 1, . . . , n, denote two sets of
n points in 3D whose position vectors are given by ai =
(aix aiy aiz)

T and bi = (bix biy biz)
T , respectively. These

point coordinates can be organized in matrix form as

A = (a1 a2 · · · an) and B = (b1 b2 · · · bn) (1)

Now, if {Bi} is the result of applying a noisy rigid spatial
transformation to {Ai}, we have that

bi = Rai + t+ ni, (2)

where R is a 3×3 rotation matrix, t, a translation vector, and
ni, a noise vector.

The problem consists in finding R and t that minimizes the
error function

E =

n∑

i=1

‖bi − (Rai + t)‖2 . (3)

If the rigid transformation is not contaminated by noise, the
centroids of {Ai} and {Bi} (say a and b, respectively) are
clearly governed by the same rotation matrix and translation
vector [25]. Then, if we define

āi = ai − a, where a =
1

n

n∑

i=1

ai, (4)

b̄i = bi − b, where b =
1

n

n∑

i=1

bi, (5)

the error function (3) can be rewritten as

E =

n∑

i=1

∥∥b̄i −Rāi
∥∥2 . (6)

Therefore, the original least-squares problem is reduced to
two subproblems:

(a) obtaining R̂ that minimizes (6); and
(b) obtaining the translation vector as

t̂ = b− R̂a. (7)

The original problem is thus simplified by decoupling
the rotation and the translation. Although this is the usual
approach, it should be seen as an approximation as it does not

necessarily lead to the best solution both in terms of rotational
and translational error under the presence of noise, as it is
proved in V-A.

The expansion of (6) yields

E =

n∑

i=1

(
āTi b̄i + b̄T

i b̄i − 2b̄T
i Rāi

)
. (8)

E is minimized when the last term is maximized. That is, when

E ′ =
n∑

i=1

b̄T
i Rāi = Trace(RTH), (9)

is maximized, where

H =

n∑

i=1

b̄iā
T
i =

n∑

i=1

(bi − b)(ai − a)T

=

n∑

i=1

bia
T
i − nbaT = BAT − nbaT . (10)

In other words,

H = B̄ĀT = BAT − nbaT , (11)

where

Ā = (ā1 ā2 · · · ān) and B̄ =
(
b̄1 b̄2 · · · b̄n

)
. (12)

H is defined as the centered cross-correlation matrix be-
tween both sets of pointclouds. It is important to observe that
it is not necessary to explicitly center the pointclouds to obtain
H. This is very important when having thousands of points
in the pointclouds, a fact that is not taken into account in
some implementations (for example, see the recent MATLAB
implementation due to Jin Wu [19]).

It can be proved that the matrix R that maximizes (9) is
the nearest rotation matrix, in Frobenius norm, to H [17].
Analytically, this optimum can be expressed as [29]:

R̂ = H
(
HTH

)− 1

2 . (13)

There are many different ways to compute (13) that include
iterative and closed-form methods [30], but the standard one
is based on the SVD of the cross-correlation matrix H. Let
this decomposition be expressed as H = UΛVT , where U

and V are 3×3 orthogonal matrices, and Λ is a diagonal
matrix with nonnegative elements. Then, it can be proved that
R̂ = UVT . This approach was first proposed in [31] and later
rediscovered in [15]. It remains as the standard one ever since.
A simple later improvement, that has been broadly adopted,
was introduced in [32] for better robustness when the point
measurements are severely corrupted by noise. This method
is usually referenced to as the Kabsch-Umeyana’s method in
recognition of the authors of [31] and [32].

B. Using Euler parameters

According to Euler’s theorem, any spacial rotation is equiv-
alent to a rotation by some amount about some axis [33]. Then,
we can represent an arbitrary rotation using

1) v = (vx vy vz)
T , a unit vector in the direction of the

rotation axis; and
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2) θ, a rotation angle.

Then, we can define the following vector whose elements are
called Euler parameters:

e =




e1
e2
e3
e4


 =




cos
(
θ
2

)

sin
(
θ
2

)
v


 . (14)

From a given set of Euler parameters, the corresponding
rotation matrix can be obtained as

R(e) =
1

e21+e22+e23+e24




e21+e22−e23−e24
2(e2e3+e1e4)
2(e2e4−e1e3)

2(e2e3−e1e4) 2(e2e4+e1e3)
e21−e22−e23−e24 2(e3e4−e1e2)
2(e3e4+e1e2) e21−e22−e23+e24


 . (15)

Now, given H = (hij)1≤i,j≤3, let us define the associated
4×4 symmetric matrix

G=




h11+h22+h33 h32−h23

h32−h23 h11−h22−h33

h13−h31 h21+h12

h21−h12 h31+h13

h13−h31 h21−h12

h21+h12 h31+h13

h22−h11−h33 h32+h23

h32+h23 h33−h11−h22


 . (16)

It was proved in [16], [22], and later independently re-
discovered in [34] and [35], that the dominant eigenvector
of G can be interpreted as a vector of Euler parameters, in
the form given in (14), whose corresponding rotation matrix
is R̂ (let us remember that the dominant eigenvector is the
eigenvector associated with the eigenvalue whose absolute
value is maximal).

