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Abstract 10 

To implement an Industry 4.0 Framework in an ongoing industrial manufacturing 

process to prepare it for complex Artificial Intelligence use cases is not an easy task. 

The automotive industry is undergoing a large transformation due to a variety of 

disruptive factors through the introduction of CASE (Connected, Autonomous, Shared, 

Electrified) technologies. Production improvements will enable future development of 15 

CASE capabilities. This paper presents an Industry 4.0 framework, named BiDrac, that 

integrates computing, communication and control under an Industrial Cyber-Physical 

System (ICPS) ecosystem. It combines Artificial Intelligence and Industrial Internet of 

Things (IIoT) inside the Industry 4.0 paradigm for the Predictive Maintenance of an 

Automotive Paint Shop Process inside an Industrial Cloud (IC) as an open platform that 20 

provides community of cloud-based solutions to enable the development of new digital 

solutions. Several real use cases of the proposed platform have been included in the 

results section to illustrate the potential of the proposed framework. 
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1. Introduction 

Digital Transformation meets technology and people to improve the way Industrial 

Cyber-Physical System (ICPSs) is built or adapted, to understand industrial processes 

deeply with each intrinsic dimensionality and to add new analytics perspectives to solve 

problems (Ustundag and Cevikcan, 2018). So smart and automatic solutions should be 30 

included in industrial process using Artificial Intelligence (AI-driven framework) to be 

competitive (Porter and Heppelmann, 2014) inside the Industry 4.0 paradigm that 

basically influences the manufacturing industry (Stock and Seliger, 2016). 

This paper presents the BiDrac framework, that aims to profit from the integration 

of computing, communication and control under an ICPS ecosystem (Colombo et al., 35 

2017) combined with Artificial Intelligence (Russell and Norvig, 2016) and Industrial 

Internet of Things (IIoT) (Garcia et al., 2019) inside the Industry 4.0 paradigm for the 

Predictive Maintenance (Ran et al. 2019) of an Automotive Paint Shop Process 

(Streitberger and Dössel, 2008).  

BiDrac is the Ecosystem where to integrate Equipments, Technical Locations, 40 

PLCs, sensors, communication protocols (OPC-UA (Pauker et al. 2016), MQTT (Mott, 

2020)), production networks, industrial networks, corporate networks, Complex 

Infrastructure Systems (CIS), ETL tools, Data Bases, Datawarehouse, Data Lake, 

Digital Platform, Algorithms, Machine Learning models, Artificial Intelligence models, 

Infrastructure, MES, ERPs, among others.  BiDrac has been created to allow predictive 45 

maintenance in the  Paint Shop of a car manufacturer. This paper shows how the BiDrac 

framework allows applying Artificial Intelligence and Predictive Maintenance 

illustrating several use cases.  

1.1 Literature review 

The car coating process (Sreitberger and Dössel, 2008), considered as case study in 50 

this paper, has also been considered in other contributions. This process is a good case 

study for building an Ecosystem to integrate all the “Things” of the “Industrial Internet 

of Things (IIoT)” (Wollschlaeger et al. 2017; Jeschke et al., 2017) with data, advanced 

analytics and artificial intelligence in order to add value and knowledge with their 
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interactions (see Machine to Machine (M2M) described in (Wu et al., 2011)) and lead 55 

to a Smart Factory (Wang et al. 2016). 

Automatization and Control with IT-Shopfloor are in the first stage, Edge 

Computing with data in  the second one, Digital Production Platform with Artificial 

Intelligence engines with metrics of goodness are in the third one and automated or 

manual actions on the first stage or on the ERPs system (schedule actions) in the fourth. 60 

A wide range of different Frameworks have been developed to improve advanced 

monitoring in industrial processes. Depending on the companies and the availability for 

developing new solutions, on-premise or cloud-based, the architecture proposed is 

going to be different (Kazemi et al., 2019). 

Data is collected from the Technical Locations and Equipments (installation) and 65 

provided by different information systems and data sources that are not integrated. 

Information systems act as a concentrator to send (push) heterogeneous data packages 

in real-time from the SCADA (WinCC 7.5 Simatic S7 Project) to the MFS framework 

software and an Extract, Transform and Load tool (ETL), connects to the information 

systems Data Warehouse to extract in near real-time data to the BiDrac Staging Area 70 

(Sajid et al., 2016).  ETL tools (Kimball, et al. 2011) pre-processes data, applies 

transformations and loads the pre-processed data to the edge computing BiDrac Data 

Lake (O’Leary, 2014; Miloslavskaya and Tolstoy, 2016). Clean Data is stored into the 

Data Lake, to detect any abnormality or fault in data, and to perform diagnosis and 

prognosis (Schwabacher, 2015; Reis and Gins, 2017). 75 

Cloud Computing (Buyya et al., 2010) treats everything as a service. The services 

are defined under a layered system including Infrastructure as a Service (IaaS) (as e.g. 

virtual servers, networks or storage and where users can deploy and run software), 

Platform as a Service (PaaS) is where applications reside and run into the cloud 

infrastructure (as e.g. users develop and run scalable applications using high speed 80 

servers and storage using programming languages on the cloud infrastructures). 

Software as a Service (SaaS) and Function as a Service (FaaS) allows to eliminate the 

service applications and functions on local devices of individual users (Alcácer and 

Cruz-Machado, 2019), under the paradigm of Everything as a Service (XaaS). 
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85 

Fig. 1: Cloud Computing schema (Alqaryouti, 2018) 

 

The largest cloud service provider in 2020 is Amazon with the scalable, high 

availability and dependability, cloud computing platform Amazon Web Services 

(AWS) (AWS, 2019). Amazon offers flexibility to the users to build their own 90 

applications in a secured environment.  

