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Abstract— This work proposes a framework to design ob-
servers for systems that present low observability. It is shown
that, in these scenarios, the estimation problem becomes ill-
posed, which drastically limits the performance of standard
observers, specially in the presence of noise. Consequently, this
paper presents a method to design an observer that optimizes
some potential function to be defined by the designer. This
allows to implicitly regularize the estimation and recover a well-
posed problem. The proposed technique is validated in a set of
weakly-observable systems and the performance is compared
with a common Kalman filter-like observer.

I. INTRODUCTION

Economical and technical constraints commonly limit the
number of sensors that can be introduced in a system. In this
context, the observer design problem naturally emerges as it
is required to obtain some unmeasured internal information
from the measured outputs and inputs.

Prior to the observer design, it is necessary to study the
possibility of reconstructing the unmeasured states through the
measured signals, in the so-called observability analysis [1],
[2]. This step is commonly limited to a "yes-or-no" analysis,
which does not provide any quantitative potential function
on how observable is the system [1], [3]. It is interesting to
consider the degree of observability, as it is related to the
observer energy that is required to distinguish between states
[4], which has a direct impact in the noise sensitivity of the
estimator.

It is well known that noise sensitivity is one of the
factors that limits the performance of observer-based control
applications [5]. For this reason, it is convenient to select
and place the sensors in order to maximize observability [6].
Nonetheless, application constraints may limit the achievable
system observability [7], [8], [9], [10]. In this context, it
is of interest to develop observers that can operate in low-
observability scenarios.

In this work, it is shown that the source of the conflict in
low-observability systems is that the state-estimation becomes
an ill-posed inverse problem as a consequence of the bad
conditioning of the observability gramian. Consequently, it
is proposed a framework to implicitly regularize [11] the
estimation problem, which allows to have a reliable estimation
even for ill-conditioned observability gramians.
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The remainder of this paper is organized as follows. Section
II formalizes the problem of estimation in weakly-observable
scenarios and introduces how regularization may improve
the performance of the observer. Section III presents the
proposed implicitly regularized observer. Section IV validates
the proposed technique in a set of weakly-observable systems
in which a standard Kalman filter fails to estimate the states.
Finally, some conclusions are drawn in Section V.

II. PROBLEM FORMULATION

Consider a linear time varying (LTV) system, the dynamics
of which are depicted by:

ẋ = A(t)x + B(t)u
y = C(t)x + v (1)

where x ∈ Rn,u ∈ Rp and y ∈ Rq. The signals y and u
are measured. Moreover, the matrices A(t) ∈ Rn×n,B(t) ∈
Rn×p and C(t) ∈ Rq×n are assumed to be known and ensure
a unique solution for every input, u, and initial condition
x(0). The factor v depicts unknown high-frequency sensor
noise.

The objective is to design an observer that generates an
estimation of the states, x̂, such that lim

x→∞
‖x− x̂‖ = 0. The

main difference with the standard state-estimation problem
is that, here, it is considered that some modes of the
system are nearly unobservable, which are commonly referred
to as weakly-observable modes [8]1. This concept can be
formalized through the observability gramian. Consider the
gramian for a time t ∈ [t0, t1]:

M(t, t0) ,
∫ t

t0

φ(τ, t0)ᵀC(t)ᵀC(t)φ(τ, t0)dτ, (2)

where φ(t, t0) is the fundamental matrix computed as:

φ̇(t, t0) = A(t)φ(t, t0), φ(t0, t0) = In (3)

where In ∈ Rn×n is the identity matrix, so that:

x(t) = φ(t, t0)x(t0).

Definition 2.1: System (1) is completely observable if
there are some positive constants µ1, µ2 and T such that
[12]:

µ1I ≤M(t, t0) ≤ µ2I, t ≥ T. (4)

1Not to confuse this idea with the concept of weak observability for
nonlinear systems. In the nonlinear context, weak observability refers to the
possibility of distinguish a state x from other states in a neighbourhood [3].



Definition 2.2: System (1) is weakly-observable if it is
completely observable and the minimum singular value of
the observability gramian, σ(M(t, t0)), is close to zero [4].

