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Highlights: 

 A simplified quality modelling approach for the sewer network is proposed.  

 Calibration and sensitivity analysis confirm its accuracy and scalability. 

 Quality-based optimization has been developed using model predictive control. 

 The simple model ensure pollution optimized in complex sewer network in real time. 

 The models and optimization approach have been validated in real life pilot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

A control-oriented quality modeling approach is proposed for sewer networks, which can represent 

quality dynamics using simple equations in order to optimize pollution load from combined sewer 

overflows in large scale sewer network in real time. Total suspended solid has been selected as the 

quality indicator, regarding it is easy to be estimated through measuring turbidity and correlated 

with other quality indicators. The model equations are independent for different elements in sewer 

network, which allows a scalable usage. In order to ensure accuracy of the proposed models, a 

calibration procedure and a sensitivity analysis have been presented using data generated by virtual 

reality simulation. Afterwards, a quality-based model predictive control has been developed based 

on the proposed models. To validate effectiveness and efficiency of the modelling and 

optimization approaches, a pilot case, based on the Badalona sewer network in Spain is used. 

Application results under different scenarios show that the control-oriented modelling approach 

works properly to cope with quality dynamics in sewers. The quality-based optimization approach 

can provide strategies in reducing pollution loads in real time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1. Introduction 

Considering the high concentrations of organic loads, metals and faecal bacteria (Becouze et al., 

2009), combined sewer overflow (CSO), which consists a mixture of untreated wastewater and 

storm water runoffs from sewer networks (SN), can adversely affect the receiving environment 

(EPA, 2015). In order to protect ecosystem of the receiving body, optimization of a SN in real time 

to mitigate the pollution impact is cost-effective comparing with infrastructure construction 

(Joseph-Duran et al., 2015; Schütze et al., 2004; Sun et al., 2017a).  

In sewer networks, both hydraulics and hydrology are important factors to be considered for 

pollution control. So far, most of the approaches focus on the hydraulic aspects, aiming to reduce 

volume of CSO discharges to the environment. For instance, Joseph-Duran et al., (2014b) 

optimized CSO volume for a sewer network using a mixed integer linear program. Cembrano et 

al., (2004); Fu et al., (2010); and Vezzaro et al., (2014) reduced CSO volume through nonlinear 

approaches. Joseph-Duran et al., (2015) proposed a output-feedback control approach based on 

hybrid modelling to minimize CSO volume significantly. Moreover, predictive methodologies 

have also been developed in Lund et al., (2018); and Puig et al., (2009).  

Besides hydraulic-based approaches, quality-based objectives can open up new potential for the 

advanced management of SN (Fu et al., 2020; García et al., 2015; Schütze et al., 2004; Torres-

Matallana et al., 2018). Moreover, regarding the increasing availability of sensors in recent years, 

inclusion of quality variables to the optimization becomes possible (Fu, et al., 2010; Hoppe et al., 

2011; Lacour and Schütze, 2011). However, it is still a big challenge to develop a model that can 

describe quality dynamics in SN regarding the complex procedures (Sun, et al., 2018; Torres-

Matallana et al., 2018). It is also not easy to obtain enough data with good quality to calibrate the 

models (Fu et al., 2020; Ledergerber et al., 2019).  

Nowadays, there exist detailed quality models, i.e. the Ackers White Model (Maciejowski, 2002), 

Velikanov and the KUL Model (Zug, et al., 1998) to describe sediments transportation in SN. 

There are also well-established tools embed with high fidelity quality equations for simulation 

such as the Storm Water Management Model (SWMM) (Rossman, 2015), MIKE Urban (DHI, 

2007), WaterCress (Clark et al., 2002), InfoWorks CS (MWH, 2010) and UrbanCycle (Hardy et 

al., 2005). These models and tools can represent quality dynamics and processes in SN. But the 

tools mainly work as simulation platforms, which may not be able to use for optimization. The 

detailed models are not suitable for optimization either due to the high computational requirement.  

Control-oriented quality models which can describe complex dynamics using simple equations 

(generally linear) are in need for pollution optimization in real time, especially for large scale SN. 

Lacour and Schütze, (2011) proposed a turbidity-based approach, which uses turbidity 

measurements to generate “realistic” signals at the inflow time series. This approach provides 

evidence about the potential of quality-based control but does not map the quality dynamics inside 

SN. Vezzaro, et al., (2014) considered relevant water quality indicators (TSS - total suspended 

solids and ammonia concentration) in a global control of urban catchments through a simple model. 

Water quality is included in cost functions, which allows to change discharge priority to reduce 

pollution. However, the quality model does not refer to the sewer network. Torres-Matallana et al., 

(2018) developed a simplified semi-distributed urban water quality model, EmiStatR, to simulate 

emissions of pollutants in terms of chemical oxygen demand and NH4 concentrations. However, 

EmiStatR does not model the quality dynamics in sewer pipe explicitly either.  



