
Controller Design for Polymer
Electrolyte Membrane Fuel Cell

Systems for Automotive Applications
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Abstract

Continuous developments in Proton Exchange Membrane Fuel Cells (PEMFC)
make them a promising technology to achieve zero emissions in multiple appli-
cations including mobility. Incremental advancements in fuel cells materials
and manufacture processes make them now suitable for commercialization.
However, the complex operation of fuel cell systems in automotive appli-
cations has some open issues yet. This work develops and compares three
different controllers for PEMFC systems in automotive applications. All the
controllers have a cascade control structure, where a generator of setpoints
sends references to the subsystems controllers with the objective to maximize
operational efficiency. To develop the setpoints generators, two techniques
are evaluated: off-line optimization and Model Predictive Control (MPC).
With the first technique, the optimal setpoints are given by a map, obtained
off-line, of the optimal steady state conditions and corresponding setpoints.
With the second technique, the setpoints time profiles that maximize the effi-
ciency in an incoming time horizon are continuously computed. The proposed
MPC architecture divides the fast and slow dynamics in order to reduce the
computational cost. Two different MPC solutions have been implemented
to deal with this fast/slow dynamics separation. After the integration of
the setpoints generators with the subystems controllers, the different con-
trol systems are tested and compared using a dynamic detailed model of
the automotive system in the INN-BALANCE project runing under the New
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European Driving Cycle.

Highlights: The control structure of a PEM fuel cell system in an au-
tomotive application is described. An off-line optimal setpoint generator is
compared to MPC techniques. Slow and fast dynamics are split in the MPC
design for computational burden reduction. Simulations are based on a model
tuned using experimental data from a real automotive fuel cell system.

Keywords: Automotive application, Control structure, Efficiency
optimization, Fuel cell system, Non-linear Model Predictive Control

1. Introduction

Proton Exchange Membrane Fuel Cells (PEMFC) have many advantages
that make them an interesting technology. In the automotive sector, they
can displace fossil fuels. PEMFC are fed by hydrogen, that has one of the
highest specific energy values, being three times higher than gasoline; their
only byproduct is water, avoiding air pollution at all times; and they have
efficiencies intrinsically higher than that of combustion engines [1]. Moreover,
they are compact, have fast dynamics and a wide range of operating power.

Despite the advantages, fuel cells are not yet broadly used. One reason
is that the fuel cell technology is still expensive. On the other hand, the
hydrogen infrastructure is still insignificant compared to the infrastructure
of other market competitors such as pure electric vehicles or gas vehicles.

This work arises from the European Union (EU) initiative to research and
develop alternative solutions to current fossil-fuel-based mobility and from
the European project INN-BALANCE, that focuses on the PEM fuel cell
technology for automotive applications [2].

The main objective of the INN-BALANCE project is to boost hydrogen
mobility by developing a new generation of highly-efficient fuel cell Balance
of Plant (BoP) components. These components will add up to an innovative
fuel cell system that greatly improve the efficiency and the reliability of fuel
cell powered vehicles, while reducing their cost.

In PEMFC powered vehicles, the fuel cell system control is one of the most
important elements to achieve efficiency improvements. In the literature,
many studies addressing fuel cells control design can be found, as collected in
[3]. Initial linear PID controllers were improved in different ways, such as the
combination with feedforward control of stoichiometry or the application of
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robust control [4]. However, PID controllers were overcome with model-based
controllers. For this, control oriented models that describe the main system
dynamics without excessive computational burden were needed, as the one
presented in [5]. The use of first principles models is preferred in order to have
a better understanding of the system behaviour. However, first principles
models can easily deviate from real behaviour or become outdated. To solve
these problems, several studies have presented state observers to estimate
PEMFC non-measurable variables [6] and on-line parameters identification
methods [7].

Model Predictive Control (MPC) is a model-based control methodology
applied to PEMFC by several authors. In some cases, a linearized model was
used [8]. However, non-linear MPC is required if the system has to operate at
a wide range of load powers, as shown with experimental validation in [9] and
[10]. On the other hand, distributed parameter models have been defended
as necessary to properly describe distributed problems such as starvation.
These distributed phenomena is relevant for the modelization of degradation
[11]. Non-linear MPC with distributed model is therefore a promising con-
trol strategy [12]. However, it is difficult to implement because of the high
number of unknown parameters and the computational burden. One way to
reduce the number of unknown parameters is to implement a hybrid model
combining data driven and physical models as described in [13], at the cost
of losing the properties of the physical phenomenons occurring inside the fuel
cell.

In automotive applications, the control structure is not straightforward.
Controllers will be normally distributed at the lower level according to differ-
ent subsystems objectives. These controllers will receive orders (setpoints)
from a supervisory controller which may assume optimisation tasks. More-
over, in the vehicles, there are different operating modes (run mode, start
up, shut down, etc.) which need to be treated differently. Up to now, only
very few studies describe the controller’s architecture of PEMFC systems in
automotive applications. One example is found in [14].

