SIDER: Single-Image Neural Optimization for Facial Geometric Detail Recovery
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Figure 1: SIDER is a novel photometric optimization method that recovers, from a single image, detailed facial geometry without any 3D,
multi-view or multiple image supervision. As shown above, the details recovered by SIDER such as wrinkles, skin folds and skin bumps

are realistic and have high fidelity to the input image (see insets).
Abstract

We present SIDER (Single-Image neural optimization
for facial geometric DEtail Recovery), a novel photometric
optimization method that recovers detailed facial geometry
from a single image in an unsupervised manner. Inspired
by classical techniques of coarse-to-fine optimization and
recent advances in implicit neural representations of 3D
shape, SIDER combines a geometry prior based on statis-
tical models and Signed Distance Functions (SDFs) to re-
cover facial details from single images. First, it estimates
a coarse geometry using a morphable model represented as
an SDF. Next, it reconstructs facial geometry details by op-
timizing a photometric loss with respect to the ground truth
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image. In contrast to prior work, SIDER does not rely on
any dataset priors and does not require additional supervi-
sion from multiple views, lighting changes or ground truth
3D shape. Extensive qualitative and quantitative evalua-
tion demonstrates that our method achieves state-of-the-art
on facial geometric detail recovery, using only a single in-
the-wild image.

1. Introduction

The study of the 3D geometry of the human face is a
problem of great interest in computer graphics and vision
communities. Early approaches to recover the 3D structure
of the human face were based on morphable models [I],
where the face shape, expression and texture are optimized



with respect to a given image. However, due to the low di-
mensionality of the identity and expression subspaces, mor-
phable models are unable to capture facial geometric de-
tails, such as wrinkles and skin-folds. With the advent of
deep learning, it has now become possible to train networks
on large datasets [6, 23, 20], in order to regress the 3D shape
of the face along with its geometric details. Still, the gener-
alization ability of these methods is limited, mainly due to
the lack of diversity of the data they are trained on [8].

Recent advances in implicit neural representations of
3D shape [9, 24, 31] have made it possible to learn rich
details of the 3D geometry of an object. The geometry
can be represented by Signed Distance Functions (SDFs)
[9, 24, 31], Unsigned Distance Functions (USDFs) [3] or
occupancies [17] that are parameterized using Multilayer
Perceptrons (MLPs). The high representational power of
MLPs, along with the use of positional encoding [ 18], fa-
cilitates the reconstruction of rich geometric details. Ad-
ditionally, if the geometry is represented as an SDF, recent
works [19, 31] have proposed ways that allow the cheap
calculation of derivatives of the geometry through implicit
differentiation, making gradient learning significantly more
tractable. These implicit representations are learnt using
either multi-view supervision [19, 31] or partial 3D data
[9, 24]. However, in the absence of 3D data or multi-view
supervision, like when one has access only to a single face
image, it might not be possible to train such models as they
may collapse into trivial solutions.

In this work, we propose SIDER, a novel photometric
optimization method that recovers facial geometric details
from a single face image. SIDER uses an unsupervised
coarse-to-fine optimization scheme that does not require
any ground truth 3D, multi-view or varying light-source su-
pervision. Since optimization of SDFs using a single im-
age is prone to trivial solutions, SIDER first learns a coarse
approximation of the 3D face geometry using a morphable
model fit to the input image by a standard landmark fitting
pipeline. Next, this SDF is optimized by minimizing the
photometric loss with respect to the given image via implicit
differentiation [19, 31]. After converging, SIDER outputs
an SDF that represents the 3D face shape along with its ge-
ometric details (see Fig 1). We show, both quantitatively
and qualitatively, that SIDER significantly outperforms the
current state-of-the-art in detailed face reconstruction by re-
covering facial geometric details that are realistic and have
high fidelity to the input image.

To summarize, our contributions are as follows:

* We propose SIDER, a method that recovers facial geo-
metric details from a single face image in an unsuper-
vised manner.

e We propose a novel coarse-to-fine optimization
scheme that leverages a classical morphable model

representation as a prior to prevent degenerate solu-
tions of the SDF and is optimized using an unsuper-
vised photometric loss.

