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ABSTRACT22

The detection and localization of leaks in water distribution networks (WDNs) is one of the23

major concerns of water utilities, due to the necessity of an efficient operation that satisfies the24

1 Romero-Ben, December 11, 2021



worldwide growing demand of water. There exists a wide range of methods, from equipment-based25

techniques that rely only on hardware devices to software-based methods that exploit models and26

algorithms as well. Model-based approaches provide an effective performance but they rely on27

the availability of an hydraulic model of the WDN, while data-driven techniques only require28

measurements from the network operation although they may produce less accurate results. This29

paper proposes two methodologies: a model-based approach that uses the hydraulic model of the30

network, as well as pressure and demand information; and a fully data-driven method based on31

graph interpolation and a new candidate selection criteria. Their complementary application was32

successfully applied to the Battle of the Leakage Detection and Isolation Methods (BattLeDIM)33

2020 challenge, and the achieved results are presented in this paper to demonstrate the suitability34

of the methods.35

INTRODUCTION36

A recent study, developed in Liemberger and Wyatt (2019), estimated that leaks account for up37

to 126 billion cubic meters of water per year worldwide (expressed as non-revenue water), which38

represents a remarkably significant quantity considering the worldwide growing demand, supposed39

to increase by 55% between 2000 and 2050 according to Leflaive (2012). Furthermore, apart from40

the associated economical and operational costs, water leaks increase the risk of contamination41

(Xu et al. 2014) and health problems (LeChevallier et al. 2003). Multitude of solutions have been42

proposed during the years to address the leak detection and localization problem (see Chan et al.43

(2018) for an extensive review). They are typically classified into two categories: hardware-based44

and software-based methods (Li et al. 2015).45

On the one hand, hardware-based methods use hardware devices to detect the existence and46

position of bursts. They are usually divided into acoustic methods, including listening rods, leak47

correlators and leak noise loggers (Mutikanga et al. 2013); and non-acoustic approaches, like gas48

injection, ground penetrating radar technology or thermal infrared imaging among others (Fanner49

et al. 2007). Even if these methods provide a high degree of accuracy, their usage is usually50

prohibitive for large pipe networks due to its high associated costs and reduced detection range,51
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and hence their application is limited to small zones of the WDNs (Rajeswaran et al. 2018).52

On the other hand, software-based techniques rely on models or algorithms that exploit ad-53

ditional information from metering devices (pressure meters, flow sensors, etc.) to perform the54

detection/localization of the leaks. Thesemethods can be split into three main categories: transient-55

based, model-based and data-driven methods.56

Transient-based approaches analyse the transients induced by leaks using signal processing57

techniques. A leak detection method that exploits transient-based information and genetic algo-58

rithms is described in Vítkovskỳ et al. (2000). The detection task is tackled in Kapelan et al.59

(2003) by a hybrid inverse transient procedure, formulated as a constrained optimization problem60

of a weighted least-squares cost function. Besides, Wang et al. (2020) proposes a method that61

uses matched-field processing to locate leaks by incorporating prior information of the modelling62

error. Techniques based on leak transients are also used for leak diagnosis in pipelines, as shown63

in Pérez-Pérez et al. (2021) and Torres et al. (2021).64

Model-based methodologies use hydraulic models and simulators, calibrating both the network65

characteristics and the demands, to compare simulated hydraulic information with actual measure-66

ments from the WDN (see the introduction in Sanz et al. (2016) for a review). A leak detection67

and localization technique using flow velocities is presented in Goulet et al. (2013), built as an68

error-domain model falsification methodology. A widely-used localization approach that matches69

pressure residuals to a fault signaturematrix obtained bymeans of hydraulic simulations is proposed70

in Pérez et al. (2014). A similar consideration is used in Sophocleous et al. (2019), performing a71

sensitivity analysis along with a search-space reduction approach to find the leakage location.72

Whilemodel-based approaches have beenwidely researched and exploited due to their efficiency73

and effectiveness (Duan et al. 2011), the associated performance is limited by the difficulty in the74

selection and calibration of the corresponding mathematical models (Menapace et al. 2018), the75

diversity and complexity ofWDNs (Kim et al. 2016), and the presence ofmodelling errors like nodal76

demand uncertainties and measurement noise (Blesa and Pérez 2018). Most of these disadvantages77

may be gradually overcome using data-driven and machine learning techniques (Ferrandez-Gamot78
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et al. 2015) and their reduced or non-existent dependency on an hydraulic model.79

Data-driven strategies analyse themeasurements frommonitoring devices, mining knowledge to80

detect leaks and identify their location (seeWu and Liu (2017) for an extensive review). Information81

from accelerometers is exploited in Kang et al. (2017) to feed a two-phase method supported by a82

convolutional neural network (CNN) - support vector machine (SVM) architecture that detect leaks83

and a graph method based on virtual nodes that locates them. The concept of Kantorovich distance84

is applied in Arifin et al. (2018) to detect and locate leaks by exploiting the pipeline leak signature85

and identifying possible changes in the pipeline status using mass flow rates and pressure data. An86

efficient multistage method is presented in Huang et al. (2020), which uses valve operations (VOs)87

to split the demand metering area (DMA) into two zones and identify the leak location within these88

regions by means of a water balance analysis based on smart demand meters.89

Recently proposed data-driven approaches use pressure sensors due to their the lower cost and90

easier installation in comparison with other kind of meters, resulting in an attractive option for water91

utilities (Soldevila et al. 2021). In Han et al. (2018), a two-stage strategy is used to estimate the92