The computation of the maximal eigenvalue requires com-
puting the roots of a quartic polynomial which can be per-
formed using Ferrari’s method, as done in [16]. Alternatively,
a numerical method is proposed in [35]. Very recently, a simple
closed-form solution has been presented in [19] which is next
compactly summarized.

The characteristic polynomial of G can be expressed as

λ4 + τ3λ
3 + τ2λ

2 + τ1λ+ τ0, (17)

where (see [16] for details)

τ3 = Trace(G) = 0,

τ2 = −2
3∑

i=1

3∑

j=1

h2
i,j = −2Trace

(
HTH

)
,

τ1 = −8 det(H),

τ0 = det(G).

The roots of (17) are real because G is symmetric. Moreover,
the application of Ferrari’s method to obtained these roots is

simplified because τ3 is identically zero. In [19], it is actually
shown how the largest root of (17) can be expressed as

λmax=





√
− τ1

2
, if |τ1| < ζ and | k1| < ζ,

1√
6

(
p1+

√
−k21−12τ2− 12

√
6τ1

k1

)
, otherwise,

where

k0 = 2τ32 + 27τ21 − 72τ2τ0,

θ = atan2

(√
4(τ22 + 12τ0)

3 − k20 , k0

)
,

k1 = 2

√(√
τ22 + 12τ0

)
cos

θ

3
− τ2.

The threshold ζ is typically taken to be 10−5 [19].
Finally, it can be proved that all the rows of the cofactor

matrix of (G − λmaxI) are proportional to the eigenvector
corresponding to λmax [16]. In [19], some computational time
is saved by computing only the last row of this cofactor matrix.
Unfortunately, all the elements of this row are identically
zero for rotations whose rotation axis lies on the xy-plane.
Although, at least in theory, rotations whose rotation axes lie
on the xy-plane can be seen as a set of measure zero in the
space of quaternions, in practice it is enough to be close to
this situation to generate large errors. Similar situations arise
if we take any other row. Thus, for the sake of robustness,
we have to compute all rows and take, for example, the one
with the largest norm, say ê. Then, using (15), we have that
R̂ = R(ê).

C. Using screw parameters

The use of screw parameters, also known as Study param-
eters, is based on Chasles’ theorem, which states that any
rotation and translation can be expressed as a translation along
a line, called screw axis, and a rotation around that line [36].
According to this theorem, any rigid displacement can be
expressed using

1) v = (vx vy vz)
T , a unit vector in the direction of the

screw axis;
2) u = (ux uy uz)

T , a vector from the origin of coordi-
nates to any point on the screw axis;

3) θ, a rotation angle; and
4) d, translation distance;
Notice that the sign of d can be set arbitrarily, but once

this sign is fixed, the positive sense of angle θ is determined
according to the right-hand rule.

Now, let us define e as in (14) and

s =




s1
s2
s3
s4


 =




−d
2

sin( θ
2
)

d
2

cos( θ
2
)v + sin( θ

2
)(u×v)


 . (18)

Then, the rotation matrix can be obtained from e using
equation (15), and the translation vector as

t = 2



−e2 e1 −e4 e3
−e3 e4 e1 −e2
−e4 −e3 e2 e1


 s. (19)
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Now, the goal is to obtain e and s that minimizes (3). Let
us call them ê and ŝ, respectively.

It can be proved that the cost function given in (3) can
be expressed as a quadratic function in terms of e and s as
follows (see [18] for details):

eTC1e+ sTC2s+ sTC3e+ constant (20)

where

C1 =
1

2

n∑

i=1

QiWi,

C2 = nI,

C3 =

n∑

i=1

(Wi −Qi) ,

and

Qi =




0 −bix −biy −biz
bix 0 −biz biy
biy biz 0 −bix
biz −biy bix 0


 , (21)

Wi =




0 −aix −aiy −aiz
aix 0 aiz −aiy
aiy −aiz 0 aix
aiz aiy −aix 0


 . (22)

In order to minimize (20), the two constraints eTe = 1 and
sTe = 0 are incorporated using Lagrange multipliers. Then,
it can be concluded that ê is the dominant eigenvector of

A =
1

2n
CT

3 C3 −C1 −CT
1 , (23)

and

ŝ = − 1

2n
C3ê. (24)

We have given here a simplified version of the exten-
sive formulation presented in [18]. The cost function in the
original presentation included not only the distances between
corresponding points, but also the error between unit vectors
representing the direction of edges or the normal to faces of
the model. This formulation was even later extended to deal
with scale factors in [37].

