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ABSTRACT16

Leak detection and localization in water distribution networks (WDNs) is of great significance17

for water utilities. This paper proposes a leak localization method that requires hydraulic measure-18

ments and structural information of the network. It is composed by an image encoding procedure19

and a recursive clustering/learning approach. Image encoding is carried out using Gramian Angular20

Field (GAF) on pressure measurements to obtain images for the learning phase (for all possible21

leak scenarios). The recursive clustering/learning approach divides the considered region of the22

network into two sets of nodes using Graph Agglomerative Clustering (GAC), and trains a deep23
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neural network (DNN) to discern the location of each leak between the two possible clusters,24

using each one of them as inputs to future iterations of the process. The achieved set of DNNs is25

hierarchically organized to generate a classification tree. Actual measurements from a leak event26

occurred in a real network are used to assess the approach, comparing its performance with another27

state-of-the-art technique, and demonstrating the capability of the method to regulate the area of28

localization depending on the depth of the route through the tree.29

INTRODUCTION30

Nowadays water distribution networks (WDNs) are critical infrastructures in cities. Their31

efficient operation can reduce water losses, which are estimated to account for a 30% of the total32

amount of distributed water (Puust et al. 2010), producing high associated operational costs, as33

well as environmental (Xu et al. 2014) and sanitary (LeChevallier et al. 2003) problems. Thus,34

leak detection and localization approaches are widely researched (see (Chan et al. 2018) for an35

extensive review). The different solutions can be classified considering several aspects. One of the36

most important classifications separates model-based approaches from data-driven methodologies.37

Model-based techniques rely on the estimation of hydraulic dynamics using mathematical38

models (Savić et al. 2009). A leak localization approach using pressure sensors, proposed in Pérez39

et al. (2014), compares pressure disturbances caused by a leak with a fault signature matrix obtained40

by means of hydraulic model simulations. This sensitivity analysis is also exploited in Sophocleous41

et al. (2019), included into a two-phase approach that uses search-space reduction to decrease the42

number of decision variables and their range of values, and an optimization strategy that solves the43

detection and localization problem. Another solution, presented in Sanz et al. (2015), compares44

calibrated parameters with historical values to find changes produced by a leak.45

However, while model-based methods can work effectively under ideal conditions, their per-46

formance is limited by the availability and accuracy of the mathematical models (Menapace et al.47

2018). Hydraulic models may contain structural modelling errors, nodal demand uncertainties and48

measurements noise (Blesa and Pérez 2018). Besides, the high computational cost and the uncer-49

tainty in parameter estimation hinder the application of these approaches. These drawbacks are50
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gradually overcome by the appearance of machine learning and data-driven procedures, which are51

based on the mining of knowledge from the available data, gathered by installed sensor networks.52

These methods typically use pressure sensors due to their lower cost in comparison to other53

metering devices. In Han et al. (2018), a two-phase strategy is used to estimate the complete54

state of the WDN from hydraulic heads at certain nodes by means of a Gauss-Newton Belief55

Propagation inference scheme and to decompose the network to locate the leak. A deep-learning56

(DL) framework is proposed in Zhou et al. (2019) to locate bursts using data from pressure sensors.57

More recently, Soldevila et al. (2020) proposed a leak localization method that interpolates the58

pressure at every node of the network from the measured values, comparing leak and leak-free59

scenarios to locate the leak and using Dempster-Shafer reasoning to deal with uncertainty.60

Other methodologies deal with additional types of sensors, mostly flow meters. A data-driven61

method, proposed in Arifin et al. (2018), applies the concept of Kantorovich distance to detect62

and locate leaks from flow rates and pressure measurements. In Navarro et al. (2019), a real time63

leak localization method using Time Delay Neural Networks and flow/pressure measurements is64

presented. A combined artificial neural network method is presented in Pérez-Pérez et al. (2021)65

to perform leak diagnosis in pipes considering pressure and flow data.66

Finally, other works deal with less common types of sensors. In Kang et al. (2017), data from67

accelerometers is used to feed a two-stage approach, based on a convolutional neural network68

(CNN) - support vector machine (SVM) architecture that detect leaks and a graph method based on69

virtual nodes for their location. Besides, Huang et al. (2020) presents an efficient multistage leak70

localization method that uses valve operations (VOs) to divide the demand metering area (DMA)71

into two regions and water balance analysis based on smart demand meters to locate the leaks.72