WDN state by means of a Gauss-Newton Belief Propagation inference scheme applied to hydraulic93

heads at certain nodes of the network, and a clustering method to decompose the WDN and isolate94

the leak. A deep-learning scheme is proposed in Zhou et al. (2019) to locate leaks using pressure95

meters that are placed at limited, optimised places for a short period. A data-driven approach is96

developed in Soldevila et al. (2021), interpolating the pressure at every node of the network from97

certain measured values by means of the Kriging interpolation technique, comparing leak and98

leak-free scenarios to locate the leak and using Dempster-Shafer reasoning to deal with uncertainty.99

This article proposes two different and complementary techniques to locate leaks: a model-100

based method that uses a hydraulic model of the WDN and pressure and demand measurements101

and/or well-calibrated demand estimations; and a data-driven approach that only requires pressure102

information from some inner nodes and the topology of the network. Both of them are applied to103

the Battle of the Leakage Detection and IsolationMethods (BattLeDIM) 2020 challenge (Vrachimis104

et al. 2020), using them in a complementary manner to improve the performance.105
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Both methodologies present several contributions with respect to previous approaches:106

• They handle the multi-leak problem, overcoming the classical hypothesis of the appearance107

of a single leak at a time (Goulet et al. 2013; Pérez et al. 2014), which is assumed in most108

state-of-the-art techniques (Soldevila et al. 2016).109

• Regarding the data-driven method, it reduces the complexity of the interpolation stage110

by using a quadratic programming approach that exploits the topology of the network,111

concretely the length of the pipes. Other interpolation-based methods like Soldevila et al.112

(2021) require extra information to be known (like diameters) or estimated during the113

interpolation (distribution of flow in pipes, pipe roughness, etc.). Moreover, in the referred114

work, a basic residual computation is employed to select the candidate to be the origin115

of the leak. This approach is completed in the method proposed here by combining the116

information of both the basic residuals and the relation among the hydraulic heads of all the117

nodes of the network (interpolated and measured) in a single metric.118

Furthermore, a leak detection and estimation technique is proposed to complete the solution of119

the challenge and feed the localization strategies with the leak appearance time instants. Then, the120

proposed localization methods depend on the proper operation of the detection stage.121

METHODOLOGY122

Water distribution networks across the world present different characteristics in structure, size,123

demand patterns, components, etc. Moreover, the distribution, amount and properties of the124

measuring devices installed throughout the networks varies from one site to another. This fact125

indicates the necessity of adapting the selection and usage of software-based techniques.126

Thus, two complementary approaches are proposed in the following to locate leaks in WDNs:127

• Amodel-basedmethodology that exploits the existence of a well-calibrated hydraulic model128

of the WDN, as well as the availability of reliable pressure and demand information.129

• A fully data-driven technique that only requires minimal topological knowledge of the130

network and measurements from pressure sensors distributed at a set of inner nodes.131

5 Romero-Ben, December 11, 2021



The model-based method faces difficulties when there is a lack of demand measurements or132

estimations, while the data-driven strategy requires a minimum pressure sensor density in order133

to operate, as it is its only source of hydraulic information. The WDNs can be divided into areas134

with different features (like in the presented case study), e.g., sensorization properties (amount,135

placement, precision and type of installed sensors), existence ofweirs, tanks, valves... Therefore, the136

best option between these two methods can be selected depending on the availability of information137

and/or model of the WDN, and they can be even used in a complementary manner, so that the138

weaknesses of one method are compensated by the strengths of the other.139

Leak detection and estimation140

The proposed method uses sensor fusion calculations to analyse the flow of water supplied to141

the DMA at all hours of the day, not only during the night hours. Initially, it is assumed that the142

demand forecasting method is calibrated with historical data from the DMAs (Donkor et al. 2014),143

which will provide a good approximation of the current inflow 𝑦 at time 𝑘:144

𝑦(𝑘) = 𝑦̂(𝑘) + 𝑒(𝑘) (1)145

where 𝑘 = 0, 1, 2, ..., denotes the discrete time corresponding to time 0, 𝑇𝑠, 2𝑇𝑠, ... (𝑇𝑠 is the sample146

time of the demand forecasting model), 𝑦̂(𝑘) is the demand forecast and 𝑒(𝑘) is the error that, for147

this study, is considered to be adjusted by a normal distribution (Malik 2016). As the incoming148

demand is more accurate in some periods of the day, a periodic variation in time 𝑇 is considered:149

𝑒(𝑘) ∼ 𝑁 (0, 𝜎2(𝑘)) with 𝜎2(𝑘) = 𝜎2(𝑘 + 𝑇) (2)150

In the case of the presence of a leak, i.e., 𝑓 (𝑘) > 0, Equation (1) leads to:151

𝑦(𝑘) = 𝑦̂(𝑘) + 𝑒(𝑘) + 𝑓 (𝑘) −→ 𝑓 (𝑘) = 𝑦(𝑘) − 𝑦̂(𝑘) = 𝑓 (𝑘) + 𝑒(𝑘) (3)152

where 𝑓 (𝑘) is an approximation of the leak size given by the difference between the actual and the153

estimated inlet flow, with a leak estimation error equal to the demand forecasting error.154
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Given the current inlet flow value and previous values in a time window with 𝑁𝑊 samples,155

Equation (3) can be applied considering 𝑁𝑊 different leak estimations, approximating the leak as:156

𝑓 (𝑘) ≈ 𝑓 (𝑘) =
𝑁𝑊 −1∑︁
𝑖=0

𝑓 (𝑘 − 𝑖)
𝑁𝑊

(4)157

An average leak estimation 𝑓̂ (𝑘) can be computed at instant 𝑘 applying the maximum likelihood158

estimation method to the joint probability distribution of the 𝑁𝑊 estimations fused in 𝑓 (𝑘):159

