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Abstract: This paper presents a methodology for the localization of leaks in water distribution
networks (WDNs) by means of the combination of a deep learning (DL) approach and a
graph-based clustering technique. A data set for all possible leak locations is generated from
pressure measurements and utilized to feed an image encoding process based on the Gramian
Angular Field (GAF) technique, hence producing an equivalent data set of images. The pressure
measurements are generated through the WDN simulation engine EPANET. To accomplish the
training stage, the network is iteratively segmented into clusters using the Graph Agglomerative
Clustering (GAC) method, and a deep learning neural network (DLNN) is trained to correctly
indicate the leak location at one of the created clusters. The achieved neural networks tree can
be traversed through its different branches depending on each classification result, until the final
cluster is reached. Consequently, leaks can be located with a success rate that grows inversely
to the size of the clusters. Due to the dependency of the latter on the number of clusters,
which can be settled, the presented method is adaptable to the considered network features,
e.g. dimensions, sensors placement and accuracy; and requisites, like the localization area size.

Keywords: leak localization, WDN, deep learning, graph-based clustering, neural networks

1. INTRODUCTION

Leak detection and localization in water distribution net-
works (WDNs) is of great interest for water distribution
companies because leaks in WDNs are estimated to ac-
count up to 30 % of the total amount of distributed water
(Puust et al., 2010). This is one of the reasons why leak
detection and localization in WDNs is a very active area of
research, see Chan et al. (2018) for a recent and extensive
review.

Model-based leak localization methods that use hydraulic
models can provide a satisfactory efficiency, however some
errors are introduced due to the presence of model errors as
nodal demand uncertainty and noise in the measurements
(Cugueró-Escofet et al., 2015; Blesa and Pérez, 2018).
They can be taken into account in the design of ma-
chine learning based leak localization methods (Ferrandez-
Gamot et al., 2015). Due to this fact and the growth of
machine learning and data-driven techniques (Goodfellow
et al., 2016), the challenge of achieving a consistent so-
lution to the model-free leak localization problem starts
to be seriously tackled. It may be reformulated as the
design and development of a process that only utilizes the
available information of the water distribution network,
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i.e. measured data of the network dynamical evolution, to
indicate the location of a leak at a certain node, consider-
ing that the detection operation is correctly performed.

Arifin et al. (2018) presents a novel data-driven method
for both leak detection and localization based on the
concept of Kantorovich Distance and using mass flow
rates and pressure measurements. Candelieri et al. (2014)
presents a graph-based methodology that exploits spectral
clustering over a graph whose nodes are the defined
leak scenarios. Soldevila et al. (2019) presents a data-
driven technique that estimates the pressure value at all
the network nodes from the measured ones by means
of the Kriging spatial interpolation method, comparing
leak and leak-free scenarios to find the affected node.
Parellada et al. (2019) extends the previous work, applying
different classifiers to the pressure values obtained after the
interpolation.

In this work, the leak localization problem is attacked as
a classification task from the pattern recognition point of
view. The presented methodology is based on two main
ideas, previously but separately applied to the problem:

• To make use of the power of deep learning (DL)
techniques (Sengupta et al., 2019), applying them
to images generated by encoding the available data.
Deep learning has been already utilized for leak



localization tasks by Zhou et al. (2019) and Javadiha
et al. (2019).
• To divide the leak localization task into a set of simple

classification problems, organizing the resultant clas-
sifiers in a hierarchical way. Graph-based clustering
techniques (Schaeffer, 2007) are exploited to tackle
the network division process.

The main contribution of the presented approach consists
of the ability to regulate the localization area (by means
of the clustering approach settings: size and number of
final clusters) depending on the network characteristics:
topology, sensor placement and precision, etc., adapting
the method performance to the considered leak isolation
problem and, consequently, analysing the localization lim-
itations for data-driven approaches. Therefore, the pro-
posed methodology can be exploited as a complete leak
localization method, as well as a decision-making tool.

2. METHODOLOGY

The design of a learning-based approach for leak localiza-
tion implies that the process must be trained for its later
usage. The general training procedure is represented in
Figure 1.

Fig. 1. Training stage - Workflow scheme

The leak localization method considers N pressure sensors
installed in inner nodes of the WDN, as well as the network
topology.

Pressure values and elevation at the sensorized inner nodes
are collected in a vector X:

X = [x1, x2, . . . , xj , . . . , xN ] (1)

where xj , ∀j = 1, ..., N , is the hydraulic head at node j,
i.e., measured pressure in node j + elevation at this node.