* We achieve state-of-the-art performance in facial ge-
ometry reconstruction from single in-the-wild images.

2. Related Work

In this section, we describe recent related works in facial
geometry estimation, facial geometric details recovery and
implicit representations of 3D shapes.

Facial Geometry Estimation. One of the first widely
used methods for 3D shape reconstruction of the human
face was based on statistical 3D face models that can fit a
given image, going back to the original 3D Face Morphable
Model [ 1] (3DMMs). However, the underlying PCA-based
representation for shape and expression of 3DMMs is not
flexible enough to represent fine facial geometric details
such as wrinkles, skin folds and skin bumps. Recent meth-
ods [2, 5,7, 11, 12, 14, 26, 27, 28, 29, 33] leverage the
power of deep-learning and large-scale image and video
datasets to regress parameters that generate realistic 3D
reconstructions or learn complex representations for face
shape, expression and texture. These methods produce
more realistic results than traditional 3DMM fitting, but
they still cannot capture fine facial details and need large
datasets to train on. In contrast, we propose a neural coarse-
to-fine optimization scheme to recover facial geometric de-
tails from single images and without supervision.

Geometric Facial Details Estimation. The past few years
have witnessed a significant improvement in the realism of
reconstructed 3D face geometry and the quality of facial
details. In [21], a CNN (CoarseNet) first regresses a rough
geometry of the face, and then another CNN (FineNet) esti-
mates facial details using a coarse depth map and input im-
ages. In [23], the regressed correspondence and depth maps
are registered onto a template mesh, which is further refined
to generate the detailed facial geometry. In [30] facial de-
tails are modelled with bump maps on top of a 3DMM base.
DF?Net [32] uses multiple refinement steps to reconstruct
detailed geometric structure. First, a coarse depth is pre-
dicted, which is then refined by an F-Net. The refined depth
along with the input image is then given as input to a spe-
cially designed Finer-Net that outputs the final recovered fa-
cial details. DECA [6] uses a differentiable renderer to per-
form 3D face reconstruction and recover the detailed face
geometry. The facial geometric details are represented as
a UV-map of vertex displacements of a FLAME mesh[15].
DECA is trained on a large dataset of close to 2 million im-
ages with a subset of them being paired. In contrast to the
aforementioned methods, SIDER does not require an exor-
bitantly large dataset for training and can be used on single
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Figure 2: Overview of SIDER: Left: First SIDER learns a coarse geometry, represented as an SDF, by using FLAME mesh [15] fit to
the input image as supervision Right: Next, it recovers facial geometric details by optimizing the SDF w.r.t. the photometric loss on the

input image.

in-the-wild images.

Implicit Neural Representations. Representing 3D shapes
implicitly with neural networks, more specifically using
Multi-Layer Perceptrons (MLPs), has led to the develop-
ment of methods that are able to reconstruct a large variety
of 3D shape with rich details [3, 4, 9, 16, 17, 19, 20, 24,

, 31]. In [20], authors train an SDF using instance spe-
cific meshes. Once trained, a latent space for the instances is
learnt, making it possible to sample a large variety of shapes
represented as SDFs. In [9], the authors propose a regular-
izer, the eikonal constraint, that allows learning SDFs from
sparse 3D samples in the form of a point cloud. The authors
of [31] use the eikonal constraint proposed by [9] to learn
3D shapes of objects using multi-view supervision along
with object masks. They also propose an expression for the
derivative of the intersection point of sphere tracing with
respect to the MLP parameters that matches the real deriva-
tive up to the first order. SIDER uses the expression for
the derivative of the intersection point proposed by [31], in
order to back-propagate gradients to its geometry network
and recover the facial geometric details. However, unlike
the aforementioned methods, SIDER leverages a prior es-
timated from statistical models, which constrains the op-
timization and allows recovery of facial geometric details
from single images without any multi-view supervision or
ground truth 3D data.