𝑓̂ (𝑘) =
∑𝑖=𝑁𝑊 −1
𝑖=0

𝑓 (𝑘−𝑖)
𝜎2 (𝑘−𝑖)∑𝑖=𝑁𝑊 −1

𝑖=0
1

𝜎2 (𝑘−𝑖)

(5)160

In a non-leak scenario, 𝑓̂ (𝑘) will lead to small values (but different from zero) due to demand161

estimation errors, whereas its value will increase in a leak scenario. Thus, the leak detection is162

formulated as a change detection problem that can be solved by computing a threshold 𝜆 that will163

determine the value of 𝑓̂ (𝑘) above which it can be assumed that a leak exists. This value can be164

computed applying Equation (5) to historical leak-free data, considering the worst-case scenario 𝜆165

to be equal to the maximum value of 𝑓̂ (𝑘) computed for the whole historical non-leak data.166

Then, the leak detection is triggered as stated by the following expression:167


𝑓 (𝑘) > 𝜆 ⇒ Leak

Otherwise⇒ No Leak
(6)168

Data-driven methodology for leak localization169

The proposed fully data-driven approach is based on two phases: a graph-based interpolation170

that approximates the complete hydraulic state of the network and a geometric comparison between171

the states in leak and leak-free scenarios. This approach removes the need for a hydraulic model,172

as it only uses measured pressure values and the WDN topology. It presents the following features:173

• It is applicable to the measurements of a single time-instant, but it can be easily extended174

to integrate temporal information from time-series.175
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• The leak-free data can be obtained from a historical dataset of hydraulic measurements,176

provided by the water utility. In order to deal with possible differences in the demand177

conditions between the leak and leak-free scenarios, updated nominal information can be178

obtained from the previous days to the appearance of the leak. Moreover, these demand179

discrepancies can be reduced even more by selecting nominal scenarios with an analogous180

consumption pattern, e.g., the same day of the week. In this way, an hydraulic model is not181

required to obtain the nominal data.182

• It provides a set of leak candidate inner nodes. The size of the set depends on the sensors183

limitations and network structure. However, it offers the possibility of approximating the184

exact leak location with sufficient reliability.185

• It is flexible regarding the network structure, so that modifications of the WDN only imply186

the update of the topological information. Besides, it does not require demand information,187

which is one of the critical points of most of the model-based strategies.188

This leak localization method must be used together with the presented detection technique.189

Graph-based state interpolation190

In this work, the location of leaks is determined through the comparison between the actual191

hydraulic state of the network and a leak-free reference. The hydraulic heads at the nodes are192

chosen as a representative state variables due to the advantages of pressure sensors and the usage193

of this information by water utilities to determine the availability of water service.194

In order to minimize the installation of sensors, the complete state is interpolated from a reduced195

set of measurements. The non-linear relation among the hydraulic heads of neighbouring nodes,196

typically described by the Hazen-Williams equation, is approximated considering the state of a197

node to be computed as the weighted linear contribution of its neighbours, hence simplifying the198

interpolation procedure and expanding the set of tools for the derivation of the network state.199

Let us model the network structure by means of a simple directed graph referred to as200

G = (V, E), where the node set V is representing the set of junctions of the WDN and the201
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edge set E stands for the set of pipes. The total number of junctions of the network, i.e. the202

cardinality |V| of the node set, is referred to as 𝑛, as well as the number of pipes, i.e., the car-203

dinality |E | of the edge set, is represented as 𝑚. A node is referred to as v𝑖 ∈ V, and an edge204

e𝑖 𝑗 = (v𝑖, v𝑗 ) ∈ E connects source node v𝑖 with sink node v𝑗 , so that they are its endpoints. A set205

of important matrices can be extracted from the graph characteristics:206

• The connectivity among nodes is used to derive the adjacency matrix 𝐴(G) ∈ R𝑛×𝑛:207

𝑎𝑖 𝑗 =


1, if e𝑖 𝑗 ∈ E 𝑜𝑟 e𝑗𝑖 ∈ E

0, otherwise
(7)208

• The directionality of the graph edges represents the direction of the water flows through the209

network pipes. Considering that v𝑖 is the source of an edge e𝑜 (or e𝑖 𝑗 ), while v𝑗 is its sink,210

the directionality is represented by the incidence matrix 𝐵(G) ∈ R𝑚×𝑛 as follows:211

𝑏𝑜 𝑗 =



1, if e𝑜 = (v𝑖, v𝑗 ) ∈ E

−1, if e𝑜 = (v𝑗 , v𝑖) ∈ E

0, otherwise

(8)212

with 𝑜 from 1 to𝑚 indexing the edges of the graph. An approximated 𝐵(G) can be estimated213

considering the source-sink relation among the reservoirs and all the inner nodes, as the214

exact flow direction of each pipe may be unknown and/or it may vary.215

• An edge e𝑖 𝑗 is associated to a cost value, related in this case to the pipe length 𝑙𝑖 𝑗 . The edge216

costs are exploited to generate a weighted adjacency matrix𝑊 (G) ∈ R𝑛×𝑛:217

𝑤𝑖 𝑗 =


1
𝑙𝑖 𝑗
, if 𝑙𝑖 𝑗 ≠ 0

0, otherwise
(9)218

where the definition of the weight 𝑤𝑖 𝑗 is designed so that closer neighbours affect the value219

of the considered node in a higher degree.220
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• The degree matrix 𝐷 (G) ∈ R𝑛×𝑛 is derived from𝑊 (G), i.e., 𝑑𝑖 𝑗 =
∑𝑛
ℎ=1 𝑤𝑖ℎ only if 𝑖 = 𝑗 ;221

being zero otherwise (ℎ plays the role of the columns index in 𝑤𝑖ℎ because 𝑗 is used in 𝑑𝑖 𝑗 ).222