III. THE PROPOSED METHOD

If point coordinates are represented using homogeneous
coordinates, rotations and translations can be more compactly
expressed using homogeneous transformations. In this case,
equation (3) can be rewritten as:

E =

n∑

i=1

‖δbi − δ (Rai + t)‖2 =

n∑

i=1

‖pi −Dqi‖2 , (25)

where

D =

(
R δt
0T 1

)
, (26)

and

qi =

(
δai
1

)
, pi =

(
δbi

1

)
. (27)

We have introduced the scale factor δ which clearly does
not modify the optimum location and whose reciprocal, 1/δ,
plays the role of a characteristic distance.

Now, let us suppose that we want to approximate D by a
4×4 rotation matrix (see [38] for an introduction to rotations
in four dimensions). It can be proved that the value of R that
minimizes the Frobenius norm of (R−D) is given by [39],
[30]:

R̃ = D(I+E)−
1

2 , (28)

where

E = DTD− I = δ

(
0 RT t

tTR δtT t

)
. (29)

In [1], an exact expression for (I + E)
1

2 is obtained using
the polar decomposition. Thus, by inverting it and substituting
the result in (28), the exact expression for R̃, as a function
of δ, is obtained. This permits deriving an exact expression
for the error of the approximation as a function of δ to
conclude that this approximation is improved monotonically,
at least in theory, as 1

δ→∞. Nevertheless, this is limited by
numerical errors that arise for very low values of δ that depend
on the used floating-point representation. Moreover, larger
characteristic lengths result in an increase in the weight on the
rotational terms whereas smaller ones result in an increase in
weight on the translational terms. The used metric is therefore
dependent on the choice of characteristic length which is not
a desirable property. As a consequence, here we follow a
different approach: we use δ as a symbol that represents a
very small number. Therefore, it is reasonable to keep, in
all algebraic expressions involving δ, only the term of lowest
degree in it. We will see how the resulting approximation is
finally independent of δ. This should not be surprising. It is
like introducing reference frames to solve a geometric problem
whose solution is independent of them after all.

First of all, observe that applying Newton’s generalized
binomial theorem on matrices to (28) yields

R̃ = D

(
I−1

2
E+

3

8
E2− 5

16
E3+

35

128
E4− . . .

)
. (30)

Now, the substitution of (29) in (30) yields

R̃

∣∣∣
δ→0

=

(
R δt
0T 1

)[
I− δ

2

(
0 RT t

tTR δtT t

)]

=

(
R δ

2
t

− δ
2
tTR 1

)
, (31)

where the higher-order terms in δ have been neglected. This
formula was already presented, without proof, in [5]. Now,
we have that the nearest 4D rotation to the 3D homogeneous
transformation in (26), in Frobenius norm and for δ→0, is
given by (31). It is important to realize that the converse is
not true: the nearest 3D homogeneous transformation to the
4D rotation in (31) is not given by (26). Indeed, it is given by

D̃ =

(
R δ

2
t

0T 1

)
(32)

because its last row must necessarily be (0T 1) (to represent a
rigid displacement), and the other rows must be equal to those
of D̃ (to minimize its Frobenius distance to it).
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3D homogeneous tranformations

4D rotations
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(

R δt

0
T

1

)

(

R
δ

2
t

− δ

2
t
T
R

T
1

)

(

R
δ

2
t

0
T

1

)

(

R 0

0
T

1

)

Fig. 1. The approximation of a 3D homogeneous transformation by a 4D
rotation matrix, or vice versa, can be seen as a projection between two smooth
manifolds embedded in R4×4. The result of iteratively repeating this operation
leads to an alternating projection process that converges to a 3D rotation.

We can actually repeat the process. That is, we can approx-
imate the 3D homogeneous transformation in (32) by the 4D
rotation

˜̃
R =

(
R δ

4
t

− δ
4
tTR 1

)
, (33)

whose nearest 3D homogeneous transformation is, in turn,

˜̃
D =

(
R δ

4
t

0T 1

)
. (34)

If this is infinitely repeated, the result is an alternating projec-
tion process [40] converging to

(
R 0

0T 1

)
, (35)

which can be seen both as 3D homogeneous transformation
and a 4D rotation. Fig. 1 gives an intuitive graphical repre-
sentation of this process.