 

 

Under this context, this paper contributes 1) a control-oriented quality modelling approach for 

different elements of SN. The model equations are developed independently for different elements, 

which allows scalable use of the models. These models are used to represent complex quality 

dynamics using simple equations, which can be embedded in real time optimization process. As a 

first step, TSS has been selected as a relevant quality indicator. This choice takes into account that 

TSS can usually be correlated with turbidity (Lacour and Schütze, 2011). Similarly, other quality 

parameters can also be estimated from TSS. 2) A calibration procedure based on data produced by 

a virtual reality simulator as well as a sensitivity analysis are presented to validate accuracy of the 

model. 3) Based on the proposed quality models, a quality-based optimization approach has been 

developed using model predictive control (MPC). 4) In order to validate the modeling and 

optimization approaches, a real life case study based on the Badalona SN in Spain has been 

demonstrated using different rain scenarios. 

Rest of this paper is organized as follows. In Section 2, the control-oriented quality modelling 

approach, the calibration procedure and the quality-based optimization scheme are presented. In 

Section 3, the proposed models are calibrated using data generated by virtual reality simulations . 

The efficient and effectiveness of the modeling and optimization approaches are demonstrated 

through the Badalona SN. Conclusions and discussions are provided in Section 4.  

2. Methodology  

2.1 Modelling approach 

The control-oriented modelling approach is used to estimate TSS dynamics in a certain horizon, 

including the TSS transportation in sewer pipes, TSS deposition and erosion in a detention tank, 

as well as TSS dynamics in the intersection nodes. There is no direct mathematical association 

between the models and the physical processes. Each type of element in SN is modelled using 

separated equations to enhance model scalability for different networks.  

Basic hydraulic models are provided firstly as background before introducing the quality models. 

In this paper, the italic bold font is used for vectors, italic font represents scalars. 

1) Detention tank  

A detention tank is considered as container which collects water based on input and output flows: 

                                      𝒗𝒐𝒍(𝑘 + 1) = 𝒗𝒐𝒍(𝑘) + ∆𝑡 (∑ 𝑓𝑖𝑛
𝑖 (𝑘)𝑛𝑖𝑛

𝑖=1 − ∑ 𝑓𝑜𝑢𝑡
𝑖𝑛𝑜𝑢𝑡

𝑖=1
(𝑘))                   (1) 

                                                               0 ≤ 𝒇(𝑘) ≤ 𝒇𝑚𝑎𝑥                                                                  (2) 

                                                            0 ≤ 𝒗𝒐𝒍(𝑘) ≤ 𝒗𝒐𝒍𝑚𝑎𝑥                                                       (3)                           

where 𝒗𝒐𝒍 ∈  ℝ𝑛𝑡 represents vector for the water volumes [𝑚3] stored in detention tanks with 

physical ranges in [0, 𝒗𝒐𝒍𝑚𝑎𝑥]; ∆𝑡 is sampling time [s] and k is time step; 𝒇𝑖𝑛 = (𝑓𝑖𝑛
1 ,   … 𝑓𝑖𝑛

𝑛𝑖𝑛) ∈

 ℝ𝑛𝑖𝑛  is the vector of flows into the tank [𝑚3/𝑠]; 𝒇𝑜𝑢𝑡 = (𝑓𝑜𝑢𝑡
1 ,   … 𝑓𝑜𝑢𝑡

𝑛𝑜𝑢𝑡) ∈  ℝ𝑛𝑜𝑢𝑡 is the vector 

of flows out of the tank [𝑚3/𝑠]; 𝒇𝑚𝑎𝑥  is the vector containing physical or operational limitations 

of flows. The parameters 𝑛𝑡, 𝑛𝑖𝑛, 𝑛𝑜𝑢𝑡  are numbers of tanks, inflow and outflow branches, 
respectively.  

2) Controllable actuators 

The controllable actuators, gates or pumps, are usually located at the inlet or the outlet of a tank 

or an inline detention element. Flow from these elements is considered as control variable and 

bounded by physical and operational constraints: 



 

 

                                                     𝒖(𝑘) ≤ 𝒖𝑚𝑎𝑥(𝑘)                                                          (4)                                                               

where 𝒖  is vector of control variables, 𝒖𝑚𝑎𝑥   includes the maximum constraints. 

3) Junction node 

Mass balance is used for water in and out of a junction node: 

        ∑ 𝑓𝑜𝑢𝑡
𝑖𝑛𝑜𝑢𝑡

𝑖=1
(𝑘) = ∑ 𝑓

𝑖𝑛
𝑗𝑛𝑖𝑛

𝑗=1
(𝑘)                                                 (5) 

where 𝑓𝑜𝑢𝑡
𝑖 ,  𝑖 = 1, … , 𝑛𝑜𝑢𝑡   are flows leaving the node; 𝑓

𝑖𝑛
𝑗
,  𝑗 = 1, … , 𝑛𝑖𝑛 are flows into the node. 