With the aid of the these matrices, the state 𝑥𝑖 of a certain node v𝑖 can be expressed as:223

𝑥𝑖 =
1
𝑑𝑖

w𝑖x (10)224

where 𝑑𝑖 = 𝑑𝑖𝑖 = 𝑑𝑖 𝑗 , w𝑖 ∈ R1×𝑛 denotes the 𝑖-th row of𝑊 (G), and x ∈ R𝑛 represents the complete225

state vector. The estimation of x can be achieved through the minimization of the sum of the226

quadratic difference between each node actual value and the one computed by Equation (10):227

𝑛∑︁
𝑖=1

[
𝑥𝑖 −

1
𝑑𝑖

w𝑖x
]2

=
(
x − 𝐷−1𝑊x

)𝑇 (x − 𝐷−1𝑊x
)
= x𝑇

(
𝐼𝑛 − 𝐷−1𝑊

)𝑇 (
𝐼𝑛 − 𝐷−1𝑊

)
x =

x𝑇
(
𝐷−1(𝐷 −𝑊)

)𝑇 (
𝐷−1(𝐷 −𝑊)

)
x = x𝑇

(
𝐷−1𝐿

)𝑇 (
𝐷−1𝐿

)
x = x𝑇𝐿𝐷−2𝐿x

(11)228

where 𝐷 = 𝐷 (G) and 𝑊 = 𝑊 (G), and 𝐿 = 𝐿𝑇 = 𝐿 (G) = 𝐷 (G) −𝑊 (G) is the unnormalized229

Laplacian matrix of graph G (Mohar et al. 1991). 𝐼𝑛 stands for the identity matrix of size 𝑛.230

In order to provide the available hydraulic information to the minimization process, the state of231

the metered nodes is filled using the measured hydraulic heads through an equality constraint:232

𝑆x = x𝑠 (12)233

where 𝑆 ∈ R𝑛×𝑛 is a diagonal matrix which has a value of 1 at its 𝑖 − 𝑖 component if there exists a234

sensor at v𝑖, and a value of 0 otherwise. Vector x𝑠 ∈ R𝑛 contains the head values of the measured235

nodes at the corresponding components, while the rest of values are 0. The pressure at the water236

inputs of the network is supposed to be known, as it is commonly available in most of the WDNs.237

The approximation in Equation (10) denotes the harmonic property of functions in graphs,238

explained in Zhu et al. (2003) to interpolate the value of a function to unknown vertices following239

a smoothing strategy. In that work, the harmonic property is implicitly pursued by minimizing a240

10 Romero-Ben, December 11, 2021



weighted quadratic energy function over the function values. However, the harmonic property is241

explicitly pursued in Equation (11) by directly minimizing the quadratic difference between the242

actual node state and the value estimated by computing the average of the state in neighbouring243

nodes. This cost function does not impose a smoothing objective like the one in Zhu et al. (2003),244

so all the possible combinations of neighbouring states that produce the same state for a certain245

node are equally considered.246

This provides a higher degree of freedom in the solution to attain a second objective, related to247

the directionality of the flows. In WDNs, the direction of water flow through a pipe is determined248

by the sign of the difference in hydraulic head between its corresponding junctions, taking into249

account that water flows in the direction of decreasing hydraulic head. This fact can be translated250

to the relation among the states of the nodes of graph G by means of the following inequality:251

𝐵x ≤ 𝛄 (13)252

where 𝐵 = 𝐵(G) is defined as stated in Equation (8) and 𝛄 ∈ R𝑛 stands for a vector with a value of253

𝛾 for all its components. This expression would imply a requirement about the difference of state254

(that is, approximated hydraulic head) between adjacent nodes, so that it must be lower or equal to255

a certain threshold 𝛾. This value is introduced because 𝐵(G) is estimated from the WDN topology256

and hence some slack is desirable in the fulfilment of the directionality constraints. However, this257

threshold is included in a second objective of the optimization cost function to compute its lowest258

positive feasible value. Thus, the complete optimization problem can be arranged as:259

min
x

1
2
[
x𝑇𝐿𝐷−2𝐿x + 𝛼𝛾2

]
s.t. 𝐵x ≤ 𝛄

𝛾 > 0

𝑆x = x𝑠

(14)260

where 𝛼 allows to settle the importance of the directionality objective.261

11 Romero-Ben, December 11, 2021



Leak candidate selection method262

As leak and leak-free scenarios must be compared to locate the leak, the graph-based state263

interpolation is applied to both the actual and nominal hydraulic information, i.e., the measured264

hydraulic heads at a certain time instant of the detected leaky event and the ones at a leak-free time265

instant (with similar boundary conditions (Pérez et al. 2011)). The former are stored in a vector266

denoted as x𝑙𝑒𝑎𝑘 ∈ R𝑛, while the latter are collected to form a vector referred to as x𝑛𝑜𝑚 ∈ R𝑛.267

The proposed leak candidate selection method considers the components of those vectors to268

represent the coordinates of 𝑛 points in R2 (x𝑛𝑜𝑚 provides the x-coordinates and x𝑙𝑒𝑎𝑘 provides269

the y-coordinates). In the case of comparing two healthy scenarios, these points should be rather270

aligned because they would be only affected by the boundary conditions. However, the presence of271

a leak would alter the R2 location of the points representing the affected nodes, considering that a272

leak produces a reduction of the expected hydraulic head (Adedeji et al. 2017).273

