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Abstract

Collocation methods for optimal control commonly assume that the system dynamics is ex-
pressed as a first order ODE of the form ẋ = f(x,u, t), where x is the state and u the control
vector. However, in many cases, the dynamics involve the second order derivatives of the co-
ordinates: q̈ = g(q, q̇,u, t), so that, to preserve the first order form, the usual procedure is to
introduce one velocity variable for each coordinate and define the state as x = [q,v]T, where
q and v are treated as independent variables. As a consequence, the resulting trajectories do
not fulfill the mandatory relationship v = dq/dt except at the collocation points, where it is
explicitly imposed.
We propose a formulation for Trapezoidal and Hermite-Simpson collocation methods adapted
to deal directly with second order dynamics without the need to introduce v as independent
from q, and granting the consistency of the trajectories for q and v.
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1 Introduction

Direct methods for the numerical solution of trajectory optimization problems involve the tran-
scription of a continuous-domain optimal control problem into a finite-dimensional nonlinear
programming (NLP) problem [2]. The transcription process consists in partitioning the time
history of the control and state variables into N intervals delimited by N + 1 knot points
ti, i = 0 . . . N . The system dynamics is introduced by imposing the dynamic equations at a
set of M collocation points, which may coincide, or not, with the set of knot points. The cost
function is approximated with a function of the values taken by the variables at the collocation
points, and the NLP problem is then formulated using them. Once the NLP problem is solved
for the discrete set of points, a continuous solution is built with an interpolating function that
fulfills the system dynamics at all collocation points.

The general formulation of most collocations methods assumes that the system dynamics is
expressed as a first order ODE of the form [4]:

dx

dt
= f(x,u, t), (1)

where x ∈ <n is the state vector and u ∈ <m is the vector of control variables. However, in
Robotics, as in Mechanics in general, the evolution of the system is commonly governed by a
second order ODE for the generalized coordinates qi and their first temporal derivatives q̇i ≡ vi:

d2q

dt2
= g(q,v,u, t), (2)

To cast the second order ODE (2) into the first order form (1), the state vector is defined
by stacking the generalized coordinates and their temporal derivatives: x = [q,v]T, and the
dynamic equation becomes:

dx

dt
=

d

dt

[
q
v

]
=

[
v

g(q,v,u, t)

]
. (3)

Formulated in this way, the number of variables of the NLP problem is increased from
(n + m)M to (2n + m)M [3]. In addition, a consistency issue is raised: since v is treated as a
variable independent of q, their functional relationship is only granted at the collocation points,
where it is explicitly imposed. When the temporal evolution of both v and q are modeled with
polynomials of the same degree, the necessary condition

v =
dq

dt
(4)

is not preserved in general. Not fulfilling (4) prevents the possibility to reach a correct solution,
since, even if the control function u(t) produces the expected trajectory for v(t), its integration
will not coincide with the function obtained for q(t), i.e., the state trajectory x(t) is inconsistent.
In this work, we present modified versions of the trapezoidal and Hermite-Simpson collocation
methods specifically addressed to second order systems, with the dynamics given by (2). The
new formulation grants that condition (4) is fulfilled all along the trajectory.

2 First Order Dynamics Equations: Trapezoidal and Hermite-Simpson
Collocation

Two of the most widely used collocation methods are Trapezoidal and Hermite-Simpson. Before
developing the second order version of these methods, we briefly recall how they approximate
the dynamics equations and build the interpolating polynomials for the state.
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2.1 Trapezoidal collocation

In trapezoidal collocation, the state trajectories are approximated by quadratic polynomials. If,
for each interval [tk, tk+1], we define τ = t− tk, we can write the polynomial approximation for
a component x of the state and its temporal derivative as:

x(τ) = aτ2 + bτ + c (5)

ẋ(τ) = 2aτ + b. (6)

The polynomial coefficients can be expressed it terms of three parameters: the value of the
polynomial at the initial time of the interval and the values of its derivative at the initial and
final times:

x(0) = xk

ẋ(0) = ẋk

ẋ(h) = ẋk+1,

where h = tk+1 − tk. Using (5) and (6), and solving for a, b, c, we get

a =
ẋk+1 − ẋk

2h
b = ẋk

c = xk.