Once we have clarified how to project 3D homogeneous
transformations onto 4D rotations and vice versa, we can
approximate (25), assuming that δ → 0, by

E ∼=
n∑

i=1

∥∥∥pi − R̃qi

∥∥∥
2

=

n∑

i=1

(
qT
i qi + pT

i pi − 2pT
i R̃qi

)
,

(36)
whose minimization is equivalent to maximize

n∑

i=1

pT
i R̃qi = Trace(R̃TM). (37)

In other words, we have to find the nearest 4D rotation matrix
to

M =

n∑

i=1

piq
T
i =

n∑

i=1

(
δbi

1

)(
δaTi 1

)

=

(
δ2
∑n

i=1
bia

T
i δ

∑n
i=1

bi

δ
∑n

i=1
aTi n

)

=

(
δ2BAT δnb
δnaT n

)
. (38)

In the particular case in which {Ai} and {Bi} are centered
with respect to their centroid, then

M′ =

(
δ2B̄ĀT 0

0 n

)
. (39)

Since the nearest rotation matrix to a given matrix is invariant
with respect to any arbitrary non-zero scalar multiplying it, the
problem boils down to compute the nearest rotation matrix to

M′′ =

(
δ2

n B̄ĀT 0
0 1

)
, (40)

which simplifies to compute the nearest rotation matrix to

M′′′ = B̄ĀT (41)

which, using equation (13), is given by

M′′′(M′′′TM′′′)−
1

2 = B̄ĀT (ĀB̄T B̄ĀT )−
1

2

= B̄ĀT (Ā(RĀ)TRĀĀT )−
1

2

= B̄ĀT (ĀĀT ĀĀT )−
1

2

= B̄ĀT (ĀĀT )−1. (42)

As a consequence, the nearest 4×4 rotation matrix to (39) is

̂̃
R

′
=

(
B̄ĀT (ĀĀT )−1 0

0 1

)
. (43)

Now, to obtain the nearest rotation matrix to (38), first
observe that, from equation (31), it should be of the form

̂̃
R =

(
R̂ δ(b− R̂a)

δ(aT − bT R̂) 1

)
, (44)

which must be consistent with the limit case in which a =
b = 0 given by (43). As a consequence, according to the
derivation of (11), we can conclude that

R̂ =
(
BAT − nbaT

) (
AAT − naaT

)−1
(45)

and
t̂ = b− R̂a, (46)

as we already knew.
Before we came up with the above proof, we derived (45)

and (46) by obtaining directly the nearest rotation matrix to
(38) [41]. This latter approach is more insightful but, unfortu-
nately, much more complicated as it involves operations such
as the inverse and the series expansion of a block matrix.

IV. DISCUSSION

To get some insight into the obtained result, let us first
consider, as above, the case in which both centroids are
centered with respect to their centroids. In this case,

R̂′ = B̄ĀT
(
ĀĀT

)−1
= B̄Ā+, (47)

where Ā+ denotes the right Moore-Penrose pseudoinverse
of Ā. It is important to observe that equation (45) can be
recovered from equation (47) by using equation (11) to obtain
the effect of translating the pointclouds on the matrix products
B̄ĀT and ĀĀT . Since (45) and (47) imply each other, they
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are equivalent. Therefore, without loss of generality, we can
proceed with our analysis using (47).

Now, if {B̄i} is the result of applying a general displace-
ment to {Āi}, that is, B̄ = RĀ+T, where T = (t t . . . t).
The substitution of this expression for B̄ in (47) yields

R̂′ = R+TĀ+. (48)

Now, it is easy to prove that TĀ+ is a null matrix. Indeed,
since the sum of the entries of each row of Ā is zero (because
it corresponds to a pointcloud whose centroid is at the origin),
and the entries of each row of T are equal, TĀT is a 3×3 null
matrix. As a consequence, TĀ+ is also a null matrix. Then,
we can conclude that (45) returns the exact rotation matrix
provided that ĀĀT is invertible, i.e., {Ai} contains at least
four points defining a non-degenerate tetrahedron.