In order to improve the performance of PEMFC vehicles, apart from
optimizing the operation of the PEMFC system, it is important to optimize
the overall energy management, including the energy storage elements. In the
literature several works address the optimal power management of different
kind of PEMFC hybrid vehicles. The authors in [15] describe the power
management strategy of a hybrid tram powered by a PEMFC, a lithium-ion
battery pack and a ultracapacitor pack for the minimisation of the hydrogen
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consumption. In [16], a power management strategy based on Stochastic
Dynamic Programming has been presented to optimize the efficiency. Using
the same stochastic method, the degradation minimisation objective has been
added to the efficiency minimisation in [17]. Moreover, a multi-objective
design exploration is done in [18] to study the effect of the hybrid system
elements sizing. Recently, the robustness of the energy management strategy
facing uncertain driving cycles is shown in [19].

This work describes the control architecture of an automotive PEMFC
system and develops three different supervisory controllers. Each one of
the three supervisory controllers are in charge of coordinating the PEMFC
subsystems and provide a unique interface from the vehicle to the PEMFC
power system during run mode. This is done by converting the PEMFC
power demand into the references required by the subsystems controllers.
The supervisory controllers are based on non-linear models and compute
optimal setpoints either by offline or online optimizations. Then, the local
controllers of the subsystems manipulate the physical actuators according
to their control laws and mechanisms. The power management between the
PEMFC and the batteries is out of the scope of this work.

The proposed controllers performance is shown through simulation using
the New European Driving Cycle (NEDC). The model parameters fit real
experimental data corresponding to the INN-BALANCE project fuel cell
system prototype.

The rest of this paper is organized as follows. In the second section,
the system is described in terms of its subsystems and control architecture.
The control objectives and the main restrictions are presented in the third
section. In section four, the offline setpoint generator technique is presented
and developed. In section five, two non-linear MPC are developed based on
this case study. Section six presents the results and a comparative analysis
of the three proposed setpoint generators. Finally, in the last section, the
main conclusions of the work are drawn.

2. System Description

The automotive fuel cell system studied in this work, developed for the
INN-BALANCE project, has a PEMFC stack and three subsystems, namely
the cathode subsystem, the anode subsystem and the thermal subsystem.
The cathode subsystem feeds oxygen in the form of compressed humidified
air into the cathode inlet of the fuel cell stack. Similarly, the anode subsystem
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feeds compressed hydrogen from the tank into the anode inlet. The thermal
subsystem is required to control the operating temperature of the fuel cell.
The main characteristics of the fuel cell system are:

• 100 kW gross power fuel cell stack

• 300 cm2 of active area PEM fuel cells

• 335 cells

• 450 A maximum operating current, 1.5 Acm−2

• 550 A peak current, only for few seconds

• 30 A minimum current

• 12 kW compressor in the cathode subsystem with a maximum mass
flow of 120 gs−1

• Passively humidified cathode (wet side of humidifier fed with cathode
outlet stream)

• Hydrogen surplus re-circulation in the anode

• Thermal subsystem composed by different cooling modules

2.1. Control Architecture

The control architecture designed for the PEMFC system has several lay-
ers in order to manage the system operation at different levels. In the top
layer there is the state machine, which is in charge of activating one among
different operation modes and submodes and determines the discrete states
of the system. The main operation modes are: INITIAL, RUN, STARTUP,
FREEZE STARTUP, SHUTDOWN and FREEZE SHUTDOWN. The opti-
mal setpoint generator of this work is part of the state machine and it is
designed to work during the run mode.

The global control architecture is presented in Figure 1. As it is shown,
the control actions are computed in the Control Unit, which follows a cascade
control structure from the upper level to the local SubSystems Controllers
(SSC). The state machine receives all the available information in the system
from the input wrapper, including relevant driver actions, and signals from
the sensors and observers. The state machine also receives information from
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Figure 1: Fuel cell system control architecture

the optimal setpoint generator, the diagnosis system and the Total Harmonic
Distortion Analysis (THDA) system. Each subsystem controller calculates
the local control actions based on the sensors values and setpoints received
from the state machine. The control actions are sent to the output wrapper
which transmit them to the actuators.

The state machine also contains the conditions required to transit from
one state to the other. Some state transitions are forbidden (e.g. from
INITIAL to RUN modes it is necessary to pass through STARTUP). All
transitions are triggered based on exogenous and internal signals to ensure
operation safety and good use of the resources.

2.2. Cathode subsystem

The cathode subsystem, developed at Brose1 together with its local con-
troller, is in charge of delivering the required oxygen flux with the desired
pressure and relative humidity. It is mainly composed of a compressor devel-
oped by Celeroton2, a heat exchanger, a passive humidifier, a three-way valve
to control the flow of air into the humidifier and a back pressure valve. All

1Brose Mecatronics, Germany
2Celeroton AG, Switzerland
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Figure 2: Fuel cell system physical scheme

these elements can be seen in the upper part of the system diagram shown
in Figure 2.

The role of the cathode subsystem is key to efficiency. It has two main
components. On the one hand, there is the compressor, which is powered
from the internal DC bus and takes around 10% of the total gross power.
On the other hand, there is the humidifier with its three-way valve. The
three-way valve is able to direct the compressed air into the humidifier, to
the bypass, or it can have any position in between, which makes the cathode
inlet a mix of dry and wet air.