This paper proposes a leak localization method based on the use of the network topology and73

pressure data from some inner nodes. The pressure information is encoded in the form of images, in74

order to exploit the power of classical image-classification DL techniques. In this way, the degree of75

freedom in the implementation of the method is higher, regarding the available software languages76

and platforms. The localization operation is performed by means of a recursive clustering/learning77
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procedure. The structural information of the WDN is used by the clustering process to split a78

certain (sub)network into two clusters of disjoint nodes, generating a set of binary labels. The79

hydraulic images, together with the produced labels, feed a training process which must produce80

a deep neural network (DNN) that indicates which one of the two generated clusters contains the81

leak. The recursivity affects the clustering stage, since these clusters are provided as inputs of the82

explained process for subsequent iterations.When all the generated DNNs are organized depending83

on the hierarchy of their (sub)network, a classification tree is produced.84

In comparison with previous DL-related works like Javadiha et al. (2019), a smart application85

of the image-encoding process allows to limit the size of the images to be fed to the DL algorithm,86

thus reducing the computational cost. Moreover, Moreover, it is guaranteed that the set of possible87

candidates for the leak location are connected, due to the clustering stage dividing the (sub)network88

into connected components. This feature provides a secondary advantage: if a hydraulic simulator89

is not available to obtain the necessary pressure data for the training phase (hence using the strategy90

as a mixed model-based/data-driven approach), leak experiments can be performed over certain91

points of the real network after defining a set of subnetworks that will be the targets of the DNN92

classification tree.93

Additionally, the hierarchical structure of this classification tree allows to tackle one of the94

main problems of learning-based leak localization methods: the similar effect of neighbouring95

leaks in the hydraulic behaviour of the WDN. When this similitude affects a group of nodes,96

it may become even impossible to discern the origin of the leak among them. The proposed97

recursive clustering/learning approach handles this behaviour by retrieving information about the98

classification limitations (directly related to the leaks resemblance) from the training performance99

results at each level of the classification tree. Thus, the hierarchically organized DNNs of the trained100

tree are applied to new samples if and only if the training accuracy was high enough. In this way,101

an ad hoc solution for the studied WDN would be obtained, as it is adaptable to its characteristics102

and limitations from the leak localization point of view. This fact demonstrates the qualitative103

improvement at the leak localization solution that the proposed method offers in comparison with104
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strategies that lack this flexibility and hence provide unreliable solutions if the sensors amount105

and/or precision are not appropriate.106

Furthermore, some of the implemented techniques are adapted from their original design to107

efficiently and effectively tackle their specific tasks, hence implying novelty in their exploitation.108

METHODOLOGY109

The proposed approach requires considering a set of assumptions, that should be fulfilled in110

order to proceed with the method application:111

• Pressure sensors are installed in a set of inner nodes. Besides, topological information about112

the network must be available, i.e., the junctions connectivity and the pipes length.113

• Records of pressure measurements are available for all possible leak cases. Since this114

requirementmaynot be practical, these records could be obtained using a hydraulic simulator115

and/or performing artificial leak experiments over a set of locations of the network. However,116

this records are only needed at the off-line training stage.117

• Due to the previous requirement, only single-leak scenarios are considered. The analysis118

of multi-leak episodes would require data about every combination of leaks. Besides, the119

leaks are supposed to appear at the network nodes, as usually considered in the literature120

(Blesa and Pérez 2018; Sophocleous et al. 2019).121

• The leak detection process is handled by an externalmethod so that the proposed localization122

technique is applied after a detection event occurs. A typical approach to detect the presence123

of leaks consists of tracking changes in the night consumptions (Puust et al. 2010).124

The following subsections describe the details of the methodology components and then the125

general procedure thereof.126

Hydraulic Data Encoding127

The installation of pressure sensors allows to collect hydraulic information of the network state.128

These measurements are converted into hydraulic heads by adding the elevation of each junction,129
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as these values are important to determine the availability of water service. The hydraulic heads130

are stored into data vectors (with a component for each sensor) that can be gathered at each time131

interval, considering the sampling time of the measuring devices.132

Besides, as mentioned above, information about the widest possible range of leak scenarios is133

required, either from a hydraulic simulator or from artificial leak experiments at the real network.134

Concretely, considering the importance of the size of a leak in its effect on the WDN behaviour,135

the strategy that must be followed to handle different leak sizes must be adapted to the hydraulic136

information source:137

• On the one hand, if a hydraulic simulator is available, different leak scenarios can be138

derived considering an estimated leak rate value, which can be obtained from an external139

leak detection method, as most of these approaches handle the estimation of the leak size.140

• On the other hand, proper artificial leak experiments could be performed over the realWDN,141

considering that water utilities are usually interested in a concrete range of leak sizes that142

depends on the operational characteristics of their network.143

The achieved hydraulic measurements can be arranged in a multidimensional matrix H that144

stores the gathered data vectors: the value ℎ𝑙
𝑖 𝑗
would represent the hydraulic head at time instant145