Under the presence of additive noise, according to (2), we
have that B = RA+T +N, where N = (n1n2 . . .nn), ni

being the error vector added to bi. The substitution of this
expression for B in (47) yields

R̂ = R+∆, (49)

where ∆ = NA+. If the entries of N are assumed to be
independent zero mean random variables with equal variance,
say σ, the mean value of the entries of ∆ is zero (i.e., E(R̂) =
R), and their variances,

Var(δij) =
n∑

k=1

Var(nik)(a
+

kj)
2

= σ

n∑

k=1

(a+kj)
2 = σ

∥∥a+j
∥∥2 , (50)

where δij denotes the (i, j) entry of ∆ = R̂ − R, and a+j ,

the j column of A+. Thus, the variance of the entries of R̂

depend linearly on the modules of the three columns of A+.
Actually, as the points in the pointcloud are close to being
coplanar or collinear, these modules tend to infinity. Thus, the
shape of the pointcloud has a direct influence on the error of
the estimations. We can conclude that, under the presence of
zero mean additive uncorrelated noise, the expected value of
R̂ is R. Nevertheless, a certain orthogonality error should be
expected, according to (50), in the estimated rotation matrices
that directly depends on the noise perturbing the measured
point locations and the shape of the pointcloud itself. This is
discussed in Section V-C.

Finally, it is interesting to observe that, if the registration
operation has to be repeated iteratively, A+ can be precom-
puted so that each registration is simply reduced to compute
a matrix product. The reduction in computational burden with
respect to all other methods is thus important. Moreover,
observe that the rows of A+ can be interpreted as point
coordinates. Therefore, every pointcloud has an associated
reciprocal pointcloud. To better understand the concept of
reciprocal pointcloud, let us take the Stanford Bunny data
model [42]. After centering it with respect to its centroid
and normalizing its point coordinates according to its intrinsic
scale (see the Appendix), we obtain the pointcloud represented
in Fig. 2(top). Then, if we compute its reciprocal pointcloud,

PSfrag replacements
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Fig. 2. A pointcloud (top) and its reciprocal pointcloud (bottom) together with
the ellipsoids associated with their covariance matrices. Both pointclouds have
been centered with respect to their centroids and normalized with respect to
their intrinsic scales.

and we also normalize it with respect to its intrinsic scale,
we obtain the pointcloud represented in Fig. 2(bottom). The
ellipsoids associated with the covariances of both pointclouds
(see also the Appendix) have aligned principal axes. If the
length of a semiaxis is ζ, the length of the corresponding
semiaxis in the reciprocal pointcloud is 1/ζ. The product of
the three semi-axes lengths of both ellipsoids is one owing
to the normalization of the pointclouds with respect to their
intrinsic scales.

V. PERFORMANCE ANALYSIS

This paper has supplementary downloadable multimedia
material consisting of a set of MATLAB functions that im-
plement the methods described in the Sections II and III,
and four scripts needed to reproduce the results of the four
examples included in this section. All reported results have
been obtained on a PC with a 4.2 GHz Intel Core i7 processor
using double-precision arithmetics.
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Fig. 3. Top: the reference and target pointclouds in magenta and green,
respectively. Bottom: Registration result (there are no noticeable differences
to the naked eye between the registrations obtained using all the analyzed
methods).

A. Example I

As a first example, we have taken the Stanford
Bunny data model as the reference pointcloud.
It contains 35947 points, its enclosing box is
B = [−0.095, 0.061]×[0.033, 0.187]×[−0.062, 0.059], and
its centroid is a = (−0.0268, 0.0952, 0.0089)T .

The target pointcloud has been obtained by applying to all
points in the reference pointcloud the following rotation

R = Rx

(π
3

)
Ry

(π
6

)
Rz

(π
4

)

=



0.6124 −0.6124 0.5000
0.6597 0.0474 −0.7500
0.4356 0.7891 0.4330


 ,

and then the translation given by t=(0.2, 0.5, 0.1)T . The
vector of Euler parameters quaternion corresponding to R is

e = (0.7233, 0.5320, 0.0223, 0.4397)T . (51)

Then, we have perturbed some point locations in the target
pointcloud. A noise with Gaussian distribution N (0, 0.02) has
been added to the three coordinates of 20% of the points,
with distribution N (0.005, 0.018) to 10% of the points, and
with distribution N (−0.005, 0.018) to another 10% of the
points. These three sets are disjoint and randomly selected.
The reference and the resulting target pointclouds are depicted
in Fig. 3(top).

The implemented methods to register the reference point-
cloud with respect to the target pointcloud have been:

1) The method based on the SVD as described in Sec-
tion II-A.

2) The standard quaternion method based on the com-
putation of a dominant eigenvector as described in
Section II-B

3) Wu et al.’s improved quaternion method based on the
closed-form formulas also included in Section II-B.

4) The dual quaternion method described in Section II-C.
5) The new method presented in Section III.