3. SIDER

Given a single image, SIDER aims to extract from it
facial geometric details, such as wrinkles and skin folds.
SIDER uses a two-stage neural optimization approach to
extract these details. In the first stage, we leverage the
FLAME morphable model [15] prior, in order to learn the

coarse geometry of the face, which is represented as an SDF.
Next, we optimize this SDF w.r.t the photometric loss of the
provided image, I, in order to learn the facial geometric de-
tails. In the following, we elaborate the workings and the
training process of SIDER.

3.1. Architecture

As shown in the overview Fig. 2, SIDER consists of two
MLPs: a geometry network fy and a rendering network g,,.
The geometry MLP, fy(-) represents the face shape (along
with the facial geometric details) as an SDF. More specifi-
cally, for any point x:

fo(x) = {f3"" (6(x)),7}} 4))
SDF

where fy~"(x) is the SDF predicted at x, 7% is a feature
vector predicted at x that is used as input to the rendering
network g,,, and ¢ is the positional encoding.

The rendering network, g,,(-), predicts the RGB value of
a point x as follows:

gw((b(x))nx’d)(v)v'y);) ={R,G,B} (2)

where x are the point’s coordinates, ny is the normal at
point x, v is the viewing direction and v} = fy(x) is a
feature vector predicted by the geometry network fy at x.

3.2. Learning the coarse geometry

Given a face image I € R *W>3 SIDER first learns a
coarse geometry of the face using a morphable model prior.
FLAME is fit to the face in I using standard landmark fitting
[6, 10]

min ILrpame — Lyl Vi 3)
Qtshape ; Xexp s Xpose ; CAM
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Figure 3: SIDER in action: Here we show the intermediate output of SIDER as it is trained. The first column contains an overlay of
the initial FLAME [15] geometry on top of the image (top row) and the normals of the initial geometry. The subsequent columns show
the rendered RGB (top row) and the normals of the learnt geometry (bottom row) as SIDER is trained. Once converged, we get a facial

geometry with high quality details (last column, bottom row) and its photrealistic rendering (last column, top row).

where L% 41,5 is the position of the 4’th landmark of the
FLAME model [15], Lgt is the position of the ¢’th land-
mark predicted by 3DDFA [10] (which we treat as ground
truth), Qishape; Qtexp, pose are the shape, expression and pose
parameters of the FLAME model [15] and cam are the cam-
era parameters. Once FLAME [15] is fit to the image, we
train an MLP, fy, to represent this coarse mesh as an SDF
by minimizing the following:

Lossgeo(x) = || f5" (¢(x)) —SDFer (x)]|;

where P is a set of randomly chosen points in space in the
neighborhood of the FLAME mesh, x = {z,y, 2} is a point
in space, ¢ is the positional encoding and SDF () is the
ground truth SDF to the coarse mesh. Since the FLAME
face mesh is an open and single surface layer, an SDF can-
not be defined on it directly (there is no region where the
distance is negative, since there is no ‘inside’). Therefore,
in order to define the SDF, we consider the face mesh to
be volume of ‘thickness’ e. This allows us to define the
ground-truth SDF as follows

VxeP 4)

SDF ¢ (x) = Point2Mesh(x) — % )

where Point2Mesh is the point-to-mesh distance function
and e is a small number denoting the thickness of the mesh.
Additionally, the geometry network is regularized using the
eikonal loss:

Losseik (x) = Ex(||Vxfo(x)|| - 1)* (6)
The full loss on the geometry network is
Lossf?, ..(x) = LosSzeo(X) + ALossein(x)  (7)

where A = le~* is a regularization coefficient.