𝑖 of sensor 𝑗 at leak scenario 𝑙, i.e., the leak is located at node 𝑙. The total number of time steps,146

sensors and possible leak scenarios will be referred to as 𝑀 , 𝑁 and 𝑃 respectively. To highlight147

the time dependency, the notation ℎ𝑙
𝑖 𝑗
is henceforth substituted by ℎ𝑙

𝑗
(𝑖). Thus, a single data vector148

from the multidimensional matrix H can be referred to as:149

h𝑙 (𝑖) = [ℎ𝑙1(𝑖), ℎ
𝑙
2(𝑖), . . . , ℎ

𝑙
𝑗 (𝑖), . . . , ℎ𝑙𝑁 (𝑖)] (1)150

where each vector h𝑙 (𝑖) corresponds to a collection of the hydraulic heads of the 𝑁 sensors for time151

instant 𝑖 and leak scenario 𝑙.152

The purpose of the data encoding process consists of converting the dataset H composed by153

𝑀 · 𝑃 vectors h𝑙 (𝑖) ∈ R𝑁 into a image set L comprised by 𝑀 · 𝑃 images L𝑙 (𝑖) ∈ R𝑁×𝑁 .154
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The application of this process, despite the increase in the required memory space due to the155

use of images, is justified by two main advantages:156

1. In this way, the training stage can be tackled by means of standard DL techniques for image157

classification, and hence a wide variety of tools are available for this task.158

2. This procedure is handled by the Gramian Angular Field (GAF) method, presented in159

Wang and Oates (2015) (concretely, the Gramian Summation Angular Field approach is160

considered). It not only converts vectors into images, but also extracts correlations among161

the components of the vector, enhancing the information provided to the learning stage.162

However, the GAF technique has been adjusted to fulfil the requirements of a leak localization163

approach: the novelty of its application lies in the selection of the vectors that are converted into164

images. Despite its original design for the imaging of time-series, for this work, GAF is applied to165

the hydraulic data vectors h𝑙 (𝑖). This is justified by the following key points:166

• A small number of measuring devices is available at most of the WDNs (Savić et al.167

2009). The reduced length 𝑁 of the hydraulic information vectors h𝑙 (𝑖) implies a low168

dimensionality of the generated images, greatly diminishing the computational cost of the169

learning phase. Thus, the major drawback of the original usage of GAF is removed and the170

application of post-processing techniques to reduce the image size is not required.171

• The proposed selection of data vectors h𝑙 (𝑖) entails the training of the different DNNs with172

a wide variety of time instants, hence generalizing the neural network learning by inducing173

an independence of dynamical variables like the nodal demands.174

• Besides, considering the opposite situation, the selection of time-series as the data vectors175

for the imaging process (that is, the vectors h𝑙
𝑗 of H), would imply some drawbacks:176

1. The selection of a suitable time window 𝑇 < 𝑀 (to split the complete time-series177

into a set of time slots) would require analysing the length of the smallest set of time178

instants whose information is rich enough to explain the leak location.179

7



2. The collection of 𝑇-dimensional time-series would be required to feed the leak180

localization algorithm. This implies the existence of a minimum necessary time181

lapse to achieve a single localization.182

GAF exploits the angular perspective of the polar-encoded hydraulic information. Thus, each183

input vector is rescaled to a range of values between -1 and 1 to fit the image of the cosine function.184

The vector h𝑙 (𝑖) is processed as follows:185

ℎ̃𝑙𝑗 (𝑖) =
2ℎ𝑙

𝑗
(𝑖) −

(
𝑚𝑎𝑥(h𝑙 (𝑖)) + 𝑚𝑖𝑛(h𝑙 (𝑖))

)
𝑚𝑎𝑥(h𝑙 (𝑖)) − 𝑚𝑖𝑛(h𝑙 (𝑖))

(2)

𝜙𝑙𝑗 (𝑖) = 𝑎𝑟𝑐𝑐𝑜𝑠( ℎ̃𝑙𝑗 (𝑖)) (3)

By considering the trigonometric sum between each pair of polar-encoded head values, the186

associated GAF image is generated:187

L𝑙 (𝑖) =
[
𝑐𝑜𝑠

(
𝜙𝑙𝑎 (𝑖) + 𝜙𝑙𝑏 (𝑖)

) ]
=

(
h̃𝑙 (𝑖)

)′ · h̃𝑙 (𝑖) −
(√︃

1𝑁 − (h̃𝑙 (𝑖))2
)′

·
√︃

1𝑁 − (h̃𝑙 (𝑖))2 (4)

where 𝑎 and 𝑏 are possible values of 𝑗 and 1𝑁 is the unit row vector of length 𝑁 .188