The concept of complete observability depicts that the
states of the system can be distinguished one from the other.
Nonetheless, it does not give any insight on how "easy" is to
distinguish between said states. In such context, the minimum
singular value of M(t, t0) may be used as an index of how
close are some modes of the system to unobservability [4].

Although weakly-observable modes are still "observable"
from a theoretical point of view, they require more "energy"
in order to distinguish between states, which results in the
necessity of higher observer gains. It is well known that
the presence of sensor noise induces an upper bound on the
acceptable observer gain [5]. Moreover, high gains may induce
undesirable transient behaviours [13]. Therefore, weakly-
observable modes may be practically unobservable in the
presence of noise. This fact is exemplified in the following
subsection.

A. State reconstruction in weakly-observable systems

Consider a system depicted by (1) in a time interval τ ∈
[t0, t1]. Without loss of generality, assume that u = 0. The
evolution of the output signal y is depicted by:

y(τ) = C(τ)φ(τ, t)x(t) ∀τ ∈ [t0, t1]. (5)

If one pre-multiplies (5) by φ(τ, t)ᵀC(τ)ᵀ and integrates
from t0 to t the following is obtained:

M(t, t0)x(t) =

∫ t

t0

φ(τ, t)ᵀC(τ)ᵀy(τ)dτ

Therefore, the state at time t can be reconstructed by
solving:

x̂(t) = min
x̂(t)

∥∥∥∥M(t, t0)x̂(t)− z(t, t0)

∥∥∥∥ (6)

where z(t, t0) =
∫ t
t0
φ(τ, t)ᵀC(τ)ᵀy(τ)dτ , which clearly

results in:
x(t) = M(t, t0)−1z(t, t0). (7)

Remark 2.1: The iterative computation of (7) recovers the
well-known Kalman filter-like observer of the form [12]:

˙̂x = A(t)x̂ + B(t)u + P(t)−1C(t)ᵀ(y− C(t)x̂)

Ṗ(t) = −P(t)A(t)− A(t)ᵀP(t) + C(t)ᵀC(t),

P(0) = P(0)ᵀ > 0. (8)
where P converges to the observability gramian M(t, t0).

Naturally, the precision of the inversion in (7) and its
performance in the presence of noise is limited by the
minimum singular value and the condition number of the
observability gramian.

The low accuracy and convergence rate in weak observabil-
ity scenarios has motivated the modification of (8) in order
to improve the performance of the observer. In relation to the
convergence rate, a common approach is based on resetting
the covariance matrix P, in which P(tr) = P(0) at some
time tr [14], which prevents P to become excessively large.

Nonetheless, the reset may result in large estimation transients
after tr. A second approach is based on including some kind
of forgetting factor in Ṗ of (8) [15], which increases the
importance of recent data over past data. This usually results
in higher convergence rates. Nonetheless, the forgetting rate
needs to be consistent with the noise statistics [16] and large
forgetting rates may unstabilize the P dynamics. In relation
to the measurement noise, it is common to estimate the noise
statistics and adapt the observer accordingly [17].

In any case, such modifications only address the symptoms
of the problem, but do not directly undertake on the source
of the conflict, that is, the ill-conditioning of the observability
gramian. In this direction, better conditioning may be achieved
by implementing a proper model order reduction [7], [8],
[18], [19], which only retains the most observable modes.
Nonetheless, this approach may eliminate weakly-observable
modes that may be of interest for the application. Or the
result may still be weakly-observable.

This work approaches the problem from a different perspec-
tive. Instead of increasing the conditioning of the observability
gramian, it is improved the conditioning of the optimization
problem (6) by introducing the proper regularization.