The hydraulic input information consists of instances of
vector X defined in (1):

Xk
i ∈ RN , i = 1, ...,M, k = 1, ..., P (2)

where i defines the time instant and k stands for the leak
scenario (a leak at a concrete node of the network), and
M and P are the total number of time instants and leak
scenarios respectively.

This input information is used to produce the set of sam-
ples for the training stage, composed by images obtained
from an encoding process known as Gramian Angular
Field or GAF, presented in Wang and Oates (2015).

To split and facilitate the complete classification problem,
Graph Agglomerative Clustering (GAC) (Zhang et al.
(2012) and Zhang et al. (2013)) has been applied to
divide each network or subnetwork into two sets of nodes.
The partition would depend on the WDN topological
information provided to the algorithm.

The training process consists of an iterative procedure
between clustering and deep learning neural network
(DLNN) training. A classifier is obtained at each step to
identify the origin of the leak between the two set of nodes
generated from the clustered graph.

The achieved set of neural networks is hierarchically or-
ganized to form a classification tree. Each tested sample
traverses a concrete path until the final cluster is reached,
deciding at each step between two possible branches.

2.1 Data encoding

The GAF technique is utilized as the data encoding tool
for the conversion of each hydraulic head vector Xk

i into
its associated image. Due to its original development for
time-series, its application must be adapted to handle the
mentioned measurements vectors instead.

The commonly limited number of installed sensors at
WDNs (Savić et al., 2009) explains this feature selection. It
delimits the size of the GAF images, and hence reduces the
computational cost and avoids the necessity of gathering
M -dimensional vectors (considering M to be the length of
the time-series data) for the localization of a single leak.

As a preprocessing, every Xk
i vector is rescaled to range

the values between -1 and 1:

x̃kij =

(
xkij −max(Xk

i )
)

+
(
xkij −min(Xk

i )
)

max(Xk
i )−min(Xk

i )
(3)

The data vector X̃k
i can be encoded in polar coordinates

as follows:

φkij = arccos(x̃kij) (4)

rkij =
i

n
(5)

being n a constant factor to regularize the span of the
polar coordinate system.

In this case, the GAF process exploits the angular per-
spective by considering the trigonometric sum/difference
between each pair of sensor values to identify their corre-
lation, obtaining the Gramian Angular Field as:

GAF k
i = [cos(φkij1 + φkij2)] =

(X̃k
i )′ · X̃k

i −
(√

I − (X̃k
i )2
)′
·
√
I − (X̃k

i )2 (6)

where j1 and j2 are two possible values of j and I is the
unit row vector.

Then, the GAF resulting image consists of a matrix whose
x-y component encodes the relation between the pressure
sensors x and y. To achieve the standard format of an



image, the GAF matrices are processed to locate its values
in the range 0-255.

2.2 Clustering

The clustering process is utilized to split the network
(or a previously computed subnetwork) into two new
subnetworks, by means of the topological information of
its associated graph.

The GAC algorithm has been selected to handle this
operation. It is based on three main stages:

(1) The generation of a directed graph from the undi-
rected one given as input.

(2) The utilization of the k-NN technique, described in
Sutton (2012), to generate a set of initial clusters.

(3) The merger of the k-NN produced sets of nodes into
larger clusters based on their affinity, until the desired
number of clusters is reached.

The GAC algorithm employs the weights between nodes
of the graph to decide its splitting into new subgraphs.
Hence, the selection of these weights allows to regulate
the criteria the algorithm employs to produce the new
subnetworks.

To handle the high dependence on the value of the pa-
rameter k, the clustering process for each (sub)network is
embedded in a loop that varies its value in order to obtain
the maximum possible validation accuracy.

2.3 Deep learning

After a (sub)network partition, a different label is assigned
to each one of the resulting clusters, and consequently, to
its member nodes.

Considering a raw data set with M timesteps, N nodes
and P leak scenarios, after the encoding stage, the final
data set would be composed by M · P samples (N × N
GAF matrices/images), i.e.

GAF k
i ∈ RN×N , i = 1, ...,M, k = 1, ..., P (7)

These samples, together with their corresponding labels,
must be divided into training, validation and testing sets.

The structure of the generated DLNN is displayed in
Figure 2.

Fig. 2. DL network structure

The input image layer size is N × N (the depicted input
matrix G is an instance of GAF k

i for a concrete time step
and leak scenario). It is followed by three instances of a
set of layers composed by:

• A convolutional layer (Murphy, 2016), that applies
sliding filters to the input image (regarding the small
number of sensors and hence the low value of N , the
sizes of the sliding filters of the different convolutional
layers have a low upper limit).

• A batch normalization layer (Ioffe and C.Szegedy,
2015) to speed up the training phase, reduce the de-
pendence of the network to the weight initialization,
as well as reduce overfitting.