The resulting image L𝑙 (𝑖) is a 𝑁 × 𝑁 matrix whose 𝑎 − 𝑏 component encodes the relation189

between the heads at the sensorized nodes 𝑎 and 𝑏. Each L𝑙 (𝑖) is processed to scale its values in190

the range 0-255 to use the standard format of an image, achieving the rescaled dataset L.191

Recursive Clustering/Learning192

Once the image set L has been generated, the recursive clustering/learning stage uses this193

information, as well as the WDN topology, to produce the previously mentioned classification tree.194
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Clustering stage195

In order to manage the topology of a network, let us model its structure by means of a graph196

represented as G= (V, E). Vstands for the set of nodes/junctions and E is the set of edges/pipes.197

A node is represented as 𝑣𝑥 ∈ Vwhile 𝑒𝑥𝑦 = (𝑣𝑥 , 𝑣𝑦) ∈ E denotes an edge connecting 𝑣𝑥 and198

𝑣𝑦. Nodes from V are said to be adjacent if they are connected by edges in E. Each edge 𝑒𝑥𝑦 is199

associated to a weight 𝑤𝑥𝑦, and hence a weighted adjacency matrix𝑊 ∈ R𝑁×𝑁 can be constructed:200

𝑤𝑖 𝑗 =


𝑐𝑖 𝑗 , if 𝑒𝑖 𝑗 ∈ E

0, otherwise
(5)201

where 𝑐𝑖 𝑗 represents the length of the pipe connecting junctions 𝑣𝑖 and 𝑣 𝑗 .202

An extended version of 𝑊 that stores the relation among all the nodes in the network can be203

derived: a non-adjacent pair of nodes, i.e., 𝑒𝑥𝑦 = (𝑣𝑥 , 𝑣𝑦) ∉ E, is given an estimated weight �̂�𝑥𝑦,204

computed as the sum of the weights of the edges composing the shortest path (see Festa (2006) for205

an extensive review about algorithms for its computation) from 𝑣𝑥 to 𝑣𝑦, and this translates to the206

sum of the lengths of the pipes in this shortest path. Thus, it can be regarded as a pairwise distance207

matrix, referred to as Ŵ ∈ R𝑁×𝑁 .208

The structural information stored in Ŵ is exploited by the Graph Agglomerative Clustering209

(GAC) method, developed in Zhang et al. (2013) to segment the nodes of a graph into clusters.210

Basically, the GAC approach performs an operation composed of three main phases:211

1. A 𝑘-nearest-neighbours (𝑘-NN) graph (see the introduction in Wang et al. (2012) for a212

formal definition) is generated from the provided pairwise distance matrix Ŵ by means of213

the computation of an asymmetric weighted adjacency matrix.214

2. A set of small clusters is computed considering the weakly connected components (Pem-215

maraju and Skiena 2003) of the 𝑘-NN graph with a low neighbourhood size 𝑘 .216

3. Those clusters are iteratively merged into larger ones until the settled number of clusters is217

reached, selecting the two clusters with the highest affinity at each iteration.218
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In this work, graph average linkage (Sokal and Michener 1958) is chosen as the agglomerative219

clustering algorithm that handles the affinity comparison. It uses the edge weights of the 𝑘-NN220

graph as the similarity metric, averaging the values between clusters.221

Once the clustering procedure is performed, two disjoint sets of nodes are obtained, i.e.,Z1 ⊆ V222

and Z2 ⊆ V holding that Z1 ∩ Z2 = ∅ and Z1 ∪ Z2 = V. Assigning a different label to each223

subset, a label or target vector t ∈ R𝑁 can be derived:224

𝑡𝑥 =


1, if 𝑣𝑥 ∈ Z1

2, if 𝑣𝑥 ∈ Z2

∀𝑥 = 1, ..., 𝑁 (6)225

The GAC process, as explained for graph G= (V, E) (corresponding to the complete WDN),226

is also applicable to graph GZ = (Z, EZ) (associated to a certain subset of nodes Z), hence227

allowing the recursiveness of the clustering strategy. Similarly, the pairwise distance matrix and228

the targets vector would be �̂�Z ∈ R|Z|×|Z| and tZ ∈ R|Z| respectively.229

Several aspects about the implementation of the clustering strategy must highlighted due to230

their importance with regard to the requirements of the leak localization method:231

• Each clustering operation produces two clusters due to the binary classification approach.232

• The pairwise distance matrix Ŵ associates a higher cost to distance nodes than to close233

nodes.234

• The value of parameter 𝑘 directly influences the generation of the required 𝑘-NN graph by235

setting the size of the considered neighbourhoods. For each clustering operation, depending236

on the cardinality |Z| of the node set of graph GZ, it is computed as follows:237