B. Explicitly regularized state-estimation

In weak observability scenarios, the state-estimation prob-
lem becomes an ill-posed inverse problem. In such context, it
is common to explicitly regularize the optimization problem
[20]. Indeed, instead of (6), consider the L2 regularized
optimization:

x̂(t) = min
x̂(t)

∥∥∥∥M(t, t0)x̂(t)− z(t, t0)

∥∥∥∥+ x̂ᵀΠx̂. (9)

The solution of (9) is:

x̂ =

(
M(t, t0)ᵀM(t, t0) + Π

)−1
M(t, t0)ᵀz(t, t0). (10)

In this case, even a small value Π improves the condi-
tioning of the problem and significantly reduces the noise
sensitivity of the observer. This fact motivates the inclusion
of regularization factors in the observer design.

However, there are some concerns that deprives the direct
implementation of (9).
• Unlike standard optimization problems, regularization

factors cannot be implemented in observers without
having an impact in stability. As the inclusion of the
factor Π introduces a bias in the state estimation.

• The optimal parameter Π, in the sense of minimizing
the bias and covariance of (9), depends on the unknown
states. This fact was proven in [21] for the parameter-
estimation case.

• There may be alternative regularizations that are more
beneficial for the considered problem.

For this reason, this work proposes an alternative ap-
proach in order to regularize the problem (6). First, the
state-estimation problem is transformed into an equivalent
parameter-estimation problem, following recent ideas in
parameter-based observer design [22]. Second, based on



recent results of adaptive control and natural descent-like
adaptation [23] [11], the resulting parameters are estimated
through a modified recursive least squares that respects an
underlying Riemannian geometry to be specified. This will
allow to have an implicit regularization of the state-estimation
problem that, under some conditions, recover a well-posed
estimation problem.

III. IMPLICITLY REGULARIZED OBSERVER

This subsection will present the insights related to the
observer design.

A. Parameter-based observer

The aim of this subsection is to transform the original state-
estimation problem into an equivalent parameter-estimation
problem [22]. Consider the following dynamics:

ξ̇ = A(t)ξ + B(t)u. (11)

Define the signal ex = x− ξ, the dynamics of which are
depicted by:

ėx = A(t)ex.

Consequently, the time evolution of the signal, ex, can be
computed through the fundamental matrix (3) as follows:

ex(t) = φ(t, 0)ex(0). (12)

The key idea of the parameter-based observer is to take
ex(0) = θ as a constant parameter to be estimated, θ̂ [22].
Then, the state can be reconstructed as follows:

x̂(t) = ξ(t) + φ(t, 0)θ̂.

Now, consider the variable ỹ as:

ỹ , y− Cξ.

Then, the following signal is obtained:

ỹ = Ψθ (13)

where Ψ = Cφ(t, 0).
Notice that the equation in (13) can be though as a linear

regression in the parameters, thus, the unknown parameters
can be estimated through linear identification algorithms.
Indeed, the least-squares method results in the following
parameter-estimation [24]:

θ̂(t) =

[ ∫ t

0

ΨΨᵀdτ

]−1 ∫ t

0

Ψᵀỹdτ. (14)

It is remarkable that the first integral in the right-hand
side of (14) is the observability gramian (2). Therefore, in
the proposed parameter-based state-estimation context, the
least-squares algorithm performance is also limited by the
conditioning of the observability gramian.

Following the insights presented in Section II. Next
subsection will propose a modified parameter-estimation that
is consistent with an underlying potential function to be
defined. This will allow to have implicit regularization that
improves the conditioning of the state-estimation problem
with provable performance and convergence of the observer.

B. Natural gradient descent-like parameter-estimation

In the scenario of weak observability with noise, there
are multiple state values that are consistent with the mea-
sured outputs. Specifically, the parameter-estimation in (14)
converges to a set:

Ω , {θ̂ | ‖ỹ−Ψθ̂‖ ≤ γ(v)}, (15)

where γ is a positive function.
Then, we can stablish the following result.
Lemma 3.1: Assume that the system (1) is completely

observable. Consider a strongly convex function ψ(·) and the
natural gradient-like adaptation law:

˙̂
θ =

[
∇2ψ(θ̂)

]−1
PΨᵀ

(
ỹ−Ψθ̂ + v

)
Ṗ = −PΨᵀΨP, P(0) = P(0)ᵀ > 0. (16)

Moreover, consider that θ̂(0) = min
θ∈Rq

ψ(θ). Then, the

parameter-estimation, θ̂, converges to min
θ∈Ω

ψ(θ).