• A ReLu layer (Agarap, 2018) as non-linear output.

A fully connected (FC) layer with an output layer of size 2
is employed to achieve the binary classification (a softmax
layer (Bishop, 2006) is included to be the output unit
activation function after this FC layer).

The usage of more complex sets of layers does not bring
about an improvement of the classification results, and
hence a straightforward solution was adopted to speed
up the training stage. In the same way, the number of
instances of the presented set of layers is derived from
the experiments performance. The inclusion of a smaller
number of them yields to poorer results, whereas the usage
of extra instances does not enhance the classification.

3. CASE STUDY

To validate the proposed method, a real network has been
utilized as example. It is a District Metering Area (DMA)
that presents 121 nodes and 125 pipes. It is graphically
represented in Figure 3.

Fig. 3. Case study WDN (with sensorized nodes)

3.1 Data encoding in the case study

The GAF method is applied to convert the eight head
values at the sensorized nodes into an 8× 8 image.

Figures 4 and 5 respectively show the location of various
nodes of the network and the GAF images that are
associated to a leak event at each one of them.

On the one hand, most images corresponding to leaks at
close nodes, like 1 and 2 (Figures 5a and 5b respectively),
share a high degree of resemblance. This leads to a rather
difficult distinction between them.



Fig. 4. Case study WDN (with GAF images nodes)

Fig. 5. GAF images associated to different leaks

On the other hand, for the case of most sufficiently distant
nodes, differences between the images become evident,
facilitating the leak location task.

Therefore, the indistinguishability among nodes tends to
become higher once a certain level of proximity is reached.
This fact supports the decision of exploiting a clustering
approach to decrease the classification difficulty.

A group of nodes whose classification becomes a hard prob-
lem would be considered as a unique cluster, whereas sets
of nodes with intra-distinguishability can still be clustered.
In this way, the similarity among images determines the

clustering limit, depending the former on the network and
sensor characteristics.

3.2 Clustering in the case study

The clustering task is tackled by the Graph Agglomerative
Clustering algorithm.

Fig. 6. Clustering - Complete network

Fig. 7. Clustering - First subnet from complete network

Fig. 8. Clustering - Second subnet from complete network

Figure 6 shows the clustering process of the original
network. Concretely, Figure 6a depicts the complete
case study network before the clustering, and Figure 6b
presents the two generated clusters. Figures 7 and 8 display
the analogue clustering process for the two previously
produced subnetworks.

Therefore, this process is carried out iteratively and recur-
sively, as it is applied to the results of previous instances
of the method.

The value of the k parameter of the GAC method for an
actual usage of the localization algorithm, as aforemen-
tioned, is automatically settled depending on the achieved
localization accuracy.

There are various decisions about the clustering process:

• The pipe distance between nodes of the WDN is fed to
the clustering algorithm as the metric that represents
the relation between each pair of nodes, regulating the



division of the nodes into sets. Additional topological
information can be provided to the technique in order
to modify the clustering behaviour.
• The clustering limit needs to be decided considering

the level of indistinguishability among the nodes of
the analysed network, i.e., the number and size of
clusters must depend on the network features and how
they affect the localization accuracy.

3.3 Deep learning in the case study

The MATLAB R© Deep Learning ToolboxTM has been
utilized to deploy the training, validation and testing
stages. Concretely, each DLNN is trained using the fol-
lowing learning settings (see MathWorks (2019) for more
information about the different parameters):

Table 1. DL training settings

Parameter Value

Solver SGDM
Initial learning rate 0.01

Learning rate schedule piecewise
Learning rate dropping period 8
Learning rate dropping factor 0.9
Maximum number of epochs 150

Convolutional filter size
[
bN/2c bN/3c bN/4c

]
Number of filters [8 16 32]

The last two elements of the table are vectors because each
component represent the value of the parameter for one of
the three set of layers forming the DLNN structure.

The data sets are divided into a 75% for training, 15% for
validation and 10% for testing.

The training and clustering stages are integrated into an
iterative process. When a (sub)network is clustered into
two new subnetworks, a DLNN is trained to distinguish
the leak location between these new subnetworks.

To guarantee a sufficiently good performance of the clas-
sifiers (and to settle a proper k parameter, as aforemen-
tioned), the clustering and learning processes of a certain
(sub)network are repeated until a minimum localization
accuracy is reached at the validation phase.