Substituting in (5) and taking τ = h, we can express the value of x at the end of the interval as:

x(h) = xk +
h

2
(ẋk+1 + ẋk). (7)

The collocation constraints impose that the dynamics equation (1) must hold at the knot
points, so that

ẋk = f(xk,uk, tk) ≡ fk
ẋk+1 = f(xk+1,uk+1, tk+1) ≡ fk+1,

which, together with the continuity condition xk+1 = x(h), results in the dynamics constraint

xk+1 = xk +
h

2
(fk+1 + fk), (8)

which is the well known trapezoidal rule [1]. The interpolation formula (5) becomes

x(τ) = xk + fkτ +
τ2

2h
(fk+1 − fk). (9)

Continuity between polynomials of consecutive intervals is granted until the first derivative
since, by construction, the value of ẋk+1 = fk+1 imposed at the end of interval k is taken as the
initial value for interval k + 1.

2.2 Hermite-Simpson collocation

In Hermite-Simpson collocation, the state trajectories are approximated by cubic polynomials:

x(τ) = aτ3 + bτ2 + cτ + d, (10)

ẋ(τ) = 3aτ2 + 2bτ + c. (11)
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In this case, the polynomial coefficients can be expressed in terms of four parameters: the values
of the polynomial and its derivative at the initial and final times of the interval:

x(0) = xk

x(h) = xk+1

ẋ(0) = ẋk

ẋ(h) = ẋk+1.

Introducing them in (10), (11), and solving for a, b, c, d, we get

a =
ẋk+1 + ẋk

h2
− 2(xk+1 − xk)

h3

b = − ẋk+1 + 2ẋk
h

+
3(xk+1 − xk)

h2

c = ẋk

d = xk.

In order to determine a fourth degree polynomial, four conditions have to be imposed, and
the Hermite-Simpson collocation method makes this by fixing its value at the beginning of
the interval and imposing the dynamics constraints at the two bounding knot points and the
midpoint between them. The value of the polynomial and its derivative at the interval midpoint
can be expressed in terms of the four parameters used above, that is, substituting a, b, c, d in
(10) and (11), and taking τ = h/2, we get, respectively:

xc =
1

2
(xk + xk+1) +

h

8
(ẋk − ẋk+1) (12)

ẋc =
3

2h
(xk+1 − xk)− 1

4
(ẋk + ẋk+1), (13)

where xc = x(h/2).
The collocation constraints are introduced by imposing the fulfillment of the dynamics equa-

tions (1) at the three points:

ẋk = f(xk,uk, tk) ≡ fk
ẋc = f(xc,uc, tc) ≡ fc

ẋk+1 = f(xk+1,uk+1, tk+1) ≡ fk+1,

so that substituting in equation (13), and isolating xk+1, we obtain the dynamics constraint

xk+1 = xk +
h

6
(fk + 4fc + fk+1), (14)

while the value at the midpoint is obtained from (12):

xc =
1

2
(xk + xk+1) +

h

8
(fk − fk+1).

Finally, the interpolation formula is obtained by substituting (14) into (10):

x(τ) = xk + fkτ −
τ2

2h
(3fk − 4fc + fk+1) +

τ3

3h2
(2fk − 4fc + 2fk+1). (15)

Note that, despite the polynomial approximation into each interval between consecutive knot
points is of third degree, continuity through knots is only imposed on the state trajectory and
its first derivative.
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3 Modified Trapezoidal Collocation for 2nd Order Dynamics

When the dynamics is governed by a second order system of the form

d2q

dt2
= g(q,v,u, t), (16)

applying the same strategy as in the trapezoidal method will consist in imposing constraint (16)
at each knot point. However, since in this case constraints are applied to the second derivative
of the state, when q(t) is a second degree polynomial, its second derivative will be constant,
and we could not impose two different collocation constraints, one at each interval bound. As a
consequence, the state must be approximated by polynomials of degree 3 at least. So, we have

q(τ) = aτ3 + bτ2 + cτ + d (17)

q̇(τ) = 3aτ2 + 2bτ + c (18)

q̈(τ) = 6aτ + 2b. (19)

Since four parameters are required to determine a third degree polynomial, we will need a
further condition in addition to the initial value and the two second derivatives at the interval
bounds. Note that for a cubic polynomial, no more than two independent conditions can be
fulfilled by its second derivative, so that imposing the dynamics at the midpoint of the interval
as in the Hermite-Simpson method is not possible here. The obvious choice is clearly the value
of the first derivative vk at the initial point. Thus we will use as parameters:

q(0) = qk

q̇(0) = vk

q̈(0) = q̈k

q̈(h) = q̈k+1.