3.3. Recovering the Facial Geometric Details

Once fy has been trained to approximate the coarse ge-
ometry, we use the provided image, I, to fine-tune fy and
recover the facial geometric details. In order to render the
SDF fy, we use sphere-tracing along with a rendering net-
work g,,. Rays are shot into the scene from the camera cen-
ter o, and the intersection of these rays with the face mesh
is estimated using sphere-tracing and implicit differentia-
tion [31]. The colors of the intersecting points are predicted
using g,,. More specifically, consider aray, r = o+vt, with
viewing direction v, parametrization ¢, and surface intersec-
tion point X. The RGB color at X is calculated as follows:

Cx = Gu (qﬁ(i% ng, ¢(V)7’Yj") (8)
where cx is the predicted RGB color at point X, ny is the
normal at point X and 'y’} is a feature vector predicted by
the geometry network, fp at X. The facial geometric details
are recovered by jointly optimizing the geometry network
fo and the rendering network g,, with respect to the photo-
metric loss as follows:

min Losscolor (€, €%) = |[cx — cZ|| ©)

where clgf is the ground truth pixel color. The gradients to
the geometry network fy, are calculated using implicit dif-
ferentiation [31]. Additionally, in order to ensure that fy
does not drift too far away from the face shape, it is regu-
larized using the coarse SDF from Sect 3.2. The complete

loss of the geometry network is:
Loss’’,..i(cx, c2t) =[|ex — cZ'||
+ Mllfo(¢(x)) — SDFGr(x)]|

+ AoLoSSe;ik
(10)
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Figure 4: Ablation Study: Here we ablate the contributions of the normals and the feature vector as input to the gradient network (see
Eq. (9)). The first column is the image on which SIDER is optimized. (a) Geometry learnt without using the feature vector as input. (b)
Geometry learnt without using the normals as input, (c) Geometry learnt without using both feature vector and normals as input. The last
column shows the result of SIDER that uses both the normals and the feature vector as input to the rendering network.

where A; = 1e?, \y = le™* are the regularization coeffi-
cients.

4. Experiments

In this section, we evaluate SIDER’s ability to recover
facial geometric details from single in-the-wild images. We
present both qualitative and quantitative results, and com-
pare our proposed approach to the current state of the art.

4.1. Implementation Details

SIDER learns detailed facial geometry given only a sin-
gle image. We perform extensive experiments on images
from three publicly available datasets, namely FFHQ [13],
ALFW2000 [34], and the NoW challenge dataset [22]. We
choose challenging images that contain both subtle and
more complicated facial geometric details, including wrin-
kles and skin folds. The images are resized to 256x256 res-
olution before fitting the FLAME model.

The geometry network, fy(-), consists of 8 linear layers
and a skip connection from the input to the fourth layer, sim-
ilarly to [31]. The rendering network, g,,(-), consists of 4
linear layers. Its input is non-linearly mapped to learn high
frequencies [18]. Each layer of both MLPs includes 512
hidden units. We first train the geometry network for 1000
epochs to learn the coarse geometry. Then, we fine-tune it
via photometric optimization and jointly train the rendering
network for around 200-300 epochs, until the loss is not de-
creasing further. We use Adam optimizer with a learning
rate of 10™%. It takes about 3 days on a single Titan RTX
GPU for the method to converge.

4.2. Ablation Study

Gradients from the photometric loss of Eq. (9) are back-
propagated into the geometry network fy via the feature
vector, the normals and the intersection point Z (see [31]).
In this section, we ablate the contribution of the feature vec-
tor and the normals by alternatively removing one or the

other, and finally both, from the input to the rendering net-
work g,,. Fig. 4 shows the results of the ablation study, the
first image from the left is the input image on which SIDER
was trained, (a) shows the results when the feature vector is
removed from the input to g, (b) shows the results when
the normals are removed from the input, (c) shows the re-
sults when both are removed, and the last image shows the
results of the full model. Without the feature vector as input
(see Fig. 4 (a)) the geometry network does not recover any
facial geometric details and the geometry is very smooth. In
contrast, without the normals as input (see Fig. 4 (b)), the
geometry network does seem to recover some details but
the overall reconstruction suffers significantly. Without ei-
ther the normals or the feature vector as input (see Fig. 4 (¢))
learning completely fails. Using both the normals and the
feature vector (see the last column of Fig. 4) as input to the
rendering network, g,,, allows SIDER to recover high qual-
ity facial geometric details without compromising overall
reconstruction quality. The corresponding reconstruction
errors (mm) for (a)/(b)/SIDER are: median 0.62/0.80/0.54,
mean 0.73/0.87/0.69, std 0.60/0.59/0.58.