The back-pressure valve, active in the run mode, is a high frequency valve
that can increase the gas flow dynamic resistance, controlling the pressure
inside the fuel cell.

The thermal subsystem controls the temperature of the cathode subsys-
tem with a heat exchanger. However, the thermal management of the cathode
subsystem is out of the scope of this work.

During the run mode, the cathode subsystem controller receives three
inputs (setpoints) from the setpoint generator:

• r1: Mass flow reference

• r2: Humidity ratio (by mass) reference
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• r3: Inlet pressure reference

The cathode subsystem controller has additional inputs that are managed
by the state machine and are used to configure the position of valves during
modes like startup and shutdown.

2.3. Anode subsystem

The anode subsystem together with its local controller is developed at
AVL3 and it provides the flux of hydrogen from the H2 tank to the fuel cell.
The anode subsystem controller controls the pressure on the anode inlet to
be 0.2 bar above the pressure on the cathode inlet, in accordance to the fuel
cell manufacturer’s requirements.

The anode subsystem uses an injector-ejector unit to recirculate the H2

in order to minimize the losses. However, due to N2 crossover and that
N2 is not consumed by the reaction, the N2 concentration tends to raise.
For this reason, periodic purges are required to decrease the pressure and
the concentration of N2 on the anode. The purges of the anode are made
by opening the corresponding valve, indicated as v3 in Figure 2. Special
attention is given to the gas purging valve because during the purge, both
hydrogen and nitrogen are ejected to the exhaust. During this operation,
the injector-ejector valve is open to maintain the pressure on the anode’s
channel. Hence, the purging valve is to be open just a short period of time
to minimise the hydrogen lost to the atmosphere.

This subsystem is also equipped with a water trap which collects liquid
water droplets from the anode’s outlet. A liquid water drain valve, v12,
discharges the water collected in the water trap.

During the run mode, the anode subsystem controller receives one input
(setpoint):

• r4: Inlet anode pressure reference

When the car is not in the run mode, the state machine takes control of
the anode subsystem valves.

2.4. Thermal subsystem

The fuel cell generates electricity and heat, and it is designed to run at the
temperature range of 68 to 80 degrees Celsius. The temperature of the fuel

3AVL List GmbH, Engineering Service Provider
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cell reaction affects significantly the efficiency. Hence, the fuel cell system
contains a thermal subsystem to control the stack temperature. The thermal
subsystem, developed by DLR 4, also manages other thermal activities in the
anode and cathode subsystems which are not included in this work, including
the cathode heat exchanger.

The fuel cell is cooled with a liquid coolant, which can either pass through
a normal circuit or a short startup circuit, as shown in Figure 2. The short
circuit is only used during the freeze startup procedure. To control the
coolant temperature, the thermal subsystem has a radiator, one main pump,
and one three-way valve, indicated as v2 in Figure 2.

The coolant temperature is measured with two temperature sensors: one
on the coolant inlet, and the other on the outlet to the stack. During normal
operation of the system, the coolant inlet temperature has to be 68 degrees
Celsius, and the coolant outlet temperature cannot be higher than 80 degrees.
A minimum flow in the main pump is required to have good measurements
of the coolant temperature.

Similarly to the cathode and anode subsystems, the thermal subsystem
controller receives two references from the setpoint generator during the run
mode. These are:

• r5: Inlet coolant temperature reference

• r6: Coolant temperature increment reference

The thermal subsystem controller has other inputs for the selection of the
thermal system configuration, in charge of the state machine. During the run
mode, the cooling circuit is always set to normal.

2.5. Load control device

Finally, the fuel cell reaction is controlled by a load control device that
can set the amount of electric current that comes from the fuel cell. The
current manager, not presented in this work, sets the current of the fuel cell
based on the car velocity, driver’s throttle, and the state of charge of the
battery.

4DLR Stuttgart, German Aerospace Center
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2.6. Simulation Model

A dynamic system model that describes the behaviour of all the sub-
systems has been integrated. This model is used to simulate the system in
the selected scenarios described later in this work. The stack model is a
first principles isothermal distributed model based on [20] and described in
[21], where 1D spatial discretization is implemented along the flow channels
and where identical behaviour of all cells is assumed. Additionally, the sim-
ulation model used in this work includes the discretization of the cathode
diffusion layer in the direction perpendicular to the membrane, as well as
advanced methods to describe the water content in the membrane, ΛC , and
the water liquid fraction in the cathode catalyst layer, S, which makes the
model accurate at a larger range of temperatures and relative humidities.
The membrane water content, with an important effect on the membrane
conductivity, has a dynamics given by the gradients of chemical potentials
and protons, which determine the water fluxes through the membrane, as
explained in [22]. The S dynamics is given by the evaporation rate and the
liquid water generation terms, as described in [23]. This way, the important
effect of the temperature on the hydration model is considered, as claimed by
[24]. The implementation of the improved stack model is described in [12].
The thermal, anode and cathode subsystems models are lumped parameter
models that are intellectual property of DLR, AVL and Brose, respectively.
The model parameters have been tuned using experimental data from the
fuel cell system of the INN-BALANCE project [25].