4) Overflow 

Overflows at CSO locations occur, e.g. by means of weirs, when the capacity of a downstream 

element (for example, the WWTP) is exceeded by the flow in the upstream element, which is 

modelled as:  

 

  𝒇𝑐𝑠𝑜(𝑘) = max  {0, 𝒇𝑖𝑛 (𝑘) − 𝒎𝒂𝒙𝒄𝒂𝒑 (𝑘)}                                  (6) 

         𝒇𝑜𝑢𝑡 (𝑘) =  𝒇𝑖𝑛(𝑘) − 𝒇𝑐𝑠𝑜(𝑘)                                                  (7) 
 

where 𝒇𝑖𝑛  is the flow vector in the upstream elements, maxcap is the capacity vector of the 

downstream of the weirs (possibly WWTP inlets or interceptors), 𝒇𝑜𝑢𝑡  is the flow vector going to 

the downstream and 𝒇𝑐𝑠𝑜  is the CSO vector. 

5) Total CSO  

The CSO volume released into the receiving environment is computed as: 

                                         𝑓𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 (𝑘) =  ∑ 𝑓 𝑖
𝑐𝑠𝑜

(𝑘)𝑛𝑐𝑠𝑜
𝑖=1

                                                (8) 

where 𝑛𝑐𝑠𝑜 is number of CSO.  

Based on these equations, TSS models for different elements in SN are developed as follows: 

1) TSS model for a sewer 

A sewer or a collection of sewers in a SN can be assumed as a tank which collects water based on 

the volumetric difference between input and output flows, as presented in equation (1).  

For the outflow vector 𝒇𝑜𝑢𝑡 , besides complying with the physical constraints of equation (3), the 

values of 𝒇𝑜𝑢𝑡 (𝑘) should also be proportional to the sewer volume 𝒗𝒐𝒍(𝑘) at the current time step 

𝑘, which can be represented as: 

                                                           𝒇𝑜𝑢𝑡 (𝑘) = 𝒄𝑖𝑛𝑡𝒗𝒐𝒍(𝑘)                                                          (9) 

where 𝒄𝑖𝑛𝑡  is a vector of parameters which relates the outflow of a sewer with the water volume 

stored in it.  Here 𝒄𝑖𝑛𝑡  works as an intermediate variable in the modelling process.  

After combining equations (1) and (9), the following in-out relation can be expressed for a 

hydraulic transport in a sewer: 

                                   𝒇𝑜𝑢𝑡 (𝑘 + 1) = (1 − 𝒄𝑖𝑛𝑡 ∆𝑡)𝒇𝑜𝑢𝑡 (𝑘) +  𝒄𝑖𝑛𝑡 ∆𝑡 𝒇𝑖𝑛(𝑘)                                   (10)         

where the outflow vector 𝒇𝑜𝑢𝑡  at time step 𝑘 + 1 is estimated through summing the proportional 

parts of the outflow vector 𝒇𝑜𝑢𝑡  and inflow vector 𝒇𝑖𝑛  at time step 𝑘.  

Taking into account the correlation between TSS dynamics and the flow rate inside a sewer,  

similar in-out relation of equation (10) is used to generalize the transport model for the TSS inside 

sewer with coefficients 𝒄1 and 𝒄2: 



 

 

                                             𝒔𝒔𝑜𝑢𝑡(𝑘 + 1) = 𝒄1𝒔𝒔𝑖𝑛(𝑘) + 𝒄2𝒔𝒔𝑜𝑢𝑡 (𝑘)                                            (11) 

where 𝒔𝒔𝑜𝑢𝑡 ∈  ℝ𝑛𝑜𝑢𝑡 is the TSS vector [mg/l] out of a sewer, 𝒔𝒔𝑖𝑛  ∈  ℝ𝑛𝑖𝑛 is TSS vector [mg/l] 

into a sewer;  𝒄1 and 𝒄2 are parameters need to be calibrated at the range of [0, 1]. 

2) TSS model for a detention tank 

The TSS model in a detention tank is based on a simple representation of TSS mass evolution 

considering deposition and erosion processes. According to equation (1), a detention tank has the 

capacity to collect water volume based on input and output flows. Similarly, TSS mass could also 

be collected in detention tank based on the difference between mass input and output, as well as 

the deposition and erosion phenomena. 