Thus, the objective of this stage consists of providing the set of most distant points from274

their predicted position, given by the best fitting line of the complete set of points. As this line275

is computed considering all of them, the distance between a certain node and the line not only276

encodes information about the change of state in that node, but also the relation among the state of277

all the nodes of the network. The best-fitting line can be expressed as x𝑙𝑒𝑎𝑘 = 𝑋𝑛𝑜𝑚𝛟, with 𝑋𝑛𝑜𝑚 =278

[x𝑛𝑜𝑚 1𝑛] ∈ R𝑛×2 (1𝑛 is a column vector whose components are all 1) and 𝛟 = [𝜙1 𝜙2]𝑇 ∈ R2. The279

latter is the vector containing the line parameters, which are computed by solving the least-squares280

problem, i.e., 𝛟 =
(
𝑋𝑇𝑛𝑜𝑚𝑋𝑛𝑜𝑚

)−1
𝑋𝑇𝑛𝑜𝑚x𝑙𝑒𝑎𝑘 .281

The perpendicular distance from the set of points to the best-fitting line can be computed as:282

𝛅 = [x𝑛𝑜𝑚 x𝑙𝑒𝑎𝑘 1𝑛]


𝜙1√︃
𝜙21 + 1

−1√︃
𝜙21 + 1

𝜙2√︃
𝜙21 + 1


𝑇

(15)283

so 𝛅 ∈ R𝑛 stands for the vector of computed distances. The sign is kept in the calculation since284

only points with a positive distance value can be leak candidates, i.e., points that are located below285

the best-fitting line because their y-coordinate value, that is the leaky one, is lower than expected.286
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A criterion must be selected to pick a set of nodes fromV depending on the values at 𝛅. In this287

case, the standard deviation 𝜎𝛅 of the distance vector is computed to play the role of a threshold,288

i.e., a node v𝑖 must have an associated distance value 𝛿𝑖 that exceeds 𝜎𝛅 in order to consider this289

node as a candidate to be the leak origin. The final candidates can be ordered from most to least290

probable by means of their associated distance 𝛿𝑖, and therefore the node that corresponds to the291

highest distance value is considered as the best candidate.292

Model-based methodology for leak localization293

The proposed model-based leak localization method uses a hydraulic simulator to simulate294

theoretical pressure values caused by all potential leaks once a leak has been detected and its295

magnitude has been estimated. Simulated pressure values at different leak locations (hypothesis)296

are comparedwith theDMAmeasured pressure values to determine themost probable leak location.297

After the leak localization procedure, the hydraulic simulator is updated with the new extra demand,298

whose magnitude is the leak estimation value at the leak localization. Thus, the proposed method299

can tackle the problem of multi-leaks 𝑓 1
𝑗1
, 𝑓 2

𝑗2
, . . . , 𝑓

𝑁 𝑓

𝑗𝑁 𝑓

with the constraint that the leaks should300

appear at sequential time instants 𝑘1 < 𝑘2 < .. < 𝑘𝑁 𝑓
that allow the leak detection, estimation301

and localization method to sequentially update the hydraulic simulator with extra demands at leak302

localization nodes 𝑗1, 𝑗2, . . . , 𝑗𝑁 𝑓
. Once a leak has been fixed, the simulator is updated, eliminating303

the extra demand related to the fixed leak. This process can be done manually or automatically304

detecting negative values in the leak estimation, computed by Equation (5).305

The model-based leak localization method performance depends on the accuracy of the hy-306

draulic model, sensor noises and the availability of reliable users demand information (Blesa and307

Pérez 2018). This third factor is potentially the most critical one because it is not easy to estimate308

user demands with high accuracy if there are no AMRs installed in some network nodes.309

CASE STUDY AND RESULTS310

The presented methodologies are tested by means of their application to achieve a solution for311

the BattLeDIM 2020 challenge. This competition aims at objectively comparing the performance312

of leak detection and isolation approaches, and hence a common benchmark was prepared for all313
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the competitors: L-Town. It is a small and hypothetical town whose WDN is composed by 782314

inner nodes, 2 reservoirs, 1 tank and 909 pipes. It is represented in Fig. 1. The inner nodes are315

coloured to indicate their elevation (which is displayed by means of a colour bar). Pressure sensors,316

reservoirs and tanks are indicated with special markers. The leaks at the provided datasets are317

highlighted at the corresponding pipes.318

The network is composed of three different zones:319

• Area A: it is the larger area, composed of the nodes with an elevation (see Fig. 1) between 16320

and 48 m (655 in total). There is a high density of pressure sensors (29 in total) distributed321

through the area. Besides, the two water inlets to the network are located within this zone,322

as well as a tank that is filled from this area to provide water to Area C.323

• Area B: it comprises the nodes that are elevated less than 16 m (31 in total). This zone is324

connected to Area A by a Pressure Reduction Valve or PRV (there are also installed PRVs325

downstream of the reservoirs of Area A) and there is only one pressure meter in the area.326

• Area C: it is composed of the nodes elevated over 48 m (92 in total), and it is supplied with327

water by the previously mentioned tank. There are 3 pressure sensors installed through the328

zone, as well as 82 AutomatedMetered Readings (AMRs) that provide demand information.329

The competition consists of detecting and localizing the maximum number of leaks from the330

ones occurred during 2019, as well as the ones remaining from 2018 (represented in Fig. 1), by331

means of readings of pressure sensors, AMRs of Area C and flow meters at the output of the332

reservoirs and tanks. Moreover, a nominal hydraulic model of the WDN is given, although it is333

affected by inaccuracies at demand patterns, pipe characteristics, valves status, etc.334