3. Control Objectives

The control objectives set in this work are the maximization of the system
efficiency and the satisfaction of the constraints of the system during the run
mode. The optimization decision variables are the references of the different
subsystem controllers, r1 to r6. However, the manufacturer’s requirements
fix r5 to 68 degrees Celsius and the anode inlet pressure, r4, to be 0.2 bar
above the cathode inlet pressure. Therefore, these two references are not
actual decision variables, and the space of search is only defined by r1, r2, r3
and r6.
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3.1. System Efficiency

The global system efficiency, η, is defined taking into account all subsys-
tems:

η =
Pnet

Pin

=
I · Vfc −

∑
s=subsystems Ps

HHV · ṅH2

(1)

where ṅH2 is the fuel out of the H2 tank, and HHV is the hydrogen High
Heating Value. IVfc is the gross electrical power generated by the fuel cell
and Ps is the electrical power consumed by the subsystems. The compressor
consumption, modelled with information provided by Celeroton, can reach
12 kW and it is the main parasitic load, which varies with the operating
conditions. The rest of the parasitic loads are assumed constant and will not
be considered in this work. The largest of these minor parasitic consumptions
corresponds to the thermal management module, and it is estimated at 1.9
kW.

3.2. Control Requirements and Constraints

In Table 1, the system requirements are presented. In addition to these
constraints, for any current below 60 A, the PEMFC system has to use the
mass flow corresponding to 60 A. This is necessary to ensure a good reactant
distribution across the fuel cell. The fuel cell stack current, set by the current
manager, is considered an exogenous known variable.

It is also worth mentioning that some constraints are not always possible
to accomplish, e.g. the RH at the anode and cathode inlets. The cathode
subsystem is humidified passively and for safety reasons during the shutdown
it is dried out. Then shortly after startup, it is not possible that the system
provides proper humidification.

Next, the requirements in Table 1 are applied to the different references
in order to know how they are restricted during the run mode, which is
indicated in Table 2:

1. The cathode mass flow reference not representing a stoichiometry of
less than 1.6 yields r1 ≥ 1.6 · StoichiometricAirF low = 0.2121 · Ifc
This condition, when applied to 60 A, gives 13.2 g/s, as indicated in
Table 2.

2. The cathode inlet Relative Humidity (RH) being greater than 30% lim-
its the inlet Humidity Ratio (HR) reference, r2, accordingly. Assuming
the inlet air is close to atmospheric pressure and the lowest inlet tem-
perature of 68ºC, then 30% RH corresponds to 0.031 HR, and at the
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Table 1: Constraints on the fuel cell stack

Magnitude Unit Min Max
Stoichiometry cathode - 1.6
Stoichiometry anode - 1.4
Cathode inlet RH % 30
Anode inlet RH % 20
Anode inlet press. bar 0.2 + Pcath 0.5 + Pcath

Anode outlet press. barG 2.2
Cathode outlet press. barG 2
Coolant inlet temp. ºC 68 68
Coolant outlet temp. ºC 68 80
Current A 30 450
Peak current (less 10 s) A 10 570

highest inlet temperature of 80ºC, 100% RH corresponds to 0.561 HR,
as indicated in Table 2.

Table 2: Constraints on the generated setpoints

Set-points Unit Min Max
r1 Cathode mass flow gs−1 13.2 -
r2 Cathode HR 0.031 0.561
r3 Cathode inlet press. bar Pamb Pamb + 2.2
r4 Anode inlet press. bar Pamb + 0.2 Pamb + 2.4
r5 Coolant inlet temp ºC 68 68
r6 Coolant diff. temp ºC 0 12

In Table 2, the setpoints that result from the optimization process have
been highlighted.

4. Offline Map-Based Controller

The idea behind this technique is to find the best possible steady state
operating conditions for a list of currents. Then, the setpoints applied to the
subsystems are based on a polynomial regression of the obtained results.
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4.1. Optimisation description

The offline optimum setpoint generator is a function of the current of
the stack that tells the setpoint values that maximize the efficiency based on
steady state conditions. Since r4 and r5 are already fixed by the manufacturer
specifications, the setpoint generator computes only four outputs, which are
r1, r2, r3 and r6:

Off. gen. : R→ R4

Off. gen. : (Ist)→ (r1, r2, r3, r6)
The optimisation problem is to find the set of setpoints that lead to the

maximum efficiency given a current Ist:

maximize
r=r1,...,r6

η(r)|Ist

subject to ri ≤ ri ≤ ri

Ar ≤ B

(2)

where η is the efficiency, ri and ri are the lower and higher boundaries,
and A and B are the inequality constraints. The inequality constraints are
necessary to restrict the solution region to accomplish the compressor physi-
cal limits. These limits apply for r1 and r3 and will be explained in sections
5.2 and 5.3.