4.3. Quantitative Evaluation

We evaluate the accuracy of the detailed reconstruction
of SIDER on the NoW challenge dataset [22]. We com-
pare it with the performance of recent state-of-the-art meth-
ods, namely Pix2vertex [23], DF?Net [32], and DECA [6].
We choose NoW for our quantitative evaluation, since it in-
cludes 3D ground truth scans and provides a standard eval-
uation protocol. It measures the distance from all refer-
ence scan vertices to the closest point in the reconstructed
mesh surface, after rigidly aligning scans and reconstruc-
tions. Because Pix2vertex [23] and DF?Net [32] reconstruct
a smaller part of the face than the other methods, we ensure
that the ground truth face scan is cropped to a circular area
(same for all the methods) that would not exceed the small-
est reconstructed mesh.
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Figure 5: Reconstructions by SIDER: Above we show the results of SIDER on images from the FFHQ [13] dataset. The
first column is the input image with respect to which SIDER is optimized. The second column is the overlay of coarse
FLAME [15] mesh on the input image. The third column is the render of the detailed geoemtry learnt by SIDER. The fourth
column is the depth. The fifth column are the normals of the deetailed face geometry learnt by SIDER and the last column is
the overlay of the learnt detailed geometry on top of the input image.
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Figure 6: Cumulative error plot. Reconstruction error on
the NoW validation set for the different methods.

As shown on Table 1, SIDER outperforms the current
state-of-the-art, i.e. DECA [6], and other methods by a
healthy margin. The mean and median error of SIDER is
0.89 mm and 0.66 mm respectively; both of which are less
than that of DECA [6], which has a median error 1.19 mm
and mean error of 1.47 mm. Additionally, the standard de-
viation of SIDER is lower than that of DECA [6], 0.88 mm
as compared to 1.25 mm of DECA [6]. Similarly, the cu-
mulative error plots in Fig. 6 demonstrate the significant ad-
vantage of SIDER compared to the other methods.

’ Method \ Median (mm) \ Mean (mm) \ Std (mm) ‘
Pix2vertex [23] 1.93 2.74 2.85
DF?Net [32] 1.84 2.51 3.40
DECA [6] 1.19 1.47 1.25
SIDER (Ours) 0.66 0.89 0.88

Table 1: Quantitative results. Reconstruction error on the
NoW validation set.

4.4. Qualitative Evaluation

We next provide an extensive qualitative evaluation of
SIDER on in-the-wild images from datasets for which no
ground truth is available.

In Fig. 5, we demonstrate qualitative results of SIDER
on images from the FFHQ dataset [13]. The columns of the
figure show correspondingly: the input image, the FLAME
fitting, the learnt render (RGB output), the depth, the nor-
mals, and finally the overlay of the reconstructed face, with
geometric details, on top of the original image. As can be
seen, SIDER recovers accurately the geometric details for
each input image. For example, in the first row of Fig. 5,
the geometric details arising on the left side of the forehead
due to the raised eyebrow are captured faithfully. Similarly,
in the second row we see the wrinkles around the mouth are
realistically recovered.

In Fig. 3, we show the RGB output and normals during
the joint training of the geometry and rendering networks.
We can see how the networks gradually learn a detailed fa-
cial geometry represented as an SDF.