The different features of the three areas composing the network motivated the usage of the335

proposedmethodologies due to their complementary nature. In this case, themodel-based approach336

is utilized over Area B and Area C: the former has an unique pressure sensor, so the data-driven337

cannot perform adequately; while the latter has AMRs installed at a high percentage of the nodes,338

and hence there is accurate demand information that allows to obtain precise results with the model-339
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based technique. Meanwhile, the data-driven method is exploited in Area A, due to the high density340

of installed pressure sensors, as well as the lack of accurate demand information.341

A schematic flow diagram of the application of each methodology to the benchmark is showed342

in Fig. 2.343

To remark that, for their usage in a real-world application, the leak detection and localization344

stages would be separated, i.e., first the leak would be detected, and then the corresponding345

localization algorithm would be applied, finding the leak and fixing it. The presented diagrams346

reflect the necessity of dealing with multiple and simultaneous leaks at the BattLeDIM2020 case.347

Besides, the localizationmethods yield a node/group of nodes as the leak candidate/s, so the best348

candidates, regarding the corresponding criteria for each method, were used to compute the leaky349

pipes, considering that the leak must be located at the pipe that connects the best two candidates.350

Leak detection and estimation351

In order to apply the proposed leak detection and estimated method, the network was split into352

two distinct areas where the demand forecast could be adapted: Area A and Area B, containing flow353

meters at the outlet of reservoirs and tanks; and Area C, containing AMR devices.354

Area A and Area B355

Before applying the leak localizationmethodology, certain data analyses have to be performed to356

create leak-free historical data using the information from the flow meters during 2018. Measured357

data are available every 10 minutes, but it was filtered every hour in order to obtain an hourly358

demand prediction (𝑇𝑠 = 1 hour). In addition, daily periodicity has been considered, i.e., 𝑇 = 24.359

A polynomial has calibrated every hourly flow prediction (feature) variation throughout the year360

to obtain the demand forecast with a higher accuracy, considering the variation in the behaviour361

during the year, which could reach more than 5 𝑙/𝑠 on the time of the day analysing:362

𝑦̂ℎ,𝑞𝑑𝑎𝑦 =

𝑛𝑝∑︁
𝑖=0

𝑐ℎ𝑖 𝑞𝑑𝑎𝑦
𝑖 (16)363

where 𝑦̂ℎ,𝑞𝑑𝑎𝑦 is the demand estimation at hour ℎ = 1, ..., 24 (first 1 am and the last 00 am) of day364
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𝑞𝑑𝑎𝑦; 𝑐ℎ𝑖 are the coefficients of polynomial at hour ℎ and 𝑛𝑝 is the order of the polynomial.365

The leak detection was carried out according to the proposed leak detection and estimation366

method, considering 𝑁𝑊 = 24 (i.e. one day), using the history of free leak-data to calculate the367

maximum possible error and creating a threshold 𝜆 = 2.5 𝑙/𝑠.368

As the inlets of Area A and B are the same, when a leak is detected considering demand369

estimation (16), if a drop of pressure is observed in the inner sensor of Area B, it is assumed that370

the leak is in Area B and otherwise it is assumed that the leak is in Area A.371

The result obtained in 2018 with all reported leaks that were detected is shown in Fig. 3(a).372

Area C373

For this area, due to the AMRs measurement corresponding to 89% of the residences, a more374

accurate forecast demandwas calibrated. Using the first week of the inlet flow and themeasurements375

of the AMRs, a constant 𝐾 was computed, being the percentage value between both flows. The376

following equation shows the demand forecast for this area:377

𝑦̂(𝑘) = 𝐾
𝑛𝑚∑︁
𝑖=1

q𝐴𝑀𝑅𝑖
(𝑘) (17)378

where q𝐴𝑀𝑅𝑖
(𝑘) 𝑛 = 1, ..., 𝑛𝑚 are the flow measurements at instant 𝑘 of the 𝑛𝑚 AMRs installed in379

Area C. The leak detection method was applied considering 𝑇𝑠 = 1 h, 𝑇 = 24 and 𝑁𝑊 = 24, as in380

Areas A and B, and a estimated threshold 𝜆 = 0.3 𝑙/𝑠, that is much lower than the leaks present in381

Area C. Using the proposed method furnished the results shown in Fig. 3(b): a leak of 2 𝑙/𝑠 at the382

beginning of the year, which was not reported by the water utility; and another leak at the beginning383

of July with a magnitude of 4.5 𝑙/𝑠 and fixed in August.384

Application of the data-driven methodology385

The data-driven approach is divided into its two composing stages, in order to properly expose386

both their separated and complementary operation in the BattLeDIM case study. To remark that, to387

face the challenge, the method is applied individually to each time-instant, obtaining a localization388

result for each one of them. The leak detection method provides the leaks starting time, so that the389
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localization can be applied at the moment of their appearance.390

Graph-based state interpolation391

The graph-based state interpolation is applied first to recover the complete state of the WDN392

for both nominal and leaky situations. The supplied EPANET (Rossman 2000) model of the WDN393

is used to extract the network topology, as well as the node elevations to compute hydraulic heads394

from the pressure measurements. To perform all the necessary EPANET operations, the EPANET-395

Matlab-Toolkit (Eliades et al. 2016) was employed. Interpolation results are compared in Fig. 4396

for the case of the leak at pipe p158, considering three possible scenarios regarding the availability397

and nature of the represented data: (a) simulated states from the available hydraulic model for a398

nominal situation; (b) interpolated states from the available measurements for a nominal case; (c)399

interpolated states from the available measurements during a leak event. The hydraulic head is400

represented by the node colour: the darkest the node, the lowest the value (all the interpolations are401

achieved settling the 𝛼 parameter of Equation (14) to 1000).402

The great similarity between the results of a leak-free EPANET simulation (Fig. 4a) and the403

estimation of the complete state of the network using nominal data (Fig. 4b) confirms the suitability404

of the interpolation method and the introduced relaxation of the relation among neighbouring405

nodes. Besides, an important reduction in the state value can be found if comparing the area that406

is circled in red at the figure associated to the leak event (Fig. 4c) with the same area at the other407

two subfigures. This indicates the presence of the leak at the highlighted area.408