One well known approach in the optimization literature is the use of
the Karush-Kuhn-Tucker conditions to solve and find the local and global
maximum [26]. However, a requirement to use this technique is that the
function to be maximized has to be known and continuously differentiable.
Moreover, this technique can be tedious and error-prone if the function to
optimize is too complex, as it is in this case. This is due to the fact that the
integrated system model, object of our study, has more than one hundred
states and does not have an explicit steady-state efficiency function.

Alternatively, in this section, a static offline map of the PEMFC system
is made based on the simulation model. The input variables of this map are
the fuel cell current and the subsystem references. The output of this map
is the system efficiency.

Off. map : R5 → R
Off. map : (r1, r2, r3, r6, Ist)→ (η)
For each current, the stack model has been run under all the possible

combinations of valid setpoints inside a finite four-dimensional gird (the or-
ange dots in Figures 3 and 4) to get a full map of the system characteristics.
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Table 3: Some Evaluated Optimal Setpoints I

Current [A] r1 : min [gs−1] Cath. stoich. r2 : HR
60 33.779 3.6 0.412
100 31.276 2 0.374
150 49.26 2.1 0.311
200 62.312 2.1 0.267
250 72.377 1.9 0.232
300 86.612 2 0.204
350 95.994 1.9 0.158
400 98.16 1.8 0.133
450 107.18 1.8 0.100

In Figure 3, the obtained single cell voltages, stack power and system effi-
ciency can be found as a function of current. The results of this process are
validated with the original integrated model.

4.2. Static Optimal References Results

The results of the offline optimisation can be found in Tables 3, 4 and 5,
and are shown in Figures 3 and 4. Figure 4 shows the optimal references at
every evaluated current and the regression function. It can be seen that the
system constraints are taken into account.

To obtain the optimal reference set given the stack current, r∗(Ist), a
regression into a 5th order polynomial of the data is done, shown with dashed
lines in Figure 4. The coefficients of this polynomial can be found in the
supplementary material.

r∗|Ist =


r∗1
r∗2
r∗3
r∗6


∣∣∣∣∣∣∣∣
Ist

=


r∗1(Ist)
r∗2(Ist)
r∗3(Ist)
r∗6(Ist)

 (3)

5. Nonlinear MPC

A second methodology is applied to find the optimal setpoints. In this
case, the dynamics of the system is taken into consideration. The methodol-
ogy is the Model Predictive Control. MPC is a predictive control technique
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Figure 3: Polarization curve, Power curve and efficiency
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Figure 4: Best references at each current.
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Table 4: Some Evaluated Optimal Setpoints II

Current [A] r3 : Pcath [bar] r6 : ∆T [ºC]
60 1.1 6
100 1.1 8
150 1.1 10
200 1.3 12
250 1.3 12
300 1.3 12
350 1.3 12
400 1.5 12
450 1.7 12

Table 5: Optimal Power at Evaluated Setpoints

Current [A] Pgross[kW] Pcompressor[kW] Pnet[kW]
60 16.223 0.3996 15.823
100 26.500 0.3661 26.134
150 38.704 0.6192 38.085
200 51.050 2.0367 49.014
250 61.775 2.4233 59.352
300 72.138 3.0515 69.086
350 81.400 3.5374 77.862
400 91.243 5.2498 85.993
450 101.000 7.5044 93.500
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Table 6: MPCs implementation based on the cost function, constraints and control model.

MPC type Cost function Constraints Control Model
Linear, time-invariant MPC Quadratic Linear Linear
Gain-scheduling MPC Quadratic Linear Nonlinear
Adaptive MPC Quadratic Linear Nonlinear
Nonlinear MPC (case-I) Any Linear or NL Nonlinear
Nonlinear MPC (case-II) Nonlinear Nonlinear Linear

suitable for complex dynamical systems, that uses internal Control Oriented
Models (COM) to predict and optimize the system outcome (cost function)
based on the manipulated variables.

Model predictive controllers are usually classified by the type of cost
function, constraints and control model, as shown in Table 6 [27]. The kind
of MPC that suits better this project is the Nonlinear MPC (NMPC), and
particularly, case-I. Indeed, the objective function is nonlinear, as explained
in section 5.1; the control model is also nonlinear because this maintains the
nonlinearities of the plant, as explained in section 5.2; and the constraints
that bound the search region based on safety and manufacturer limits are
nonlinear too, as explained in section 5.3.

In Figure 5, the control architecture of the predictive controller of this
work is presented. The predictive controller outputs are the optimal setpoints
of the subsystems local controllers. On the other hand, it is assumed that
the predictive controller receives full state feedback of the system from the
observers, as well as some other relevant exogenous variables such as the
stack current.

The proposed architecture is divided into two NMPCs, one for the fast
dynamics and the other for the slow dynamics, as shown in Figure 5. These
two NMPCs have different control models, Manipulated Variables (MV),
constraints and configuration. The idea behind decoupling the predictive
controller into two is to reduce the computational cost of simulating the fast
dynamics until the slow variables have an effect on the performance and are
taken into account in the optimization.