Proof: This proof is based on the results of [11]. The
first step of the proof consists in showing that (16) converges
to Ω. Define the Bregman divergence of a strictly convex
function ψ as [25]:

dψ(a||b) , ψ(a)− ψ(b)− (a− b)ᵀ∇ψ(b).

Consider the radially unbounded Lyapunov function:

V = d(θ||θ̂). (17)

Define eθ , θ − θ̂. The derivative of (17) satisfies the
following:

V̇ = eᵀθ∇
2ψ(θ̂)

˙̂
θ

= −eᵀθ∇
2ψ(θ̂)

[
∇2ψ(θ̂)

]−1
PΨᵀ

(
ỹ−Ψθ̂ + v

)
≤ −α1eᵀθΨ

ᵀ
(

ỹ−Ψθ̂

)
+ α2eᵀθΨ

ᵀv

≤ −α1

(
ỹ−Ψθ̂

)ᵀ(
ỹ−Ψθ̂

)
+ α2

(
ỹ−Ψθ̂

)ᵀ

v

where
α1I ≤ P ≤ α2I.

By means of (4) it can be shown that for t > T , α1 > 0
and α2 < ∞. Therefore, the system is stable in a input-to-
state sense [26] with respect to the noise, which proves the
convergence to the set Ω.

Second, it will be shown that the gradient-like dynamics
(16) implicitly optimize the convex function ψ(θ̂).

The d(θ||θ̂) factor presents the following time derivative:

d

dt
dψ(θ||θ̂) = −

(
d

dt
∇ψ(θ̂)

)ᵀ

eθ =

−
(

ỹ−Ψθ̂ + v
)ᵀ

ΨPeθ. (18)



The integration of (18) results in:

dψ(θ||θ̂(0)) = dψ(θ||θ̂(t)) +

∫ t

0

(
ỹ−Ψθ̂ + v

)ᵀ

ΨPeθdτ.

Previously, it has been shown that the parameter-estimation
converges to the set θ̂(t) ∈ Ω. Consequently, one can show
that in the limit t→∞, or θ ∈ Ω and θ̂(∞) ∈ Ω, the next
condition is satisfied:

dψ(θ||θ̂(0)) = dψ(θ||θ̂(∞))

+

∫ ∞
0

(
ỹ−Ψθ̂ + v

)ᵀ

P
(

ỹ−Ψθ̂

)
dτ. (19)

Only the first term in the right side of (19) depends
on θ. Consequently, the minimum value over θ of the
right hand side of (19) is found at θ̂(∞). Moreover, the
minimum of the left-hand side factor is naturally obtained in
argmin

θ∈Ω
dψ(θ||θ̂(0)). Therefore,

θ̂(∞) = min
θ∈Ω

dψ(θ||θ̂(0)). (20)

If the observer states are initialized in θ̂(0) = min
θ∈Rq

ψ(θ), the
equation in (20) becomes:

θ̂(∞) = min
θ∈Ω

ψ(θ).

Lemma 3.1 establishes that for a completely observable
system and in the absence of noise, the parameter-estimation
dynamics (16) converges to the true value. In the weakly-
observable scenario with noise, the estimation converges to
the value θ̂ ∈ Ω that minimizes the convex function ψ(·)
to be defined. Intuitively, the function ψ(·) is a potential
function that can be implemented to exploit additional prior
information to ensure that the state-estimation problem is
well-posed. Some examples of prior information that can
be exploited in this context may be physical consistency
conditions of the system [23], physical bounds on the states
[27], non-negativeness of the system [28] or an Lp norm
of the states to be minimized [11]. The numerical example
of this work focuses on the latter. In such case, the factor[
∇2ψ(θ̂)

]−1
in (16) may not be known for some p norms.