Their accuracy was evaluated in terms of:

1) The error in the recovered rotation, computed as
arccos(|êi·e|), where ei is the unit quaternion (strictly
speaking it is just a vector of Euler parameters) corre-
sponding to the estimated rotation matrix. This metric
was apparently first used in [43] for 3D object pose
estimation. It is a pseudometric in the unit quaternions
but it is a metric in SO(3) [2].

2) The error of translations computed simply as
∥∥t̂i − t

∥∥,
where t̂i is the estimated translation.

These errors vary each time the program is executed because
the perturbed points in the target pointcloud are randomly
selected at each execution.

It has been verified that the rotational and translational
errors are always the same for the methods based on the SVD,
quaternions, or dual quaternions. The only truly distinguishing
factor is execution time. This concurs with the results pre-
sented in [27]. The conclusion of superior accuracy of the
method based on dual quaternions, as assured in [18], is thus
incorrect.
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TABLE I
ERROR FIGURES AND EXECUTION TIMES FOR THE FIVE COMPARED

METHODS IN A PARTICULAR CASE.

Method Rotational error Translational error Time
(rad·10−3) (m·10

−3) (ms)

SVD 1.4146 0.33677 2.10
Quaternion 1.4146 0.33677 4.40
Wu et al.’s 1.4146 0.33677 5.47
Dual quaternion 1.4146 0.33677 95.61
4D rotation 1.2779 0.23559 1.30

The new method leads to completely different error fig-
ures when compared to the other methods. In one particular
execution, we obtained the results compiled in Table I. We
have chosen this instance because an important conclusion can
be drawn from it: all analytical methods used so far are not
optimal because it is possible to obtain solutions that are better
both in terms of translations and rotations. In this particular
case, the determinant of the estimated rotation matrix using
the new method is 1.0042 (see Example III for a discussion
on orthogonality errors). Nevertheless, it is important to re-
mark that the rotational error has been computed from the
corresponding unit quaternion which is not affected by this
error.

In all cases, no differences between the registrations ob-
tained using all the analyzed methods are noticeable to the
naked eye [see Figure 3(bottom)].

While Wu et al’s and the new method simply evaluate some
formulas, the other three rely on iterative numerical methods
that either compute the SVD or the dominant eigenvector.
This has important consequences in the execution times using
MATLAB. For example, the SVD implemented in MATLAB
calls the xGESVD routine of LAPACK (Linear Algebra Pack-
age). Thus, it does not make much sense to compare execution
times of functions fully written in interpretable code and others
calling optimized compiled routines. Due to this fact, it is
even more remarkable the low computational cost of the new
method. The time performance of Wu et al.’s method is not as
good as that reported by their authors probably because, for
the sake of robustness, we had to introduce the computation
of all cofactors of a 4×4 matrix as explained in Section II-B.

B. Example II

In the above example, the new method delivered better
results both in terms of the rotation and the translation, but
this is not the general case. To properly assess the quality
of its results, we have executed the following procedure 104

times to compare them with those obtained using Wu et al.’s
method:

1) Generate a random vector point in S
3 using the algo-

rithm detailed in [44], identify it as a quaternion and
convert it to the rotation matrix Ri.

2) Generate a random vector point in S
2, say pi, using the

algorithm also detailed in [44] and set the translation
vector ti = rpi.

3) Rotate and translate the reference pointcloud according
to Ri and ti, respectively.

4) Contaminate the obtained pointcloud with noise as in
Example I to get the target pointcloud.

5) Registrate the reference pointcloud with respect to the
target pointcloud using the new method and Wu et al.’s
method.

6) Compute the rotational and translational error of the
registrations.

We have repeated this procedure for different values of r and
the results are essentially the same even for values of r as high
as 100 (an amount three orders of magnitude higher than the
mean side of the enclosing box of the reference pointcloud).
The resulting statistics appear in Table II. This table has two
separated parts for the rotational and translational errors with
three columns each. The first column in each part refers to
the attained maximum error; the second one, to the average
error; and the third one, to the standard deviation. Observe
that the standard deviation is given in microradiands. The
maximum obtained orthogonally error for the new method has
been 0.0138 (evaluated as

∣∣∣1− det(R̂)
∣∣∣); its average, 0.00286;

and its variance, 4.5·10−6.
We can conclude that the main advantage of the new method

is its low computational cost and simplicity. Nevertheless, as
already observed in Section IV, the estimated rotation matrix
departs from orthogonality under the presence of noise. This
latter point is further discussed in the following examples.
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Fig. 4. A pointcloud representing a chair.