𝑘Z = 𝑟𝑎𝑛𝑑𝑖
(
|Z| − 𝑜

)
+ 𝑜 − 1 (7)238

where 𝑟𝑎𝑛𝑑𝑖(𝑋) is a function generating a pseudo random integer from 1 to 𝑋 , and 𝑜 is an239

offset, which must be set for the studied network, in order to discard possible values that240

are too close to 1 and 𝑋 .241
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Learning stage242

The above-described procedure provides the last ingredient for the learning phase. On the one243

hand, the complete dataset of images L, composed of 𝑀 · 𝑃 𝑁 × 𝑁 samples, is obtained from244

the image encoding process. However, only 𝑀 · |Z| images would be applicable if considering an245

arbitrary iteration of the recursive clustering/learning approach that operates over GZ. Furthermore,246

considering that only 𝑀𝑡𝑟 time instants out of the 𝑀 available ones are used for training purposes,247

the final number of training images corresponds to 𝑀𝑡𝑟 · |Z|.248

On the other hand, a vector of labels tZ was obtained from the clustering strategy. It must be249

repeated 𝑀𝑡𝑟 times to produce t𝑒𝑥𝑡
Z

∈ R𝑀𝑡𝑟 ·|Z|, which matches the length of the samples set.250

Apart from the described training target set, the validation and testing sets must be generated.251

Whereas the training set is employed during the learning phase to update the DNN parameters,252

the validation set is used periodically in the same phase to assess the DNN accuracy. Finally, the253

testing set is employed to evaluate the final performance of the DNN, once trained. Their lengths254

would be 𝑀𝑣𝑎𝑙 · |Z| and 𝑀𝑡𝑒𝑠𝑡 · |Z| respectively, with 𝑀𝑣𝑎𝑙 , 𝑀𝑡𝑒𝑠𝑡 < 𝑀 . These sets are used to255

train, validate and test DNNs as shown in Fig. 1.256

The procedure is designed to be complete enough to extract features from the images and to use257

them to learn how to classify those images, as well as simple enough to reduce the computational258

cost of the training process. Additionally, the design is conceived to be general enough to be259

applicable to different networks, as the only configuration parameter that is related to the studied260

WDN is the number of sensors. The DL structure is composed by a set of three layers, associated261

to different roles during the learning process, namely:262

1. Convolutional layer (C in Fig. 1): It applies sliding convolutional filters to its input,263

extracting key features that allow to assign a label to the analysed image (Murphy 2016).264

2. Batch normalization layer (BN in Fig. 1): It normalizes its inputs (outputs of the con-265

volutional layer) over each input channel (there is one channel per filter in the associated266

convolution) and over a concrete mini-batch, i.e., the set of samples processed before updat-267

ing themodel parameters. This technique speeds up the training and reduces the dependence268
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on the initialization of the DNN. Besides, it adds a regularization effect due to the partition269

of the dataset in mini-batches and the associated parameter update only occurring after a270

complete mini-batch is analysed (Ioffe and Szegedy 2015).271

3. ReLu layer: The ReLu layer applies a non-linear activation function to its inputs. It consists272

of a threshold operation, setting to zero any negative value (Agarap 2018).273

After the instances of the presented set of layers, a fully connected network (FCN) is applied.274

It multiplies its input by a weight matrix and adds a bias vector, combining the features learned275

by the previous layers to identify larger patterns. Finally, a softmax layer (Bishop 2006) is used to276

compute the conditional probability of each one of the classes for the analysed sample.277

Procedure Overview278

The above-described elements and processes pursue the goal of the generation and subsequent279

application of a classification tree, formed by the hierarchical organization of the trained DNNs.280

Classification tree generation281

The generation of the classification tree is an off-line operation, carried out with pre-collected282

measurements and the available network topology, as summarised in Fig. 2.283

The algorithm starts with a preprocessing stage, where the graph associated to the WDN284

structure is extracted, and the hydraulic measurements at the available historical dataset of leaks285

are converted into an image set, by means of the described image encoding process.286

Then, the recursive clustering/learning operation is executed until the number of iterations287

reaches a certain limit. Each iteration is repeated until the testing accuracy of the considered288

DNN reaches a predefined threshold. Re-training may be performed to check the suitability of289

the 𝑘 parameter of the clustering algorithm, which is initially random to explore the range of290

possible values while pursuing an effective performance of the DNN. For every generated 𝑘 , the291

corresponding (sub)network is clustered and the labels are obtained. Taking into account that the292

image samples are already available and divided into learning (including training and validation)293

and testing sets, the learning process is performed. If the testing accuracy is good enough, the294