Substituting in (17), (18), (19) and solving for the coefficients a, b, c, d, we obtain the following
expression for the interpolation polynomial (17):

q(τ) = qk + vkτ + q̈k
τ2

2
+
τ3

6h
(q̈k+1 − q̈k). (20)

Taking τ = h we get:

q(h) = qk + vkh+
h2

6
(q̈k+1 + 2q̈k). (21)

Imposing the dynamics equation (2) so that

q̈k = g(qk,vk,uk, tk) ≡ gk (22)

q̈k+1 = g(qk+1,vk+1,uk+1, tk+1) ≡ gk+1, (23)

and the continuity condition q(h) = qk+1, we obtain the dynamics constraint

qk+1 = qk + vkh+
h2

6
(gk+1 + 2gk). (24)

Similarly, substituting the obtained coefficients a, b, c in (18) and taking τ = h, we get

q̇(h) = vk +
h

2
(q̈k+1 + q̈k), (25)
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so that using q̇(h) = vk+1 and the dynamics constraints (22)-(23), we obtain

vk+1 = vk +
h

2
(gk+1 + gk), (26)

which is, in fact, the trapezoidal rule, that in this case is only valid for the velocity, but not for
the state itself, that is given by (24). Finally, the interpolation function (20) is written as

q(τ) = qk + vkτ +
τ2

2
gk +

τ3

6h
(gk+1 − gk). (27)

It is worth noting that, here, the continuity between polynomials at knot points is of second
order, since the collocation constraints impose the coincidence of the second derivative of q(t).

4 Modified Hermite-Simpson Collocation for 2nd Order Dynamics

Our purpose here is to impose the second order dynamics on the two knots and the midpoint of
each interval, in similarity with the conventional Hermite-Simpson method. Clearly, if we want
to impose three conditions to the second derivative of a polynomial, it must be of degree 2 at
least, what implies that the degree of the polynomials approximating the configuration must be
at least 4. Thus, we propose to approximate q(τ), and its derivatives, by

q(τ) = aτ4 + bτ3 + cτ2 + dτ + e (28)

q̇(τ) = 4aτ3 + 3bτ2 + 2cτ + d (29)

q̈(τ) = 12aτ2 + 6bτ + 2c. (30)

Since 5 parameters are needed to determine the 5 coefficients of the polynomial, we will use,
in addition to the three accelerations q̈k, q̈c, q̈k+1, the values of the state qk and its derivative vk
at the initial point:

q(0) = qk

q̇(0) = vk

q̈(0) = q̈k

q̈(h/2) = q̈c

q̈(h) = q̈k+1.

Solving for the coefficients, we obtain the following expression for the interpolating polynomial:

q(τ) = qk + vkτ +
τ2

2
q̈k +

τ3

6h
(−3q̈k + 4q̈c − q̈k+1) +

τ4

6h2
(q̈k − 2q̈c + q̈k+1). (31)

Evaluating this expression for τ = h and τ = h/2 we get, respectively:

qk+1 = qk + vkh+
h2

6
(q̈k + 2q̈c) (32)

qc = qk +
h

2
vk +

h2

96
(7q̈k + 6q̈c − q̈k+1), (33)

and imposing (2), so that

q̈k = g(qk,vk,uk, tk) ≡ gk
q̈c = g(qc,vc,uc, tc) ≡ gc

q̈k+1 = g(qk+1,vk+1,uk+1, tk+1) ≡ gk+1,
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we obtain the dynamics constraint:

qk+1 = qk + vkh+
h2

6
(gk + 2gc), (34)

with

qc = qk +
h

2
vk +

h2

96
(7gk + 6gc − gk+1). (35)

The expression for vk+1 = q̇(h) is obtained by substituting τ = h in (29):

vk+1 = vk +
h

6
(gk + 4gc + gk+1), (36)

which we can recognize as the Simpson quadrature formula. An expression for vc = q̇(h/2) is
obtained by substituting τ = h/2 in (29):

vc = vk +
h

24
(5gk + 8gc − gk+1), (37)

however, since qc and vc are to be used in the evaluation of gc, we want to avoid expressing
them in terms of gc. For this, we isolate gc from (36) and substitute the result in (35) and (37),
respectively, to yield:

qc = qk +
h

32
(13vk + 3vk+1) +

h2

192
(11gk − 5gk+1) (38)

vc =
1

2
(vk + vk+1) +

h

8
(gk − gk+1). (39)

Written in this form, they can be used to formulate the problem in compressed form, i.e.,
eliminating the need to introduce variables qc, vc, gc. The interpolating polynomial (31) becomes:

q(τ) = qk + vkτ +
τ2

2
gk +

τ3

6h
(−3gk + 4gc − gk+1) +

τ4

6h2
(gk − 2gc + gk+1). (40)

In this case, the continuity across knot points is also of second order due to the coincidence
of the second derivative imposed by the collocation constraints.

5 Test Cases

The performance of the proposed 2nd order methods are next evaluated and compared with the
corresponding usual 1st order ones. For the ease of comparison, two examples proposed in [2]
will be used, namely, the block-move and the cart-pole swing-up problems.