Taking m ∈  ℝ𝒏𝒕  as the vector of total mass [mg] of the suspended solids in the detained water; 

𝒔𝒔𝑖𝑛 and 𝒔𝒔𝑜𝑢𝑡  are the TSS vectors for the inflows and outflows of a tank; 𝝉 as the transport delay 
happens in the mixing process, the evaluation of m in the tank can be presented as:             

          𝒎(𝑘 + 1) = 𝜶𝒎(𝑘) + ∆𝑡 (𝒇𝑖𝑛(𝑘 − 𝝉)𝑠𝑠𝑖𝑛(𝑘 − 𝝉) − 𝑓𝑜𝑢𝑡 (𝑘 − 𝝉)𝑠𝑠𝑜𝑢𝑡 (𝑘 − 𝝉))             (12)                                          

where 𝜶 is a vector representing mass deposition and/or erosion processes and should be calibrated 

using values between 0 and 10 for each tank; 𝝉 represents non-negative integer of transportation 

delays. The values of 𝜶 in the range of [0, 1] describes the deposition process while the values at 
the range of [1, 10] represents the erosion process. Here the erosion constraint 10 is only an 

estimated maximal constraint. Bigger constraint can be used in real implementations with stronger 

erosion. In order to achieve a model with accuracy, the items in equation (12) might be modified 

by considering more independent coefficients: 

      𝒎(𝑘 + 1) = 𝜶𝒎(𝑘) +  ∆𝑡𝜷𝒇𝑖𝑛(𝑘 − 𝝉)𝒔𝒔𝑖𝑛 (𝑘 − 𝝉) − ∆𝑡𝜸𝒇𝑜𝑢𝑡  (𝑘 − 𝝉)𝑠𝑠𝑜𝑢𝑡(𝑘 − 𝝉)      (13)    

where 𝜷, 𝜸 are positive vectors to be calibrated for each tank using values between 0 and 10. 

Assuming in the detention tank, TSS is the same throughout the stored water, which is also TSS 
at the tank outlets is (valid only for vol > 0):       

                                                 𝒔𝒔𝑜𝑢𝑡 (𝑘 + 1) = 
𝒎(𝑘+1)

𝒗𝒐𝒍 (𝑘+1)
                                                           (14) 

3) TSS model for a junction node 

A junction node is considered as the element where volume and suspended solid mass are split or 

merged based on mass balance. Take a junction of two incoming sewers with one downstream 

sewer as an example, when suspended solid mass reaches a junction node, the dynamics of TSS is 

modelled as: 

𝑒𝑜𝑢𝑡(𝑘)𝑠𝑠𝑜𝑢𝑡(𝑘) =  𝑒𝑖𝑛
1 (𝑘)𝑠𝑠𝑖𝑛

1 (𝑘) + 𝑒𝑖𝑛
2 (𝑘)𝑠𝑠𝑖𝑛

2 (𝑘)                                  (15) 

where 𝑒𝑜𝑢𝑡  is the coefficient for the TSS output flow,  𝑒𝑖𝑛
𝑖  is coefficient for the i-th TSS input flow. 

They are positive parameters need to be calibrated in range of [0, 10]. To give the same weight for 

each coefficient for the multi-input junction nodes, each coefficient should be close to 1. 

2.2 Calibration procedure 

The proposed quality models should be calibrated before application. A virtual reality simulator 

of SN is used to produce data sets required by the calibration process, which has been designed 

and calibrated based on real life plants and measurements. So that the quality processes can be 



 

 

represented correctly by the simulator. As described in the modelling approach, water flows, TSS 

in and out of a sewer are the only information required by the calibration. Different historical 

rainfall data are used as inputs to the simulator to generate the required information.  

1)  Calibration for sewer model 

According to equation (11),  𝒄1, 𝒄2 are parameters need to be calibrated.  

Defining 𝒔�̂�𝑚 as the observed TSS. The observed TSS and flow values at previous time step are 

�̂�𝑖𝑛 , �̂�𝑜𝑢𝑡 , 𝒔�̂�𝑖𝑛, 𝒔�̂�𝑜𝑢𝑡 . The parameters of 𝒄1, 𝒄2  are calibrated through minimizing difference 
between the observed TSS and the modelled TSS:  

               (𝒄1
∗ , 𝒄2

∗ ) = (∑ (𝒔�̂�𝑚 (𝑘) − 𝒄1𝒔�̂�𝑖𝑛(𝑘 − 1) − 𝒄2𝒔�̂�𝑜𝑢𝑡(𝑘 − 1))2𝑁
𝑘=1 )

1
2⁄

(𝒄1,𝒄2)
arg𝑚𝑖𝑛

              (16) 

where 𝑁 is duration of the event.  

2)  Calibration for tank model 

The parameters 𝜶, 𝜷, 𝜸, 𝝉 need to be calibrated for the tank model. The sedimentation and erosion 

phenomena are represented through setting values at different ranges for the calibrated parameters. 

When the parameter takes value from 0 to 1, it means the sedimentation happens, when setting 

values at the range of [1, 10], erosion happens. There may have sedimentation and erosion two 

processes happen together in reality, however, we consider in this work only one process happens 

at each time. 