12



current iteration will be finalized by adding the subnetworks generated during the clustering at the295

bottom of a queue that stores the subnetworks to be clustered in subsequent iterations.296

Once the process is finished, all the trained DNNs are organized depending on their correspond-297

ing (sub)network, obtaining the classification tree: the result of the application of a certain DNN298

of the tree indicates the next DNN to be used, continuously functioning in this way from the first299

DNN, which operates over the complete WDN, to the desired depth.300

The classification tree generation scheme has an additional advantage: the testing accuracy at301

the different levels of depth of the tree allows to gain crucial knowledge about the limitations of the302

leak localization process, regarding issues like the WDN structure and the sensorization properties,303

i.e., the amount, distribution and precision of the sensors. All the gathered information about these304

limitations allows the operator to decide a proper depth for the application of the tree.305

Classification tree application306

This procedure is represented by the flow chart of Fig. 3.307

The application of the classification tree is carried out online, and hence hydraulicmeasurements308

are converted into an image that is provided to the trained classification tree in real-time, in order to309

locate an occurring leak once it has been detected. The depth to traverse through the tree is decided310

considering the gained knowledge about the limitations of the leak localization process.311

Firstly, the top DNN of the tree is fed with the generated image, obtaining a label which indicates312

the subnetwork where the leak is located from the two possible clusters. This label indicates the313

next DNN to apply, and the process is repeated until the localization depth is reached. Then, the314

application of the final DNN provides the set of candidates where the leak can be located.315

CASE STUDY316

The application of the presented methodology is illustrated by means of a case study. It corre-317

sponds to a District Metering Area (DMA) (see Savić and Ferrari (2014) for extensive information318

about DMAs) from a real network referred to as E-Town. It is graphically represented in Fig. 4.319

The considered DMA is formed by 125 pipes and 120 inner nodes, of which 8 are equipped320

with pressure sensors (pink stars at Fig. 4). The water supplied to the area is obtained from a single321
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water inlet (green square at Fig. 4.). The location of a real leak, that will be studied to show the322

methodology performance, is indicated with a red hexagram at Fig. 4.323

Hydraulic Data Encoding For E-Town324

In order to illustrate the image encoding process, Fig. 5 and Fig. 6 respectively show the GAF325

images associated to eight nodes of E-Town and their locations, at a certain time instant.326

As mentioned above, the approach requires hydraulic information of the complete range of327

possible leaks. In this work, EPANET 2 (Rossman 2000) is used to simulate the necessary leak328

scenarios. Since only eight sensors are installed, the associated images have a size of 8×8. A pixel329

𝑖 𝑗 of the image encodes the relation between components 𝑖 and 𝑗 of the data vector.330

The majority of the GAF images presented in Fig. 5 exhibit clear differences among them due331

to the effect of the leaks on the readings of the different sensors. These differences are exploited332

by the DL algorithm to discern the leak location between the possible clusters. However, in the333

case of nodes 39 (Fig. 5c) and 58 (Fig. 5f), which correspond to rather close junctions, little334

differences appear between their images. Both facts illustrate the suitability of an approach that335

allows to regulate the localization area: the location at node-level is nearly impossible, due to the336

extremely slight differences of the corresponding leak effects. Hence, a trade-off between location337

accuracy and area must be considered while applying the classification tree in order to optimize the338

methodology performance.339

Recursive Clustering/Learning For E-Town340

The iterative application of the clustering process up to a third level of depth is shown at Fig. 7.341

The produced clusters clearly arise froma topological perspective, partitioning the (sub)networks342

at links that connect distant nodes. However, it is interesting to remark the specific case of sub-343

networks 1.1 and 1.2.1 (referring to the numbering in Fig. 7, which are split into two sets that are344

very different in size. This effect is produced by the explained re-training policy, which repeats345

the learning stage of the corresponding iteration, modifying the 𝑘 parameter of the clustering, in346

search for a testing accuracy that reaches the desired threshold (a 95% in the cases at Fig. 7.347

Thus, the clustering depends on the network structure, but it is also indirectly affected by the leak348
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information, since the learning phase also seeks to improve the localization.349

For the learning stage, the DL architecture has been implemented using the MATLAB® Deep-350

Learning Toolbox™. The learning process is configured by means of the following parameters:351

• Solver: It specifies the algorithm to be used. Stochastic Gradient Descent with Momentum352

(Qian 1999) is selected, keeping the default momentum value of 0.9. In this way, the353

oscillations along the path of the steepest descent towards the optimal point are reduced.354

• Learning rate: It is configured by means of four parameters, whose values are tuned and355

refined to maximize the classification accuracy:356

• Initial learning rate: It is the value at the start of the training and it is set to 0.01.357