Leak candidate selection method409

Once the complete network state has been computed for both the nominal (x𝑛𝑜𝑚) and leak410

(x𝑙𝑒𝑎𝑘 ) scenarios, the leak candidate selection method can be used. These vectors are arranged to411

generate a set of 𝑛 two-dimensional points, represented as showed in Fig. 5a-b. In this case, Fig. 5a412

is produced using two (different) nominal vectors, in order to compare two healthy-situations, while413

Fig. 5b considers x𝑙𝑒𝑎𝑘 to contain the interpolated state in Fig. 4c, which is caused by a leak.414

On the one hand, Fig. 5a confirms that the cloud of points for two healthy events is mostly415

aligned, as the slight differences between expected (by the best-fitting line) and actual coordinates416
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of some points are due to the boundary conditions. On the other hand, Fig. 5b shows the leak417

effect: the cloud of points is no longer aligned, and a set of them is substantially further to the418

line in comparison with the rest. The points below the line are the most interesting ones to be419

considered as candidates by the method. Considering the standard deviation of the distance vector420

to be a threshold for the selection of the candidates, the result depicted at Fig. 5c can be obtained.421

It includes a representation of the set of candidates in comparison with the complete network (left),422

and a zoomed subplot highlighting them in colours depending on the probability of being the leak423

origin (right). The localization is successful due to the reduced pipe distance between the real leak424

and the most probable pipe, as highlighted at zoomed subplot of the figure through the colour map.425

Complete data-driven strategy426

Both the graph-based state interpolation technique and the leak candidate selection method are427

encapsulated into a complete methodology that receives hydraulic measurements from a single428

time instant and uses them, together with the network topology, to yield a set of candidates to be429

the leak location. As the datasets of measurements for the complete years are available, the method430

can be sequentially applied to every time instant (or a subset of them), so that the evolution of the431

set of candidates can be analysed to assess the existence of leaks.432

Besides, as there is not a provided nominal dataset, two options are available to compute this433

information: to use the hydraulic model and to use data from the provided dataset. The former434

is discarded due to the data-driven nature of the methodology. Therefore, a certain time window435

must be selected as the nominal reference for the leak localization process. This characteristic can436

be exploited to obtain more precise localizations in the presence of old leaks, as their effect will be437

present at both the nominal reference and the leaky data.438

Application of the model-based methodology439

Themodel-basedmethod was applied in two different parts of the network comparing the hourly440

average value of inner pressure sensor measurements with pressure estimations computed every441

hour by the hydraulic model. Firstly, it was used in Area C, using the measurements of the AMRs442

in the respective nodes on the demands, and an average was implemented in the nodes without443
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AMRs. Secondly, the method was used in Area B, using the first-week node demands collected444

from the provided EPANET model.445

Area C446

The proposed leak detection and estimation technique is first applied in order to detect leaks and447

their magnitudes. As explained in the methodology, individual analysis of each leak is needed to448

discover the probability of the location in the network, always starting with the first leak detected.449

Fig. 6a-b shows the result of the leakage location in 2018, with the red line indicating the pipe450

containing the leak. The leaks were analyzed separately, starting with the first leak, and later it was451

added to the system to study the second leak.452

Following the analysis of 2019, the leak of Fig. 6a must be added, as it was not fixed in the453

previous year. Fig. 6c-d shows the result for the localization leaks, remark that the area in yellow454

is the nodes with more leak potential, all close to the faulty pipe.455

Area B456

Additionally, the leak detection and estimation method has used the information of the inner457

pressure sensor installed in this area with the hydraulic model to determine what is the most458

probable leak node location (see Fig. 3a).459

A leak was detected each year so the model-based method was applied. Fig. 6e-f show the leak460

localization results for years 2018 and 2019 respectively.461

BATTLEDIM2020 RESULTS462

The application of the detection and localization methods to the BattLeDIM 2019 dataset463

yielded the results at Table 1. They translated into a third place in the competition, with a true464

positive rate of 43.47% and only 1 false positive, producing savings of 210,772 €.465

Several facts about these results must be highlighted to explain the methods performance:466

• The model-based approach is applied to Area B and Area C, that is, to leaks p280, p277467

and p680. The localization is accurate, with only 1-2 pipes between the real leak and the468
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detected one (the leak from 2018 affecting Area C, i.e., p257, was detected and localized,469

but this was not submitted as a result due to a misunderstanding).470

• Regarding Area A, the data-driven method localized the detected leaks with a significant471

accuracy too, except in the case of the leak at p142, due to the reduced density of sensors in472

the area of this localization. Moreover, the application of the data-driven methodology to473

single time instants at a time allows to obtain incredibly fast localization results, with only474

a few minutes or hours of difference in some cases, e.g., p523, p827, p331 and p142.475

• Consulting Table 1, there were several leaks that were not detected, and hence, they were476

not submitted. However, the localization methodologies were indeed able to locate them477

correctly, as it can be appreciated at Fig. 7 (to remark that the figures for leaks at p426, p455478

and p879 were obtained by means of custom experiments, that is, using as nominal data a479

week that allow to get rid of remanent leaks). The detection of these leaks was hindered480

because they were partially masked by other leaks during the detection phase, and their481

influence in the localization stage was not considered important enough to be submitted,482

due to the hard penalty on false positives in the BattLeDIM2020 challenge.483

CONCLUSIONS484

This article presents the application of two complementary strategies to solve the leak detection485

and localization problem for the case study proposed by the BattLeDIM challenge. On the one hand,486

a data-driven technique is developed to locate leaks by means of the available pressure information.487