According to equations (1), (13) and (14), the parameters of 𝜶, 𝜷, 𝜸, 𝝉 are calibrated as: 

(𝜶∗ , 𝜷∗ ,𝜸∗, 𝝉∗) =

(∑ (𝒔�̂�𝑚(𝑘) −
𝜶𝒎(𝑘−1)+ 𝜷∆𝑡�̂�𝑖𝑛(𝑘−𝜏−1)𝒔�̂�𝑖𝑛(𝑘−𝝉−1)− 𝜸∆𝑡�̂�𝑜𝑢𝑡 (𝑘−𝝉−1)𝒔�̂�𝑜𝑢𝑡(𝑘−𝝉−1)

𝒗𝒐𝒍(𝑘−1)+∆𝑡(�̂�𝑖𝑛(𝑘−1)−�̂�𝑜𝑢𝑡(𝑘−1))
)2𝑁

𝑘=1 )
1

2⁄
(𝜶,𝜷,𝜸,𝝉)
arg 𝑚𝑖𝑛

   (17) 

The initial mass (𝒎(0)) and water volume (𝒗𝒐𝒍(0)) at the tank can be set as 0 or other initial 
values read from the simulators. 

3)  Calibration for junction model 

The following equation should be met during calibration while 𝑒𝑖  and 𝑒𝑗  takes value from [0 10] 

but better as close as possible to 1: 

      (𝑒𝑜𝑢𝑡
∗ , 𝑒𝑖𝑛

1 ∗
, 𝑒𝑖𝑛

2 ∗
) = (∑ (𝑠�̂�𝑚

𝑖 (𝑘) −
𝑒𝑖𝑛

1 �̂�𝑖𝑛
1 (𝑘)𝑠�̂�𝑖𝑛

1 (𝑘)+𝑒𝑖𝑛
2 �̂�𝑖𝑛

2 (𝑘)𝑠�̂�𝑖𝑛
2 (𝑘)

𝑒𝑜𝑢𝑡 �̂�𝑜𝑢𝑡(𝑘)
)2𝑁

𝑘=1 )
1

2⁄

(𝑒𝑜𝑢𝑡
∗ ,𝑒𝑖𝑛

1 ∗
,𝑒𝑖𝑛

2 ∗
)

arg 𝑚𝑖𝑛        (18) 

4)  Performance evaluation 

In order to evaluate the proposed modelling approaches, Nash Sutcliffe model efficiency 

coefficient (NSE) (Nash and Sutcliffe, 1970), which is sensitive to pollutograph peaks, and the 

Normalized Root Mean Square Error (NRMSE), a standard deviation of prediction errors 

(Functional, 2005) are selected (Bonhomme and Petrucci, 2017).   

1.  NSE index 

Defining average of  the observed TSS as 𝒔�̂�𝑚
̅̅ ̅̅ ̅, which can be computed as: 

                                                              𝒔�̂�𝑚
̅̅ ̅̅ ̅ =

∑ 𝑠�̂�𝑚(𝑘)𝑁
𝑘=1

∑ 𝑘𝑁
𝑘=1

                                                         (19) 



 

 

Then performance in terms of NSE for the proposed models can be computed as: 

                                                  𝑵𝑺𝑬𝑠𝑠 = 1 −
∑ (𝒔𝒔𝑜𝑢𝑡(𝑘)−𝒔�̂�𝑚(𝑘))2𝑁

𝑘=1

∑ (𝒔�̂�𝑚(𝑘)− 𝒔�̂�𝑚
̅̅ ̅̅ ̅̅ (𝑘))

2𝑁
𝑘=1

                                         (20) 

The value of 𝑵𝑺𝑬𝑠𝑠 range from −∞ to 1. If 𝑵𝑺𝑬𝑠𝑠is equal with 1, it corresponds to a perfect 

match of the model. If 𝑵𝑺𝑬𝑠𝑠  can get value between 0.5 and 0.65, that indicate the model is 
sufficiently good to be used. 

2.  NRMSE index 

The value of 𝑵𝑹𝑴𝑺𝑬𝑠𝑠  is computed using equation (21): 

                             𝑵𝑹𝑴𝑺𝑬𝑠𝑠 =
1

max(𝑆�̂�𝑚(𝑘))−min(𝑆�̂�𝑚(𝑘))
√∑

(𝑠𝑠𝑜𝑢𝑡(𝑘)−𝑠�̂�𝑚(𝑘))2

𝑁
𝑁
𝑘=1

2
                  (21) 

In general, 𝑵𝑹𝑴𝑺𝑬𝑠𝑠  is expressed as a percentage, where the lower value indicate less errors.  

5)  Practical implementation 

Water quality measurements inside the SN or appropriate estimations are indispensable for model 

calibration. For sewer elements, these data may be estimated using a number of real turbidity 

sensors, complemented by TSS estimations of a detailed model. For the case of detention tanks, 

TSS measurements or estimations at the tank inlet and output are required. The sensors for the tank 

inlet and output may not be available in the real system and in the detailed quality simulators, this 

information is not readily available. In this case, we do not have reliable data for the TSS tank 

model calibration, and we suggest to use an approximation of the TSS in detention tank with 

perfect mixture hypothesis for the total mass as a conservative alternative. Then, the model 

coefficients for the tank model (𝜶, 𝜷, 𝜸, 𝝉) would be (1, 1, 1, 0). 