The controller of the fast dynamics in the decoupled setpoint generator,
NMPCFast, is mainly based on the cathode supply manifold behaviour. It is
composed of the cost function J, the control model COM1, and the manip-
ulted variables MV1 with their constraints. MV1 are the cathode mass flow
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Figure 5: Predictive controller II architecture

reference, r1 = u1, and the cathode inlet pressure reference, r3 = u3.
The controller of the slow dynamics, NMPCSlow, is based on the be-

haviour of the temperature and the humidification. NMPCSlow is composed
of the cost function J, the control model COM2, and the manipulated vari-
ables MV2 with their constraints. MV2 are the cathode humidity ratio ref-
erence, r2 = u2, and the coolant temperature increment reference, r6 = u6.

NMPCFast has a prediction horizon of 1 second and the control action
is calculated every 0.1 seconds. The NMPCSlow, on the contrary, has a
prediction horizon of 300 seconds and the control action is calculated every
2 seconds. The difference in more than two orders of magnitude is the main
obstacle to having only one controller and model with all the dynamics.

5.1. Objective function

The nonlinear objective function J is used in both predictive controllers
and represents the system efficiency. A negative sign is required to turn the
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Figure 6: Control Oriented Models for the two Nonlinear MPCs
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maximization problem into a minimization one, which is the solver input.

J = −
M∑
k

(
Pstack[k]− Ps[k]

HHV · ṅH2[k]

)2

(4)

where Pstack[k] = Ist[k] · Vst[k] is the power generated by the fuel cell at time
k, Ps[k] is the power consumed by the subsystems at instant k, assumed to
be equal to the compressor consumption, ṅH2[k] is the hydrogen out of the
tank at time k, and M is the prediction horizon.

5.2. Control models used in the MPC

The control models used in NMPCFast and NMPCSlow are based on
simplified models of the PEMFC stack, cathode subsystem, anode subsys-
tem and thermal subsystem. Moreover, COM1 contains the fast dynamics
processes and COM2 the slow ones.

A scheme of the dynamics included in each COM is found in Figure
6. COM1 includes the cathode supply manifold dynamics, the fuel cell stack
cathode channel concentration dynamics and the membrane water dynamics.
COM1 considers that the humidity, temperature and liquid water are all
constant.

Based on the simulation model of this work, the cathode fluid-dynamics
is fitted into a 2x2 Multiple Input Multiple Output (MIMO) second order lin-
ear system, with the mass flow reference, r1, and the inlet pressure reference,
r2, as inputs, and the actual variables values as outputs. The linearization
is done around the point 50 g/s and 1.2 bar. Simulations of the resulting
linear model and the original simulation model setpoint tracking behaviour
are provided as supplementary material. In the stack, COM1 only keeps the
cathode channel gas dynamics and the membrane water dynamics, as well as
the spatial discretization has been eliminated. For the computation of the
cost function, the nonlinear algebraic voltage expression of the simulation
model is used, together with a static map of the compressor consumption.
This map is a polynomial linear regression that gives the power consumed
by the compressor as a function of the air mass flow and the cathode inlet
pressure. The compressor working region, shown in Figure 7 is approximated
with three polynomials: a second degree polynomial for the compressor bot-
tom line, a third degree polynomial for the top surge line and a second degree
polynomial for the top-down line in the region 95 g/s to 120 g/s. The coef-
ficients of these polynomials are provided as suplementary material.
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COM2 defines the slow dynamics of the fuel cell temperature, fuel cell
humidity and liquid water, assuming that the fast variables are always equal
to their setpoints.

The inputs of COM2 thermal model are the outlet coolant temperature
reference, r6, and the stack current, Ist, and the model output is the stack
temperature, Tfc. The achievable stack temperatures under different currents
have been determined using the simulation model. In this region, the thermal
model is fit into a first order dynamic system with a time constant depending
non-linearly on the current. This non-linear dependence has been adjusted
with a 7th order polynomial. The simulations used to do this fitting are
provided as supplementary material. The humidifier is modeled by a first
order linear model relating the humidity ratio reference, r2, with its actual
value. The time constant of this model is 60 s. The dynamics of the liquid
water fraction is kept as in the simulation model, but without the spatial
discretization. The cost funtion block in COM2 is the same as in COM1.

5.3. Constraints

The constraints define the space of possible solutions of the problem. In
this work, the constraints are defined to ensure safe operation and to reduce
the search space of the solution.

5.3.1. NMPCFast constraints

The references r1 and r3 are the cathode mass flow reference and the
cathode inlet pressure reference. Figure 7 shows the references permitted
region, which is defined by some lines that are used to keep the references
inside the compressor limits. These lines are the compressor limit, the lower
surge line and the upper surge line. Inside this region, at each time instant,
the references constraints are updated based on the stack current.

Upper and lower bounds. At every time, a box is centered around the optimal
setpoint found offline, r∗, which depends on the current. The upper bounds,
UB1, are specified as follows:

UB1[k] =

[
r∗1(Ist[k]) + 10
r∗3(Ist[k] + 0.25

]
(5)

The lower bounds, LB1, are defined differently for r1 and r3. The lower
bound for r1 is the most restrictive between the offline optimal point minus
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10 gs−1and the minimum required stoichiometry (calculated as 0.22 · Ist). In
Figure 7, this limit is represented by the green dashed line.