• Learning rate schedule: It is set to decrease the learning rate piecewise during the358

training, after a certain number of epochs, by multiplying it by a factor. This is359

interesting to refine the learning process at the final steps.360

• Learning rate dropping period: It corresponds to the required number of epochs to361

drop the learning rate. It is settled to 8 epochs, to maintain each learning rate value362

a minimum number of iterations.363

• Learning rate dropping factor: It is the multiplicative factor that affects the learning364

rate every learning rate dropping period and it is configured to 0.9.365

• Convolutional filter size: It settles the length of the square filters at the convolutional layers.366

These lengths are different for each one of the three instances of the set of layers presented367

in the explanation of Fig. 1, and they depend on the number of sensors N to facilitate the368

adaptation to different networks:
[
b𝑁/2e b𝑁/3e b𝑁/4e

]
.369

• Number of filters: It corresponds to the number of filters at each one of the convolutional370

layers: [8, 16, 32].371

The rest of available parameters are maintained as default. The image/label set is shuffled372

before every epoch in order to improve the regularizing effect of the batch normalization, as the373
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activation of a concrete image during training depends on the rest of images of the mini-batch. The374

division of the dataset at each learning operation includes a 75% for training, a 15% for validation375

and a 10% for testing purposes. The different neural networks composing the classification tree are376

trained by means of a NVIDIA GeForce MX130 GPU and a Intel® Core™ i7-8565U processor.377

RESULTS378

A real leak event was evaluated with the trained classification tree to evaluate the goodness of379

the solution. The leak is estimated to have a size of 1.15 l/s, and hence the DNNs were trained with380

hydraulic data obtained using EPANET2 and considering this leak size. The dataset of the real leak381

pressure measurements is composed of 720 entries (that is, 24 hours with a sampling period of 2382

minutes) which are affected by different sources of uncertainty due to their real nature. Therefore,383

the EPANET2 scenarios were generated considering a 5% of uncertainty at the user water demands384

and the pipe roughnesses. Moreover, in order to consider the measurement noise in the sensors,385

the data from the hydraulic simulator was truncated to emulate a sensor precision of ±0.01m. The386

location of the leak in E-Town is indicated in Fig. 4.387

The application of the classification tree to the real leak data is graphically presented in Fig.388

8. The green line circles indicates the subnetwork that is selected by the localization algorithm at389

each level of the tree. The black cross marks the location of the real leak.390

The information from the figure can be completed by these numeric results:391

• Considering the levels from (a) to (c) (the letters refer to the coding at Fig. 8), the localization392

is properly performed, as the leaky node is located in the highlighted area. This area is393

composed by a total of 34 nodes, with a mean pipe distance of 576.41 m from these nodes394

to the leaky one. Moreover, 8 clusters are formed at this level of depth of the tree, i.e., 8395

possible outcomes of the algorithm if the tree is traversed until this depth.396

• At level (d), the localization remains correct, reducing the localization region to 16 nodes397

and the mean pipe distance to 357.02 m. There are 16 final clusters at this level of depth.398

• Progressing to level (e), the correct localization diminishes the number of nodes to 13 and399

16



the mean pipe distance to 335.18 m while the number of final clusters adds up to 29.400

• However, at level (f), the localization turns out to be incorrect, as the leaky node is not401

considered in the localization area, which is formed by 11 nodes. The mean pipe distance402

and the number of final clusters get increased to 393.62 m and 52 respectively.403

• Considering levels from (g) to (h), the incorrect localization continues increasing both the404

mean pipe distance and the number of final clusters to 418.98m and 85 respectively, whereas405

6 nodes are included at the achieved localization region.406

• Finally, considering the single-node level (which implies the existence of 120 clusters, one407

per node), the pipe distance from the reached node to the leaky one is 442.01 m.408

DISCUSSION409

Several aspects can be discussed about the presented results:410

• The localization operation works properly until the (f)-level is reached, referring both Fig.411

8 and presented numerical results. Therefore, branch (e) of the tree would correspond to412

the localization area limit regarding the region where the real leak is located.413

• The mean pipe distance is increased by the amount of nodes at early stages of the tree,414

as well as the large separation between nodes of interest. For example, the pipe distance415

between the leaky node and its neighbour from the right is 267.25 m.416

• Regarding the final number of nodes at level (e), the search area is successfully reduced to417

approximately a 10% of the total network. The value of 29 final clusters at this level shows418

that the clusters of the region of the leak are quite big in comparison with the rest of the419

network. The heterogeneity of the density of nodes per cluster at the different regions is420

produced by the network structure and the re-training approach.421

The performance of the proposed localization approach for the considered real leak can be422

compared with that of a well-knownmodel-based methodology, based on a fault sensitivity analysis423

of the residuals (Casillas et al. 2013). The application of this strategy is represented in Fig. 9.424