2.2 Quality-based optimization using MPC 

MPC has been selected as the optimization scheme because of its capacity to generate optimal 

control strategies especially for a complex network, as proved in García et al., (2015); Joseph-

Duran et al., (2015); Pleau et al., (2005); Puig et al., (2009); Schütze et al., (2003); and Sun et al.  

(2020). The principal goal of the quality-based MPC optimization approach is minimizing both 

volume and pollutant load of CSO through efficient operation of controllable actuators (pumps, 

gates, etc.), taking into account hydraulic and quality models defined previously. 

1) Optimization control problems 

The quality-based MPC optimization is defined using a state-space discrete-time model: 

                                                                    min
𝒖(𝒌)

𝑱(𝒌)                                                                       (22a) 

s.t.:                                           𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘), 𝒅(𝑘))                                             (22b)  

                                                      ℎ(𝒙(𝑘), 𝒖(𝑘), 𝒘(𝑘)) ≥ 0,                                                    (22c) 

                                                      𝑔(𝒙(𝑘), 𝒖(𝑘), 𝒘(𝑘)) = 0,                                                     (22d)   

                                                       𝒙𝑚𝑖𝑛  ≤ 𝒙(𝑘) ≤  𝒙𝑚𝑎𝑥,                                                       (22e) 

                                                       𝒖𝑚𝑖𝑛  ≤ 𝒖(𝑘) ≤ 𝒖𝑚𝑎𝑥,                                                      (22f) 



 

 

where 𝒙(𝑘) is state vector represents water volume and mass in all tanks; 𝒖(𝑘) is the controlable 

vector of gate flows; 𝒅(𝑘) is disturbance vector related to rain intensity and runoff. The functions 

h(‧) and g(‧) include constraints, 𝒖𝑚𝑖𝑛,  𝒖𝑚𝑎𝑥, 𝒙𝑚𝑖𝑛, 𝒙𝑚𝑎𝑥 are physical limits of vectors. 

2) Objective function 

The objective function is a mathematical representation of the operational goals, including CSO 

discharges minimization 𝑱𝑐𝑠𝑜(𝑘), pollutant loads (TSS mass) from CSO minimization 𝑱𝑚(𝑘) and 

WWTP usage maximization 𝑱𝑤𝑤𝑡𝑝 , expressed as: 

                                𝑱(𝑘) = ∑ [𝑎𝑐𝑠𝑜𝑱𝑐𝑠𝑜(𝑘) + 𝑎𝑚𝑱𝑚 (𝑘) + 𝑎𝑤𝑤𝑡𝑝 𝑱𝑤𝑤𝑡𝑝(𝑘)𝑁
𝑘=1 ]                           (23) 

where 𝑎𝑐𝑠𝑜, 𝑎𝑚, 𝑎𝑤𝑤𝑡𝑝  are weights of different objectives which can be generated through Pareto 

front computation for the multi-objective optimization problem in (23) or in practice, priorities of 

these items are mainly manipulated by the system operators in order to adjust to different situations  

(Lund et al., 2018; Toro et al., 2011).  

3) Control optimization setup 

The quality-based MPC optimization produces control actions inside the prediction horizon of 𝐻, 
however, only the first solution is applied into simulation as set-points to validate the control 

actions without disturbing the real plant. In order to compensate uncertainty produced by the 

conceptual models, in each time step, the new system state (e.g. the tank volume, mass, etc.) of 

simulator is used as initial values for the next step optimization using MPC. This interaction 

between the controller and simulator is the so called closed-loop optimization scheme, which has 

been explained in detail in (Romero-Ben et al., 2019; Sun et al., 2015). 

3. Case study 

3.1 Badalona sewer network  

Badalona is a city at the east of Catalonia (Spain) facing to the Mediterranean Sea. Affected by the 

Mediterranean climate, 50% of the rainfall occurs at two or three heavy rainfall events in summer 

and autumn, which used to generate CSOs to the beach of Badalona. As shown in Figure 1, the 

Badalona SN (blue color) includes one detention tank (blue cylindrical). The WWTP is located on 

the side of the coast. Along the coast locates the outfall points (red color) from where the CSOs 

are released. Three rain gauges P1, P2, P3 are distributed in different area of this network. 

                   



 

 

Figure 1. The Badalona SN 

The Badalona SN has been simulated in InfoWorks Integrated Catchment Modelling (InfoWorks 

ICM) (MWH, 2010). Full 1D Saint Venant equations (Joseph-Duran et al., 2014a) is used in 

InfoWorks to solve the hydraulic dynamics. Velikanov model (Zug et al., 1998) is used to describe 

dynamics of TSS in a detention tank. The TSS in the sewer is linear and instantaneous.  