3.4 Results

To test the presented methodology, the necessary hy-
draulic results are obtained using the WDN modelling and
simulation software EPANET 2 (L. A. Rossman, 2000).
One simulation is carried out for each possible scenario,
i.e., producing a leak at each one of the network nodes.
Each simulation comprises 96 hours, with a new measure-
ment every 2 minutes. However, to reduce the training
duration, only a sample per hour is utilized. The leak size
has been fixed to 1 l/s.

From each complete simulation, only 24 hours are em-
ployed for the learning stage (this includes the training,
validation and testing phases). Additional 24 hours are
utilized for further testing of the procedure.

The obtained performance results for different clustering
approaches are presented in Table 2 by means of the
following parameters:

• The number of final clusters (first column).
• The leak localization accuracy (second column), i.e.,

the percentage of leaks that are correctly located at
the corresponding node or cluster.

• The mean of the Average Topological Distance or
ATD (third column) from the leaking node to the
set of nodes belonging to the reached cluster through
the obtained path. For further explanations of this
metric, see Javadiha et al. (2019).

• The mean value of the cluster size (fourth column),
expressed as the number of member nodes.

• The mean value of the cluster size (fifth column), ex-
pressed as the radius of the minimum circle enclosing
all the member nodes.

Table 2. Performance results

Nc Acc(%) ATD Csize (nonodes) Csize (m)

8 100 0 15.00 146.97
16 99.17 0.04 7.50 63.78
30 91.22 0.32 4.00 34.26
57 81.88 0.67 2.11 6.66
87 73.72 0.79 1.38 2.30

The results show that the classification performance gets
deteriorated as the number of clusters increases. The
accuracy is the most affected metric, whereas the ATD do
not greatly augment. The latter implies that, in average,
if the method fails, the actual leaking node is located at
an acceptably reduced number of nodes.

In order to delve into the method behaviour, uniform
random noise is added to the nominal measurements. The
associated results for noise ranges of ±0.01 m and ±0.1 m
are presented in Table 3 and Table 4 respectively.

Table 3. Performance results - ±0.01 m

Nc Acc(%) ATD Csize (nonodes) Csize (m)

8 93.96 0.38 15.00 92.16
16 85.31 0.68 7.50 49.63
30 77.22 1.25 4.00 24.72
46 70.56 1.55 2.61 14.21
80 44.79 2.56 1.50 3.06

Table 4. Performance results - ±0.1 m

Nc Acc(%) ATD Csize (nonodes) Csize (m)

8 73.30 2.94 15.00 82.07
16 57.19 4.52 7.50 55.65
30 48.13 5.36 4.00 24.62
46 38.02 6.44 2.61 13.07
75 24.72 6.65 1.60 3.49

A noise reduction approach is applied to decrease the
uncertainty effects. The complete data set, with a sample
every 2 minutes, is averaged every 30 elements. Hence,
each final value represents the mean over 1 hour.

The degeneration of the performance is caused by the
slight differences between data vectors of different leak
scenarios, which are the learning objective of the deep
learning stage. Therefore, when the sensor noise is as wide
as those differences, the performance is critically worsen.

Analysing these differences for the complete data set
(before averaging), only a 25% of them are superior than
an uncertainty tolerance of ±0.1 m, as well as a 86.7% in
the case of a noise range of ±0.01 m.



These two facts completely explain the cause of the dete-
rioration of the leak localization performance. The areas
comprising indistinguishable nodes become larger due to
the noise level overlapping the differences among nodes in
their behaviour in the presence of a leak.

4. CONCLUSIONS

The first results presented in this work indicate the pro-
cedure potential benefits, allowing to regulate the leak
localization area depending on the network characteristics.
This leads to the design of an ad hoc solution for the leak
localization problem at each concrete WDN, regarding the
data availability, the network topology and the sensors
location and precision. Regarding the latter, a trade-off
between the classification performance and the clustering
suitability must be considered in the presence of sensor
noise ranges that are too large in comparison with the
differences among leak scenarios.

Further steps can be taken to extend and enhance the
methodology.

• The clustering strategy divides the (sub)network into
two clusters iteratively, generating a high number
of final neural networks. It would be interesting
to analyse the effect of increasing the number of
resulting clusters after each division.
• The clustering process might be enhanced providing

additional information, like the sensor locations.
• The generation of a single classifier with as many

outputs as the desired number of clusters can be
explored. The insight about the network limitations,
gained from the hierarchical approach presented in
this work, would accelerate the design process.
• An exhaustive assessment of the methodology suit-

ability and limitations should be addressed: explor-
ing a higher variability of scenarios, delving into the
influence of the experimental settings as well as the
noise levels and comparing the presented approach
with other state-of-the-art techniques.
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(2010). A review of methods for leakage management
in pipe networks. Urban Water Journal, 7(1), 25–45.
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