C. Example III

To examine the influence of the level of noise in the
estimated rotations and translations using the new method,
we have used the pointcloud appearing in Fig. 4, which has
been taken from the Princeton Segmentation Benchmark [45]1.
The target pointcloud has been obtained by applying the same

1freely available at: https://segeval.cs.princeton.edu/ .

https://segeval.cs.princeton.edu/
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TABLE II
ERROR STATISTIC FOR 10

4 RANDOM DISPLACEMENTS USING WU ET AL.’S AND THE NEW METHOD.

Method Maximum rot. Average rot. Standard deviation Maximum trans. Average trans. Standard deviation
error (rad·10−3) error (rad·10−3) (rad·10−6) error (m·10

−3) error (m·10
−3) (m·10

−6)

Wu et al.’s 3.51 1.07 0.21 0.65 0.19 0.0080
4D rotation 4.72 1.16 0.26 0.87 0.29 0.0015
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Fig. 5. Rotational, translational and orthogonality errors, as a function of the added noise standard deviation, for the registration of the pointcloud in Fig. 4
using the proposed method.

PSfrag replacements 1 2 3 4 5

6 7 8 9 10

Point set 1 2 3 4 5 6 7 8 9 10

Number of points 7697 922 934 911 869 700 491 511 2216 722
Eigenvalues 0.0021 0.0015 0.0015 0.0015 0.0015 0.0009 0.0005 0.0006 0.0040 0.0009

0.0707 0.0016 0.0017 0.0016 0.0016 0.0010 0.0005 0.0006 0.0071 0.0011
0.0806 0.0350 0.0364 0.0349 0.0315 0.0301 0.0255 0.0258 0.0807 0.0313

Eccentricity 6.16 4.80 4.89 4.78 4.57 5.67 7.07 6.80 4.48 5.79
Volume·103 3.50 0.29 0.30 0.29 0.28 0.17 0.08 0.09 1.50 0.17

crot 0.0790 0.3948 0.3742 0.3819 0.3966 0.5765 0.9684 0.8586 0.1379 0.5670
ctrans 0.0337 0.4467 0.4136 0.6475 0.6221 0.7537 1.0785 1.0733 0.3198 0.7708
cortho 0.2132 0.9053 1.0077 0.9965 0.9805 1.3817 2.2943 2.2613 0.3114 1.3770

Fig. 6. The chair model in Fig. 4 789+++++++++++++++++++segmented into ten disjoint point sets. The shape characteristics of each set appear in the
bottom table. This table also includes the coefficients that indicate the sensitivity of each set to rotational, translational, and orthogonality errors. As expected,
the smaller the volume of the point set, the higher the sensitivity to noise.
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transformation as in Example I. Then, the coordinates of the
resulting points have been perturbed with additive uncorrelated
zero-mean Gaussian noise with standard deviation ranging
from 0 to 0.1. After recovering the applied rotation and trans-
lation using the proposed method, the committed rotational,
translational, and orthogonality errors have been evaluated.
If this is repeated ten times for each value of the standard
derivation of the added noise, and the results averaged, the
plots in Fig. 5 are obtained. Using linear regression, these three
plots can be approximated by the linear functions εrot = crot σ

2,
εtrans = ctrans σ

2, and εortho = cortho σ
2, where crot = 0.014792,

ctrans = 0.012382, and cortho = 0.037883, respectively. To
examine how these three coefficients vary with the shape of
the pointcloud, we have segmented the analyzed pointcloud
into the ten disjoint point sets appearing in Fig. 6, and the
above experiment has been repeated for each of them. A table
with the parameters that characterize the shape of each point
set (see the Appendix), as well as the obtained values for crot,
ctrans, and cortho, is also included in Fig. 6.

While it is true that, for large levels of noise, some orthogo-
nality errors arise in the proposed method, it is no less true that
orthonormalizing a noisy rotation matrix, with the observed
small orthogonality errors, can be performed by applying the
following updating rule:

R̂← R̂(3I+ R̂T R̂)(I + 3R̂T R̂)−1 (52)

One of the nice features of this formula is its cubically
convergence to the solution (For details on this fact see, for
example, [46], [47]). As we will see in the next section,
only one iteration of leads to rotation matrices with negligible
orthogonality errors.