5.1 Block-Move problem

This problem consists in finding how to move a block of mass m between two points in a
horizontal plane without friction, starting and finishing at rest, in a fixed amount of time T , so
as to minimize the cost function defined as the integral of control effort squared:

J =

∫ T

0
u2(τ)dτ, (41)

where u(t) is the force applied to the block. The analytic solution for this problem is easily
derived and can be used to compare the results with the true optimal trajectory, which, for a
total time of 1s and mass m = 1, is given by:

u(t) = 6− 12t

x(t) = 3t2 − 2t3,
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Figure 1: Block-Move trajectories. Top row: regular trapezoidal collocation.
Bottom row: modified trapezoidal. Dashed red line shows the exact solution.

with a total cost for the trajectory J = 12.0. Comparing the results obtained by the 1st and
2nd order trapezoidal methods with 10 collocation points, we get an improvement in the total
cost from 12.569 for the first to 12.281 for the second, so that the difference with the optimal
value is reduced to the half. Figure 1 shows the trajectories obtained by each method comparing
them with the exact solution, evidencing the improved accuracy of the 2nd order method.

For this specific problem, the first order Hermite-Simpson method already provides the exact
optimal solution, since it approximates the control trajectory u(t) linearly and the trajectory
x(t) with a cubic spline, which are the right degrees for them. Thus, the comparison between
the results of the original and modified Hermite-Simpson methods shows no difference between
them.

5.2 Cart-Pole Swing-Up problem

The cart-pole system comprises a cart that travels along a horizontal track and a pendulum
that hangs freely from the cart. A motor drives the cart forward and backward along the track.
Starting with the pendulum hanging below the cart at rest at a given position, the goal is to
reach a final configuration in a certain amount of time T with the pendulum stabilized at a
point of inverted balance and the cart staying at rest at a distance d from the initial position,
minimizing the cost function J given by (41).

We will compare the performance of the 1st and 2nd order Hermite-Simpson collocation
methods on this problem. The dynamic equations and model parameters are taken from [2].
The solution presented here has a cost J = 57.939 for the 1st order method and J = 57.925 for
the 2nd order one, and corresponds to a different local minimum than that given in [2], whose
cost is a little worst: J = 58.805. Figure 2 shows the trajectories obtained in both approaches,
which are practically identical except for minor deviations visible near the extrema of the control
trajectory u(t).
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Figure 2: Control and state trajectories for Cart-Pole Swing-Up problem.
Blue: 1st order Hermite-Simpson. Red: 2nd order Hermite-Simpson.

In this case, the optimal solution is not available, so that, to make a comparison, we will
compute the dynamic error produced by each method. For a second order system governed by (2)
we define second order dynamic error for component i of the state as ε(t) = q̈i(t)− gi(q,v,u, t),
which is more relevant than the first order dynamic errors used in [2]. Figure 3 compares
the second order dynamic errors of both approaches. It can be appreciated that the error
is significantly smaller for the 2nd order method. Also note that the dynamic error at the
collocation points is exactly 0, something that is not satisfied by the 1st order method. This is
due to the fact that the 1st order method does not grant the consistency between the generalized
coordinates and their derivatives (eq. (4)).

Figure 3: Second order dynamic error for Cart-Pole Swing-Up problem.

The same results are presented in Figure 4, showing the integration of the absolute value of
the second order dynamic error along each interval.



Section 6 Conclusions 9

Figure 4: Integrated absolute second order dynamic error for Cart-Pole
Swing-Up problem. Boxes: 1st order method. Asterisks: 2nd order method.

6 Conclusions

Trapezoidal and Hermite-Simpson collocation methods are very popular in the robotics commu-
nity. However, they disregard the fact that the dynamics are most often second order. Directly
imposing the second order constraints at the same collocation points as the original algorithms
requires increasing the degree of the polynomials for coordinates approximation while keeping
the same degree for velocity and actuation approximations. The proposed second order al-
gorithms grant the concordance between the coordinates and their velocities not only at the
collocation points, but all along the trajectory.

In the case of second order systems, the first order dynamic errors provided i.e. in [2],
comparing the velocity trajectories with those of the coordinate derivatives, give an incomplete
view of the accuracy of the results. Such dynamic error is eliminated with the methods proposed
in this work. A more relevant performance measure, in this case, is the difference between the
acceleration and the second derivative of the coordinate trajectories, since this is, in fact, what
the optimization problem tries to minimize. Test cases comparing the second order methods
with the first order ones show the improvement obtained in the second order dynamic error as
well as in the total cost of the resulting trajectories.
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