To compute the quality-based MPC optimization, the Badalona SN has been conceptualized as 

Figure 2 with a clear layout includes 7 catchments (C1, C2, C3, C4, C6, C7, C8) and a basin (Baux) 

connected by 35 links and 5 outfalls. There are 2 gates (G1, G2) operate water input to the detention 

tank, one pump station (QT1) to empty the detention tank and another pump (QTWWTP) to 

schedule flows towards the WWTP. The conceptualization process can be found in (Martínez et 

al., 2019).  

             

Figure 2. Simplified Badalona SN 

3.2 Quality modelling calibration 

To generate calibration data from the simulator, 4 real rain events and a synthetic scenario T10 

have been applied (Table 1). The real rainfall was measured in terms of 5-minute interval from the 

year 2014 to 2017. The selected rains are the representative events with different characteristics 

(small, medium, big, very big). The synthetic scenario T10 was designed as a strong rainfall of 10-

year return period following a rainfall distribution prepared by Alternating Block Method (Ghazavi 

et al., 2017). In Table 1, start and end time of the rain are in format of HH:MM DD/MM. Previous 

dry days are given for each scenario. Moreover, 𝑰𝟐𝟎, 𝑰𝟔𝟎 which represent precipitation intensities 

considering 20-minute and 60-minute time steps are provided to describe the intensity.  

Table 1. Rain Events 

RAIN 

EVENT 

𝑰𝟐𝟎 𝑰𝟔𝟎 START TIME 

 

END TIME PREVIOUS  

DRY DAYS 

RAIN INTENSITY 

25/03/2017 39.6 24.6 08:20 24/03 06:35 26/03 20 Medium 

22/07/2016 31.5 18.3 08:25 22/07 21:45 23/07 53 Small 

22/08/2014 42.6 17.8 09:30 22/08 22:30 23/08 20 Big 



 

 

18/06/2016 60.3 24.4 03:40 18/06 16:25 19/06 20 Very big 

T10 110.5 52.9 00:00 01/01 03:00 02/01 10 Strong 

1)  Model for sewer 

To illustrate the TSS sewer model, the sewer S2 (as shown in Figure 2) is selected as an example 

to calibrate the proposed sewer model. Among the 5 rain events, the first three of them (25/03/2017, 

22/07/2016, 22/08/2014) are used for calibration, while the rest two events (18/06/2016, T10) are 

used for validating the models produced by the calibration. 

Figure 3 includes the calibration result of S2 for the rain event 22/07/2016, which has more than 

89% NSE fitting accuracy. The NRMSE index is less than 0.03%, which indicates very few errors. 

The validation results of this calibrated model using rainfalls 18/06/2016 and T10, where more 

than 85% NSE fitting accuracies are still achieved, the NRMSE errors are less than 0.01%, as shown 

in Figure 3 as well.  

 

Figure 3. Calibration and validation results 

Table 2 presents more details about the calibration and validation results, which includes the 

calibrated parameters and performance in each case. Considering both the calibration and 

validation performance in NSE are better than 80%, the NRMSEs are less than 0.1%, the proposed 

TSS model for the sewer can represent the TSS dynamics well at the Badalona pilot.  

 

Table 2. Calibration and Validation Results 

CALIBR./VA

LID. 

C2         C1                  NSE   NRMSE              18/06/2016                               T10 

25/03/2017   0.04    0.95              93%    0.02%             87%    0.05%                 95%    0.05% 



 

 

22/07/2016       0.08   0.99              90%    0.03%             86%    0.04%                 93%    0.07% 

22/08/2014        0.08   0.90              76%    0.04%             88%    0.03%                 94%    0.06% 

Considering the fact that, there exists uncertainties for using conceptual models. In order to get a 

better knowledge about the uncertainty influence, sensitivity analysis is carried out. The following 

steps are applied into analysis, which firstly fix c1, and add c2 with 0.02, 0.04, 0.06 individually; 

then fix c2, and minus c1 with 0.2, 0.4, 0.6 separately, considering the different order of magnitude 

in c1 and c2. Fitting results are provided with 25/03/2017 as representative scenario. The results at 

Figures 4-5 show that the uncertainty of c1 which is coefficient of the TSS input at the previous 

time step, affects more about the TSS sewer than the coefficient of the previous TSS output c2. 

Furthermore, higher intensity rainfall period is affected more when modifying the calibration 

parameters. However, the trends of the curves can always be captured. 

 

   

Figure 4. Sensitivity Analysis for rainfall 25/03/2017 when fixes c2 as constant 
  

 



 

 

Figure 5. Sensitivity Analysis for rainfall 25/03/2017 when fixes c1 as constant 

  

2)  Model for junction node 

The junction node model is validated through a downstream node N6 of the Badalona SN, which 

has two input branches S13, S19 and one output S20 according to equation (19): 

                                                    𝑠�̂�𝑚
20(𝑘) =  

𝑒𝑖𝑛
1 �̂�𝑖𝑛

13(𝑘)𝑠�̂�𝑖𝑛
13(𝑘)+ 𝑒𝑖𝑛

2 (𝑘)𝑠�̂�𝑖𝑛
19(𝑘)

𝑒𝑜𝑢𝑡 �̂�𝑜𝑢𝑡
20 (𝑘)

                                        (24) 

Regarding the coefficient constraints, for the node N6, the optimal calibrated value for  𝑒𝑖𝑛
1 , 𝑒𝑖𝑛

2  

and 𝑒𝑜𝑢𝑡  are near 1, which represents suspended solids at the junction node follow mass balance. 