Consequently, the potential function ψ is implemented as,
1

2
‖θ̂‖2p. The benefit of this modification is that the Jacobian

of a squared p norm has an analytical inverse, which allows
the adaptation (16) to be computed as follows [29],

ẇ = PΨᵀ
(

ỹ−Ψθ̂

)
(21)

θ̂i = ‖w‖2−dd |wi|d−1sign(wi) for i = 1, ..., q (22)

where w , ∇ψ(θ̂), ‖ · ‖d is the d-norm and
1

d
+

1

p
= 1.

IV. NUMERICAL SIMULATION

The benefits of the approach have been validated in a set
of synthetic examples.

A. Example 1: State and parameter-estimation

Consider the autonomous LTV system of the form (1) with
the state vector x = [x1, x2]ᵀ and the matrices:

A(t) =

[
0 e−0.9t

0 0

]
; b(t) =

[
0
0

]
; c =

[
1 0

]ᵀ
(23)

The measured output is corrupted with high-frequency
noise of variance 1.974 · 10−4.

The objective is to design an observer for the estimation of
the unknown states. The conflict is that, although the system
is completely observable, the system observability reduces
with time and the estimation problem becomes ill-posed,
i.e. limt0→∞ σ(M(t, t0)) = 0. This fact is the result of the
observability study included in the Appendix I.

As the system is completely observable, it is convenient
to estimate the states through a Kalman filter of the form
(8). However, as the system loses observability with time,
the "pure" Kalman filter cannot converge to the true value. A
reasonable strategy could be based on including a forgetting
rate-like factor in the P dynamics of (8) [15]. Specifically,
consider the following modified P dynamics:

Ṗ = −µP− P(t)A(t)− A(t)ᵀP(t) + C(t)ᵀC(t). (24)

where µ > 0.
The convergence rate of the state-estimation can be

improved by incrementing the factor µ, which increments
the gain of the observer [15]. The aim of this modification is
to achieve a somewhat reliable estimation before the system
loses observability. Nonetheless, as explained in Section II,
noise and the smallest singular value of the observability
gramian (2) induce an upper bound in the acceptable observer
gain. Therefore, this strategy is not applicable in weakly-
observable systems. Indeed, in the considered problem, a
Kalman filter with factor µ = 0.9 does not converge to the
true value of x2 and is practically useless in the presence of
noise, see Figure 1.

Fig. 1. True evolution of the state x2 and Kalman filter estimation with
multiple factors µ.

Alternatively, one can exploit some properties of the
system to design a potential function ψ(·) that regularizes the
estimation problem. In the considered system, an observer can
be initialized as Cx̂(0) = Cx(0). In such case, the following
is satisfied for (13):

Cθ = 0. (25)



Condition (25) means that, in the parameter-based ob-
server approach, under the proper observer initialization, the
parameter vector to be estimated presents multiple zeros.
Following ideas of compressed sensing and sparse signal
recovery [30][31], it can be shown that an L1 regularization
factor improves the conditioning of an inverse problem if the
parameter vector to be estimated is somewhat sparse. Con-
sequently, an implicitly regularized observer that optimizes
the potential function ψ(θ̂) = ‖θ̂‖1, where ‖ · ‖1 is the 1-
norm, should present better convergence rate and estimation
accuracy.

Remark 4.1: Notice that the 1-norm is not strictly convex,
which prevents (17) to be a Lyapunov function. For this

reason, ψ is implemented as the norm
1

2
‖θ̂‖2p with p = 1 + ε,

where ε is a small positive constant. This is the closest strictly
convex function to the 1-norm.

In Figure 2 it is depicted the estimation through a Kalman
filter-like observer with µ = 0.8 and the estimation of
an implicitly regularized observer with potential function
1

2
‖θ̂‖1.1 computed through (21)-(22). During the large

observability transient, the implicitly regularized observer
presents a similar convergence rate as the Kalman filter-like
observer. This fact validates the performance of the observer
in non-weakly-observable scenarios. Moreover, during the
weak observability time range, the proposed observer still
maintains its convergence to the true value without relying on
high observer gains, consequently, it also presents significant
lower noise sensitivity.