In Fig. 7, we qualitatively compare the results of SIDER
to state-of-the-art detailed facial reconstruction methods,
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Figure 7: Comparison to state-of-the-art methods: Here we compare again prior art: Pix2vertex [23], DF?Net [32], FLAME fitting [15]

and DECA (w/ details) [60]. Input images taken from FFHQ.

namely Pix2vertex [23], DF2Net [32], and DECA [6]. The
first column corresponds to the input image, the second col-
umn contains the results of Pix2vertex [23], the third con-
tains the results of DF?Net [32], the fourth column contains
the results of simple FLAME fitting [15] (used as ground
truth of the coarse geometry during the first stage), the fifth
column contains the results of DECA with details [0], the
current state-of-the-art, and the last column contains the re-
sults of our method. Note that DECA results are masked
with FLAME, in order to illustrate only the face region for
fair comparison with the other methods. As can be seen,
SIDER is able to recover significantly more detail than the
other methods. Pix2vertex [23] generates detailed recon-
structions that are quite smooth and misses large visible ge-
ometric details such at the skin fold on the right side of the
lip of the image in row 1 or the wrinkles on the forehead of
the image in row 4. The results of DF2Net [32], while re-
covering greater geometric details than Pix2vertex [23], are
still prone to errors. For example, it misses the wrinkles on
the forehead of the image in row 2 and recovers incorrect
details on the forehead from the image in row 4. The pro-
duced meshes also contain artifacts, e.g. on the right part

of the head in rows 1 and 2, or include extreme curvature,
e.g. in the eyes region. The face shape is also affected by
lighting to a great extent (e.g. shaded part in row 2).
DECA [6], the current state-of-the-art in facial geometric
details recovery, generates better reconstructions than both
Pix2vertex [23] and DF2Net [32], however it is unable to
recover fine geometric details. For example, the skin fold
on the right side of the mouth of the image in row 1 is cap-
tured by both our method, SIDER, and DF?Net [32]. In
contrast, DECA [6] is unable to recover it. Similarly, the
geometric details under the right eye of the image in row 2
are not recovered by DECA [6]. SIDER, however, is able to
accurately recover them. The skin folds around the eyes and
around the lips of the image in row 3 are faithfully recovered
by SIDER, but DECA [6] is unable to reconstruct them. In
Fig. 8, we show a direct comparison of the facial geometric
details generated by SIDER and DECA [6]. Insets in green
show details generated by SIDER and insets in red show de-
tails generated by DECA [0]. For the image in row 1, we
see that SIDER is faithfully able to recover the details on the
forehead, around the eyes, and around the mouth. In con-
trast, the details recovered by DECA [6] are over-smoothed
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Figure 8: Detailed comparison to DECA (w/ details) [6]: Here we compare the facial geometric details generated by DECA (red insets)
and SIDER (green insets). For the image in the top row, we see that SIDER faithfully recovers the details on the forehead, around the left
eye and around the left corner of the lip. In contrast, DECA [6] smoothens the details on the forehead and fails to recover the details around
the left eye and the left corner of the lip. Similarly, for the image in row 2, SIDER is able to accurately recover the details on the forehead

and around the left eye, while DECA [6] fails to do so.

and inaccurate. Similarly, for the image in row 2, we see
that the details recovered by SIDER have greater fidelity to
the input than the details recovered by DECA [6].

In summary, as can be seen from the qualitative results
in both Fig. 5, Fig. 8 and Fig. 7, SIDER is able to recon-
struct high-quality facial geometric details from single im-
ages, more accurately and with greater fidelity to the input
image than competing methods.

5. Conclusion

In this work we present SIDER, a method for high-
fidelity detailed 3D face reconstruction from a single im-
age that can be trained in an unsupervised manner. Our
approach combines the best from classical statistical mod-
els and recent implicit neural representations. The former
is used to obtain a coarse shape prior, and the latter pro-
vides high-frequency geometric detail, by only optimizing
over a photometric loss computed w.r.t. the input image.
A thorough quantitative and qualitative evaluation shows
that SIDER outperforms current state-of-the-art by a sig-

nificant margin. A limitation of our current approach is that
it still cannot handle details like hair or beards and acces-
sories such as glasses. This is because the photometric loss
for these regions would require sub-pixel accuracy. In the
future, we will explore alternatives for addressing this type
of high-frequency details.
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