Figure 6 list the calibration results of N6 based on the 22/07/2016, where the TSS output for the 

S20 computed from the model (15) is quite similar with the observed one from simulator using the 

value of 1 for 𝑒1 and 𝑒2. The result confirms that, the suspended solids in the junction node N6 fits 

well mass balance equation with very few deviations at the Badalona pilot. 

  

                                    Figure 6. Junction model calibration for N6 at rain 22/07/2016 

3.3 Optimal Control Application 

In order to demonstrate effectiveness of the proposed quality modelling approaches, quality-based 

optimization approach using MPC is applied. In each iteration, MPC optimizes the defined 

objective function at equation (23) using the proposed quantity and quality equations to produce 

optimal operation strategies for the Badalona pilot. The GAMS optimization library (Rosenthal, 

2013) is used as a solver. 

The quality-based optimization approach has been validated using rain episodes of 25/03/2017, 

22/07/2016, 22/08/2014, 18/06/2016 and a synthetic scenario T10. The calibration results for the 

quality models listed in Table 3 are used. The optimization results in items of CSO and TSS mass 

are compared with the ones produced by Local Control strategies which generate operation actions 

based on a set of predefined rules regarding hydraulic measurements.  

Table 3. Quality models used in RTC application 



 

 

RAIN 

EVENT 

RAIN 

INTENSIT

Y 

C2 C1 𝜶 𝜷 𝜸 𝝉 

25/03/2017 Medium 0.04 0.95  

 

1 

 

 

1 

 

 

1 

 

 

0 

22/07/2016 Small 0.08 0.99 

22/08/2014 Big 0.08 0.90 

18/06/2016 Very big 0.11 0.89 

T10 Strong 0.01 0.99 

 

Figures 7 provides the CSO volume and mass comparisons between Local Control and MPC-

based optimization under different rainfall events. The results confirm that, both CSO volume and 

mass pollution released to the environment are reduced after considering a MPC-based 

optimization with quality models. For some rain scenarios, more than 20% CSO reduction and 

more than 12% TSS pollution are reduced, which represent a significant improvement for the 

receiving water and environment. Furthermore, considering the optimization results are affected a 

lot by the network topology as well as the rainfall intensity, a more noticeable difference between 

the volume-based strategies and the quality-based one might be observed in scenarios with very 

different quality indicator values at the tank inlets. Similarly, in network configurations with more 

detention tanks and/or actuators, more degrees of optimization and large improvement potentials 

exist for quality-based MPC optimization.  

        

       

                                 Figure 7. Control results comparison in terms of CSO and TSS MASS (m³)  

To confirm that add quality models into optimization can still meet real-time requirements, Table 

4 summarizes computation loads for both the controller and simulator: 

                                    Table 4. Optimizer and simulator configuration                                  
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It is clear that the mean computation time of one step optimization is much smaller than one step 

simulation, which make real-time optimization possible, also in a large scale network.   

4. Conclusion and discussion 

This work proposed a control-oriented quality modelling approach for TSS in SN, which open up 

new potential for optimization of pollution load from CSO in large scale network in real time. The 

calibration and validation results in the Badalona SN confirms applicable of the models in a 

realistic and accurate way from all the available sources (more than 80% NSE and less than 0.1% 

NRMSE). The sensitivity analyze for the TSS model in a sewer shows that the TSS input coefficient 

affects more than the coefficient of the previous TSS output. The peak time with higher intensity 

rainfall period is more likely to be affected with more inaccuracy. This peak time cannot be 

managed from the sediment transport formulas because it is related to the hydraulic behavior 

(where a peak time difference also exists). To improve the models, much more real data to 

accurately calibrate TSS behavior is needed. Moreover, online sensors are also advised to properly 

capture the TSS evolution in wet weather.  

A quality-based MPC optimization is also presented after considering both the quality and 

hydraulic models. Comparing with the current local control, in some rain scenarios, the quality-

based MPC optimization approach can achieve more than 20% reduction in CSO volume and more 

than 12% TSS reduction in released pollution. The potential improvement of the optimization 

approach could be different in different pilots. The considered quality indicators, the available 

measurements, magnitudes of CSOs, intensity of rainfalls, as well as the physical topology of the 

network can all affect the application effectiveness. To get better optimization results, more 

integration with other catchments and treatment plants in the watershed from a global perspective, 

or even with the supply network should provide more possibilities and potentials.  
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