D. Example IV

In real-world problems, the correspondence between the
points of two pointclouds to be registered is, in general,
unknown. Moreover, the number of points in both sets is, in
most cases, different. As an example of this kind of problems,
consider the two pointclouds represented in Fig. 7 which
were obtained with a Cyberware 3030MS optical triangulation
scanner by the Stanford Graphics Laboratory. The problem
here consists in obtaining the rigid transformation that registers
the green pointcloud with respect to the magenta one. Since the
correspondence between both point sets is unknown, we have
integrated the compared methods in an ICP method. To this
end, we have used the built-in Matlab function pcregistericp
as a reference. It is based on the algorithms presented in [21],
[22]. In this function, we have substituted the method that
computes the registration for a hypothetical correspondence
by each of the methods to be compared. The performance
figures obtained by applying 20 iterations using each method
appear in Table V-D.

Except for the execution time, the other two performance
figures for the method derived in this paper are worse than for
the other methods. The reason is that its rate of convergence
is lower and hence its lower number of matched points and
its higher root mean square error for the distance between
the matched points. This is because the generated correspon-
dences during the search process have a very large number

Fig. 7. Top: Two pointclouds corresponding to two partial 3D scans of a
model shown in Fig. 2. They contain 40,097 points (the magenta pointcloud)
and 40,256 points (the green pointcloud). These pointclouds correspond to
files bun000.ply and bun045.ply, respectively, both freely available from [42].
Middle: Registration result between the two pointclouds using all analyzed
methods, except the one derived in this paper. Bottom: Registration result
obtained using the method derived in this paper.
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TABLE III
PERFORMANCE OF THE DIFFERENT METHODS AT SOLVING THE

REGISTRATION PROBLEM IN FIG. 7.

Method Time (s) RMS error (×10
−3) Matched points

SVD 0.0218 3.106 27,508
Quaternion 0.0214 3.106 27,508
Wu et al.’s 0.0656 3.106 27,508
Dual quaternion 22.0840 3.106 27,508
4D rotation 0.0122 3.721 14,444
Refined
4D rotation 0.0127 3.028 26,872

of mismatches which leads to large orthogonality errors in
the estimated rotation matrix. If we introduce one single
application of the updating rule (V-C) after each estimation,
the performance figures change dramatically (see the last row
in Table V-D). It is also interesting to observe that a lower
number of matched points is not necessarily a bad feature.
Actually, all other methods reached the maximum number of
matched points at the eighteenth iteration with 27,603 points,
and then they start to discard outliers to improve the quality
of the match. The results of the registrations appear in Fig.
7(middle) (for all previous approaches), and in Fig. 7(bottom)
(for the one derived in this paper). The application of the
updating rule V-C to reduce the orthogonality errors obviously
increases the computational cost, but the resulting method is
still almost twice as faster than the best of the other methods.

VI. CONCLUSION

Inspired by some developments in the area of kinematics,
this paper explores the idea of using a characteristic length
to solve the pointcloud registration problem. We have used
the reciprocal of this length as a symbol that represents a
very small number. Therefore, only the terms of lowest degree
in this symbol have been kept in all algebraic expressions
generated during the resolution of the problem. As a result,
a closed-form formula is obtained which has been proved to
be an attractive alternative to the previous analytic methods.
It is indeed useful for implementation in embedded micro-
controllers with limited computational resources because it
requires neither square roots nor trigonometric computations.
We have shown that this is true even when orthogonality errors
have to be reduced due to high levels of noise.

APPENDIX

If a pointcloud, say {Ai}, is seen as a random set of points
in R

3, its covariance matrix is defined as

ΣA =
1

n− 1

n∑

i=1

(ai − a)(ai − a)T . (53)

where a is the centroid of the pointcloud.
ΣA is a positive semi-definite 3×3 matrix, i.e., det (Σ) ≥ 0.

Then, the set
ΞA =

{
x|xTΣAx ≤ 1

}
(54)

is an ellipsoid in R
3, centered at the origin. The semi-axes

of this ellipsoid are given by si = ±
√
λiqi, where λi is

eigenvalue i, i = 1, 2, 3, and qi, its corresponding eigenvector.
In other words, eigenvectors determine the directions of the
semi-axes and eigenvalues determine their lengths. The axes
of ellipsoid ΞA are aligned with the principal axes of the
pointcloud {A}. Thus, we can say that ΞA captures the spatial
distribution of {Ai}.

We define the following three coefficients associated with a
pointcloud

1) Eccentricity. The eccentricity of a pointcloud is defined
as

ς =
√
λmax/λmin. (55)

2) Volume. The volume of a pointcloud is defined as

υ =
√

det (Σ) =
√
λ1 λ2 λ3. (56)

The larger υ, the greater the pointcloud dispersion. If
υ = 0, the points lie on a line or a plane.

3) Intrinsic scale. The intrinsic scale of a pointcloud is
defined as

κ = υ1/3. (57)
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