This method is applied to areas with a high density of pressure meters, in order to attain the best488

possible results. On the other hand, a model-based approach is applied at areas where the existence489

of demand meters allows to use the available measured demand information to highly increase the490

localization precision, as well as to zones where the pressure meters density is too low to properly491

utilize the data-driven approach. Therefore, a maximum reduction of the dependency of the model492

is achieved while yielding sufficiently accurate localization results.493

The results of the application of the proposed methodologies are presented for the dataset of494

2019, used to evaluate the localization approaches in the competition. The performance of the495
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methods was evaluated with the third place at the challenge, demonstrating the suitability of the496

usage of the proposed approaches, due to their natural synergy when exploited in a complemen-497

tary fashion: adapting their utilization to the studied network characteristics and the information498

availability (hydraulic model, sensors...), the advantages of each technique are boosted and their499

drawbacks are diminished, yielding a flexible and powerful leak localization solution.500

Finally, it is important to highlight the fact that there are differences between the application501

of the presented methods to the BattLeDIM2020 case and most real-world cases, i.e., the datasets502

of the former case are provided to be analysed in an offline manner, while the latter case would503

be based on an online detection/localization scheme. This fact implies some extra differences that504

should be pinpointed:505

• The multi-leak problem would exist in both cases, although the importance of a solution506

would be radically higher in the offline case, due to the accumulation of leaks that may not507

be repaired. In a real exploitation, the localized leaks are repaired to avoid the water loss.508

• The influence of uncertainties, noise and sensor precision would be higher in the real-509

world case. This could imply the necessity of performing averaging and noise/deletion510

pre-processes, as well as increasing the sampling rate and/or number of gathered samples.511

Considering these facts, several future worklines remain open: the application of the method-512

ologies to real cases, in order to face real-world conditions; a deep analysis of the previously513

commented differences, focusing on aspects like the effect of noise, sampling rates, sensorization514

properties (amount, placement and precision); as well as the improvement of the techniques to515

solve known and new problems regarding the leak detection and localization field.516
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TABLE 1. Results of the BattLeDIM 2020 for the IRI team

Real leak Start time Detected leak Detection time Distance (m) Distance (nº pipes)
p257 2019-01-01 00:05 - - - -
p427 2019-01-01 00:05 - - - -
p810 2019-01-01 00:05 p798 2019-10-25 06:00 237.48 4
p654 2019-01-01 00:05 p662 2019-02-22 07:00 299.33 5
p523 2019-01-15 23:00 p500 2019-01-15 23:10 192.88 3
p827 2019-01-24 18:30 p64∗ 2019-01-24 18:50 335.93 6
p280 2019-02-10 13:05 p278 2019-02-10 20:00 98.41 1
p653 2019-03-03 13:10 - - - -
p710 2019-03-24 14:15 - - - -
p514 2019-04-02 20:40 p91 2019-04-02 21:00 249.28 5
p331 2019-04-20 10:10 p360 2019-04-20 10:15 278.91 5
p193 2019-05-19 10:40 - - - -
p277 2019-05-30 21:55 p249 2019-06-26 20:00 119.49 1
p142 2019-06-12 19:55 p650∗ 2019-06-12 19:55 435.27 9
p680 2019-07-10 08:45 p207 2019-07-10 09:00 113.87 2
p586 2019-07-26 14:40 p563 2019-07-31 19:15 224.31 3
p721 2019-08-02 03:00 - - - -
p800 2019-08-16 14:00 p179 2019-08-25 13:25 74.28 1
p123 2019-09-13 20:05 - - - -
p455 2019-10-03 14:00 - - - -
p762 2019-10-09 10:15 - - - -
p426 2019-10-25 13:25 - - - -
p879 2019-11-20 11:55 - - - -

∗ These leaks are not considered to be detected due to the detection range of 300 m
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Fig. 1. Schematic representation of L-Town.
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Fig. 2. Schematic flowcharts of the application of the leak detection and localizationmethodologies:
(left) model-based; (right) data-driven.
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Fig. 3. Graph of leak detection results in 2018 (a) Analysis of the input flow corresponding to Area
A and B, with the black markers “o" being the time of detection and the red markers “x" are the
leak fix; (b) Analysis of the input flow corresponding to Area C.
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Fig. 4. Graphical comparison of the interpolated states for the case of a leak at pipe p158 among the
three possible scenarios regarding the availability and nature of the represented data: (a) Nominal
EPANET data; (b) Nominal interpolated data; (c) Interpolated data for leak p158
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Fig. 5. Graphical results of the leak candidate selection method: (a-b) Representation of the
generated clouds of points for the leak-free (a) and leak (b) scenarios (blue markers) together with
the best fitting line (red line); (c) Global localization result showing the complete network and
highlighting the leak candidate nodes in yellow (left), and local localization result, illustrated by
a colour map with blue representing the least probable candidates, and yellow indicating the most
probable ones (right).
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Fig. 6. Graphical representation of the localization result for the following leaks: (a) p257; (b)
p31; (c) p280; (d) p277; (e) p673; (f) p680.
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Fig. 7. Graphical representation of the localization result for the following undetected leaks: (a)
p653; (b) p710; (c) p193; (d) p721; (e) p762; (f) p426; (g) p455 & p879.
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