LB1[k] =

[
max(0.22 · Ist, r∗1(Ist[k])− 10)

r∗3(Ist[k])− 0.25

]
(6)

Linear inequalities. However, if the box has one or more corners outside the
compressor limits, this is corrected using linear inequalities.

If the lower vertexes are out of the compressor working region, both ver-
texes are replaced by new ones. These vertexes are calculated with the poly-
nomial regression of the lower line. This is translated to one inequality
constraint.

ngeq[k]r1[k]− r3[k] ≤ −mgeq[k] (7)

where ngeq[k], mgeq[k] are the straight line parameters at time k for the com-
pressor lower limit (blue line in figure 7).

For the upper boundary, the process is different. If the upper vertexes
are outside the working region, a tangent line to the surge line on the left
side is found in the intersection of the surge line and lower boundary of the
mass flow. The tangent line is translated to one inequality constraint.

−nleq[k]r1[k]− r3[k] ≤ mleq[k] (8)

where nleq[k], mleq[k] are the straight line parameters at time k for the com-
pressor higher limit (orange line in figure 7). The previous linear inequalities
can be described using A and B matrices (see equation 2), which refer to an
r vector containing the two r1 references and the two r3 references within the
control horizon.

A =


ngeq [1] 0 −1 0

0 ngeq [2] 0 −1
−nleq [1] 0 −1 0

0 −nleq [2] 0 −1

 , B =


−mgeq [1]
−mgeq [2]
mleq [1]
mleq [2]

 (9)

5.3.2. NMPCSlow constraints

The constraints for MV2 are independent of each other and can be defined
only with upper and lower bounds.

23



Figure 7: Example of the NMPCSlow constraints on the manipulated variables. The boxes
represent the UB1 and LB1, green for the 450 A current and orange for the 100 A current.
The dashed line is the minimum required stoichiometry. The lines blue and orange are the
inequality constraints on r1 and r3. The white dots represent the offline optimal setpoints
for different currents, starting from the left at Ist=50 A and ending at Ist = 450 A.

Upper and lower bounds. The references r2 and r6 are the cathode humidity
ratio reference and the coolant difference temperature reference.

The upper and lower bounds on the humidity ratio are static:

0 ≤ r2[k] ≤ 0.5 (10)

The bound on the temperature reference, however, is to enforce the search
of the optimal solution inside the working region of the thermal subsystem:

Pthermal,Low(Ist[k]) ≤ r6[k] ≤ Pthermal,High(Ist[k]) (11)

where Pthermal,Low(Ist) and Pthermal,High(Ist) are an interpolation of the high
and low values that define the boundaries of the working region for a given
current.

UB2[k] = [0.5, Pthermal,High(Ist[k])]T (12)

LB2[k] = [0.0, Pthermal,low(Ist[k])]T (13)
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Table 7: Main parameters of the predictive controllers

NMPCFast NMPCSlow
Control time step [s], Ts 0.1 2
Control Horizon [s], N 0.2 10
Prediction Horizon [s], M 1 300
Total number of MV 4 10
Average computation time [s] 0.13009 0.791316
Std. deviation 0.09179 0.35875

5.4. Computational time performance

The two nonlinear predictive controllers run an optimization at each time
step to find the optimal references within the constraints. An analysis of the
optimisation time is required to check that the controller can be run on
real time. Table 7 gathers the basic configuration parameters of the model
predictive controllers and the average computation times with their standard
deviation for 1000 optimisations. It can be seen that the optimisation time
is about 30% larger than the step time for the NMPCFast.

6. Controllers Comparison

The New European Driving Cycle collects velocity and acceleration pro-
files of representative vehicles. It can be found in the literature for simulation
based analysis [12] [28]. Based on these profiles, the estimated power con-
sumption and required stack current are computed.

The Simulink blocks used to compute the power consumption and re-
quired stack current are shown in Figure 8. The power consumption is as-
sumed with a drag coefficient of 0.4 and a vehicle mass of two tons. Only
positive accelerations are taken into account. The total force applied to the
car is the mass multiplied by the acceleration plus the drag force. The power
is calculated as the total force multiplied by the velocity. Then, a first order
filter with unitary static gain is applied to obtain the power that has to be
supplied by the fuel cell at each moment, because the fast changes are as-
sumed to be covered by the battery. An efficiency of 25% is considered from
the fuel cell to the effective torque on the motors. Finally, a saturation block
is placed to set the minimum current to 60A.

The NEDC acceleration and velocity profiles are shown in Figure 9. The
first part of the NEDC represents urban driving in the rush hour with four
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Figure 8: Stack current calculation from the NEDC

cycles of 195 seconds. Then, the seconds from 780 to 1200 represent the
highway part of the journey with an average velocity of 60 kmh−1and a peak
of 120 kmh−1. The estimated corresponding required power and current are
also presented in Figure 9.

Initial Conditions of the simulations. For the simulation, it is assumed that
the vehicle has just been turned on, the STARTUP process has finished
and the state machine is in RUN mode. Besides, the ambient temperate
is 25 degrees Celsius and the initial condition of the PEMFC temperature
is 35 degrees after the STARTUP. The compressor is already running and
delivering 20 gs−1of air. The cathode is completely dry after the startup and
thus the humidification is the ambient one.