The light blue nodes of this figure and the red ones at level (e) of Fig. 8 correspond to a similar425

17



region of the network, and therefore the localization result of the proposed methodology can match426

the degree of performance of a model-based state-of-the-art technique. Furthermore, the proposed427

method produces an even more accurate result:428

• Regarding the exact localization, the model-based strategy indicates a node that is 501 m429

away from the real leak, while the proposed approach finds a node that is 442 m away.430

• About the selected area of localization, the proposed methodology produces a more precise431

result due to the exclusion of outliers, whereas the model-based method highlights one.432

Therefore, the aforementioned model-based method is outperformed at both the leak candidate433

set selection and the node-level localization by the proposed methodology. Regarding these two434

aspects, it is important to focus on the selected area of localization because it is directly related435

to one of the novelties of the proposed approach in comparison with previous methods: the436

hierarchical organization of the classification tree. The differences between training data (which437

in this case is obtained from a simulator) and real measurements may introduce errors at the node-438

level localization, but the classification tree can be traversed backwards in order to search the leak439

at a larger set of nodes, which are also guaranteed to be in the same area of the network due to440

the topology-based clustering. This characteristic entails an advantage in comparison with other441

methodologies: for example, in the case of the compared model-based approach, there exists an442

outlier in the final set of most probable leak origins (the light blue point in Fig. 9 that is located out443

of the branch where the leak occurs) that hinders the localization of the real location of the leak.444

CONCLUSIONS445

This article presents a leak localization approach based on image encoding, graph-based clus-446

tering and deep-learning. It uses information about the different possible leak events at a WDN,447

converted into images via a data encoding process, to produce a classification tree by means of a448

recursive clustering/learning approach. The techniques selected to perform these operations are449

configured and applied in customized ways to fit the necessities of the leak localization task.450

The application of the methodology allows to naturally gain knowledge about the leak local-451
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ization limitations due to the sensors accuracy, placement and number, as well as network charac-452

teristics. Accordingly, the best leak localization area can be selected, as the classification tree can453

be traversed from the first clustering of the complete network to any pre-trained intermediate state454

until the single-node level is reached. Besides, this localization-area-based approach guarantees the455

selection of congregated nodes due to the exploitation of the structural and topological information.456

The method has been applied to the case of a leak at a real network, using data from the actual457

WDN. The results are compared to the performance of another state-of-the-art technique, showing458

improvements regarding both the leak localization area definition and the node-level operation.459

Some tasks remain open regarding the research in this field. On the one hand, a review of the460

different components of the methodology can be performed to find even more suitable elements to461

substitute the current ones. On the other hand, regarding the selected methods, their configuration462

and calibration can be improved bymeans of their inputs and parameters. Furthermore, extra studies463

about the effect of uncertainty and inaccuracies at the hydraulic model, sensor measurements and464

network characteristics can be performed in order to analyse the sensitivity of the method to those465

aspects. Finally, it could be interesting to test the methodology considering that the hydraulic466

model of the WDN is not available, that is, working together with a water utility to perform several467

artificial leak experiments to gather data for the training of the DNNs.468
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Fig. 1. Deep neural network structure.
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Fig. 2. Flow chart of the methodology steps for the learning (off-line) stage.
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Fig. 3. Flow chart of the methodology steps for the application (online) stage.
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Fig. 4. Schematic representation of E-Town.
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Fig. 5. A comparison among the GAF images associated to eight different leak events is presented.
In appearing order: (a) Node 4, (b) Node 29, (c) Node 39, (d) Node 41, (e) Node 43, (f) Node 58,
(g) Node 85 and (h) Node 94.
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Fig. 6. Location of the considered nodes for the GAF demonstration.

30



Fig. 7. Clustering results for E-Town until 8 clusters are achieved.
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Fig. 8. Graphical summary of the localization process performance: (a) Complete network, (b)
Subnetwork of the cluster selected from (a), (c) Subnetwork of the cluster selected form (b), (d)
Subnetwork of the cluster selected form (c), (e) Subnetwork of the cluster selected form (d), (f)
Subnetwork of the cluster selected form (e), (g) Subnetwork of the cluster selected form (f), (h)
Subnetwork of the cluster selected form (g).
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Fig. 9. Result of the application of a model-based approach to the leak localization of the real
leak. (a) Correlations map - the bluer the node, the higher the correlation, and hence, the higher
the probability of the node to be the origin of the leak. (b) Zoom of the most probable leak area.
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