Furthermore, the structure of the observer (16), allows to
introduce common modifications in least squares estimation.
For example, it is possible to introduce a forgetting rate-like
factor in the P dynamics in (16) as [24]:

Ṗ = µP− PΨᵀΨP, P(0) = P(0)ᵀ > 0, µ > 0

in order to improve the convergence rate of observer at a cost
of higher noise sensitivity. The benefits of this modification
are shown in Figure 2.

Fig. 2. True evolution of the state x2, Kalman filter (KF) estimation with
factor µ = 0.8 and implicitly regularized observer (IRO) estimation with
multiple forgetting rates µ.

B. Example 2: Slow and fast dynamics
Another example of a weakly-observable system appear in

systems with fast and slow modes. Specifically, when only

the slow modes are being measured. In such context, the
condition number of the observability gramian may become
significantly large, which affect the conditioning of the state-
estimation problem. As an example, consider a linear time
invariant system with:

A =


−0.1 0.4 0 0

0 0 0.2345 0
0 −5.24 −4.65 2.62
1 0 0 −10

 ; b =


0
0
0
0

 ;

c =
[
1 0 0 0

]ᵀ
(26)

The measured output is corrupted with high-frequency noise
of variance 0.01.

The faster eigenvalue of A is −10 and the slowest is
−0.0724, thus, the system states evolves in two clearly
different time-scales.

In this system, the rank of the observability map is 4,
which proves that the system is observable. Nonetheless,
the minimum singular value of the observability gramian is
1.1544 · 10−9. Consequently, in the considered scenario, the
gain of the standard Kalman filter (8), P(t)−1Cᵀ, presents a
component of the order 109, which prevents the implementa-
tion of this type of observer.

Alternatively, it is possible to design an implicitly regu-
larized observer that exploits the sparsity condition (25), as
explained in the last example. In Fig. 3 it is depicted the
evolution of the observer estimation error. It can be seen that
the observer achieves a fairly accurate estimation even in the
presence of significant sensor noise.

Fig. 3. Estimation errors evolution of the implicitly regularized observer
with p = 1.1 and µ = 0.2.

V. CONCLUSIONS

This work has proposed an observer design framework to
address the state-estimation problem in weakly-observable
systems. The proposed technique is based in an adaptation
law that optimizes a potential function to be defined by the
designer. This allows to implicitly regularize the estimation
and, under some conditions, recover a well-posed problem.
The proposed technique is based on, first, transforming
the state-estimation problem in an equivalent parameter-
estimation problem. Second, estimate the parameters with
a natural gradient descent-like adaptation that respects the



underlying Riemannian geometry related with the designed
potential function. The results have been validated in a set of
synthetic systems with low observability and the technique has
been compared with a standard Kalman filter-like observer. It
has been shown that the proposed observer presents positive
results by exploiting a sparsity property of the observer
problem.

APPENDIX I
OBSERVABILITY STUDY

The fundamental matrix of system (23) in the interval
[t0, t] is:

φ(t, t0) =

1 − 1

0.9

(
e−0.9t − e−0.9t0

)
0 1

 .
Consequently, the observability gramian (2) of the system

is:

M(t, t0) =

[
t− t0 m12(t)e−0.9t0

m12(t)e−0.9t0 m22(t)e−1.8t0

]
.

where

m12(t) =
1

0.9

[
t− t0 −

1

0.9

(
1− e−0.9(t−t0)

)]
m22(t) =

1

0.92

(
− 1

1.8
e−1.8(t−t0) +

1

0.45
e−0.9(t−t0)

+
1

1.8
− 1

0.45
+ t− t0

)
.

The eigenvalues of the observability gramian are:

λ1,2 =
1

2

[
t+m22e

−1.8t0

±
√

(t− t0 −m22e−1.8t0) + 4m2
12e
−1.8t0

]
The eigenvalues are positive for all t0 and t > t0. Thus,

the system is completely observable. However, it can be seen
that:

lim
t0→∞

λmin = 0, lim
t0→∞

λmax = t− t0.

Therefore, the system becomes weakly-observable with
time.
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