6.1. Predictive controllers I and II

Even though only two setpoints generators have been described in the
previous sections, a second predictive controller configuration is also eval-
uated. The new introduced predictive controller, predictive controller I, is
a mix of the offline setpoint generator and the original predictive controller
presented in the Nonlinear MPC section, named predictive controller II.

The predictive controller I calculates the setpoints of the fast dynamics
from the NMPCFast optimizer and takes the setpoints for the slow dynamics
from the offline setpoint generator.

Therefore, three different control configurations will be executed and com-
pared under the NEDC:

1. Offline setpoint generator, for (r1, r2, r3, r6)
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Figure 9: From top to down: NEDC velocity and acceleration, required power and required
current. The cycle length is 1200 seconds.
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Figure 10: Performance of the setpoint generators under the NEDC
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2. Predictive controller I : NMPCFast for (r1, r3) + offline setpoint gener-
ator for (r2, r6)

3. predictive controller II : NMPCFast for (r1, r3) + NMPCSlow for (r2, r6).

6.2. Simulation results

The performance of the three controllers can be observed in figure 10.
The first two graphs show the efficiency and the current profile for the total
extension of the simulation, and the third one is a zoom into the efficiency
graph to appreciate the differences between the predictive controllers.

The offline setpoint generator has the lowest efficiency and the predictive
controller II has the highest. At low currents, the offline setpoint generator
is around 4% less efficient than the predictive controllers, however, at higher
currents, the results are closer. It can be seen that despite predictive con-
troller I is simpler than II, it is already a better solution than the offline
setpoint generator. It can also be observed that the efficiency changes are
slower for the offline setpoint generator than for the predictive controllers.
It should be noted that the exact efficiency would be lower if all the minor
auxiliary consumptions assumed constant were considered. However, this
would not affect the found optimal setpoints neither the efficiency compara-
tive analysis of the different controllers.

A more noticeable and interesting result is the similar performance of
predictive controller I and predictive controller II. This is due to the fact
that the cathode subsystem dynamics plays a significant role in the PEMFC
system, and both predictive controllers consider it. In the third plot of
Figure 10 it can be seen that the predictive controller II has a slightly higher
efficiency, what happens over the whole simulation. The reason is that this
predictive controller uses a more complete model.

Control actions. The four control actions of the three controllers are shown
in Figure 11. The predictive controllers I and II found almost the same mass
flow and pressure optimal references. The offline setpoint generator operates
at higher mass flows and higher pressures. The humidity ratio reference plot
shows a significant difference between the offline and the predictive controller
II. The predictive controller I gives the same reference as the offline setpoint
generator. The predictive controller II adjusts the humidity ratio reference
based on the actual water content on the humidifier which is increasing slowly
but steadily in the journey. In spite of the different humidity references, the
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two predictive controllers give similar performance. Predictive controller II
also sets the temperature reference, r6, higher compared to the others.

6.3. Comparison conclusion

It can be concluded that all three controllers are inside the standards
with similar performance. With none of the complexity of the predictive
controllers, the offline setpoint generator is able to manage the load achiev-
ing efficiencies up to 50%. The predictive controllers I and II show greater
efficiency for all the range of currents. There is no clear benefits of imple-
menting the more complex predictive controller, predictive controller II, over
the one that takes into account only the fast dynamics, predictive controller
I. The increase in complexity does not go together with significantly higher
performance. It is relevant to highlight the predictive controller I, which op-
timizes the mass flow and pressure references and leaves the slow dynamics of
humidification and temperature dependant to the offline setpoint generator.

7. Conclusions and future work

In this work, a successful comparison of three PEMFC setpoint generators
has been carried out using the NEDC velocity profile. One is based on
the static offline map of the system efficiency and the other two are model
predictive controllers that use low order models of the system.

The evaluation of the three controllers yields clear results. All three con-
trollers satisfy all system restrictions and are implementable in a real system.
A further analysis indicates that the two dynamic controllers always perform
better than the static controller. The comparison shows an improvement
margin in the system efficiency up to 4%.

There is a trade off between the system efficiency achieved by the con-
trollers and their computational complexity. In this trade off, predictive
controller I is the most interesting option due to its simplicity with almost
the same performance as predictive controller II.

It is also worth noticing that the computational time necessary for the
predictive controllers to calculate the control actions are not yet inside the
limit to be deployed. The average time for the control action computation
for the predictive controllers is 30% larger than the step time defined. In the
future, the controllers will be translated from MATLAB/Simulink to C++ to
be embedded in a control unit with higher computational power. Moreover,
we believe that there is further room for improvements. For instance, further

30



Figure 11: Generated references
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work can include improving the internal models of the predictive controllers
using piece-wise linear models with the exact time-discretization method.
This would reduce significantly the computational cost. Furthermore, the
proposed supervisory controllers should be tested with other driving cycles,
such as the Worldwide Harmonized Light Vehicles Test Procedure (WLTP),
which has become a global standard for light duty vehicles.
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