Digital Production Platform (DPP) or Digital Manufacturing Platform (DMP) is a 

part of a layered architecture, commonly deployed in the cloud, that integrates 

operational state and ICPSs data provided by an industrial process, by their information 

control systems or directly from the PLCs or the sensors, using networks and 95 

communication protocols as interfaces and bring the data to a third party applications 

(EFFRA, 2019). DPP is a multi-tenant, secure and scalable platform consisting of data, 

device, and analytics services. DPP provides standardized device connectivity and 

management services that allow production facilities to manage and operate their plant 

floor machines and devices. 100 

The Volkswagen Group and Amazon Web Services developed an Industrial Cloud 

(Fig. 2) that will integrate and combine data of all machines, plants and systems from 
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all the 124 production facilities of the Volkswagen Group (VW-AWS, 2019). In July 

2020, up to 18 production plants have been connected to the Industrial Cloud and started 

developing functions, services and applications with their partners (VW-AWS 105 

Industrial Cloud Hub, 2020). IT at the production level of machinery, equipment and 

systems will be standardized and networked across the plants. Volkswagen has chosen 

the AWS portfolio of services including Internet of Things (IoT), machine learning 

analytics and compute services to construct the IC. It is entirely built on AWS native 

services, but other providers can join it. It uses the suite of AWS IoT Services, including 110 

AWS IoT Greengrass, AWS IoT Core, AWS IoT Analytics, and AWS IoT SiteWise, 

to detect, collect, organize, and run sophisticated analytics on data from the plant floor. 

The architecture is the new Digital Production Platform (DPP) used by Volkswagen. 

All plants and companies out of the Group are going to dock their system architectures 

into the platform. This platform will standardize and simplify data exchange between 115 

systems and plants. The aim is to achieve significant productivity improvements in the 

plants through the development of new use cases and solutions that will increase plant 

efficiency and uptime, improve production flexibility and increase vehicle quality for 

Volkswagen. Before DPP’s arrival to the BiDrac project, BiDrac Data Lake had been 

constructed and prepared to be integrated in the DPP and several works on premise 120 

developed using Python environment have been  tested. 

 

Fig. 2: BiDrac inside the Volkswagen Industrial Cloud with Amazon Web Services 

(based on VW-AWS, 2019) 
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 The IC is designed as an open platform, community and marketplace of cloud-125 

based solutions. It is an open architecture that connects industrial processes (production 

and supply chain) to the cloud and standardizes the sharing and exchange of data. An 

IC includes as partners diverse communities of part suppliers, logistics providers, 

technologies providers, systems integrators (SIs), independent software vendors (ISVs) 

and original equipment manufacturers (OEMs) (VW-AWS Industrial Cloud Hub, 130 

2020). The IC facilitates the convergence of Operational Technology (OT) and 

Information Technology (IT) by providing methodologies and standards to integrate 

OT into the cloud platform. The Community or Industrial Partner Network is a large 

consortium of “builders” on the IC. The marketplace is a trusted and secure 

environment for sharing, selling, or acquiring proven applications. The IC helps to 135 

approach major challenges, such as to reduce the barrier of entry for new technologies, 

lower costs for production and innovation, stable and secure environment, enable the 

rapid deployment of solutions, integrate fragmented IT Landscape and IoT platforms 

(because of a lack of a harmonized, singular, open, industry-standard platform), include 

other companies, complexity of processes and supply chain, and competing customer 140 

demands. The IC also allows organizations focusing their resources on their challenges 

without needing to build an infrastructure on their own – it is a multiplier force. More 

benefits are: long-term partnerships, co-developed solutions, early access to the latest 

IoT technologies, 24/7 system, setting of new modern data-driven models, developing, 

launching, selling or acquiring services and cross-functional solutions via IC 145 

marketplace. The IC provides solutions to key manufacturing use-cases, including and 

not limited to: Digital Shop Floor Management, Smart Production processes, Predictive 

Maintenance, Smart and Predictive Quality, Smart Identification and Localization, 

Transparent N-Tier SCM and Material Flow Track/Trace. The objective is to create a 

continually growing worldwide industrial ecosystem. BiDrac Project aims to help 150 

focusing on Predictive Maintenance, Smart Production processes and Digital Shop 

Floor Management without losing the Smart and Predictive Quality inside the Paint 

Shop Process because of the surface defects due to malfunctions of the automated 

process. 

The Reference Architecture Model Industry 4.0 (RAMI4.0) (Pauker, 2016) appears 155 

in Germany as the guidance for the implementation of Industry 4.0 technologies.  
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Fig. 3: Reference Architecture Model (RAMI4.0) (Pauker, 2018) 

The 3D model of Figure 3 enables to identify the existing standards and among it 

allows the step-by-step migration from the current to the future manufacturing 160 

environments. 

Advanced digital production (ADP) technologies change manufacturing production 

process by introducing digital production systems close to the physical processes. As 

discussed in the “Industrial Development Report 2020: Industrializing in the digital 

age” report from United Nations Industrial Development Organization (UNIDO, 2020), 165 

ADP technologies – combining hardware (advanced robotics and additive 

manufacturing), software (artificial intelligence, big data analytics and cloud 

computing), and connectivity (OPC UA, MQTT and Internet of Things among others) 

– used under the ethics paradigm can foster inclusive and sustainable industrial 

development (ISID) and the achievement of Sustainable Development Goals (SDGs). 170 

Technological paradigm aims to accelerate innovation and increase the value-added 

content of production in manufacturing industries. ADP increases efficiency and 

productivity of industrial production processes transforming them as a part of a smart 

factory. Digital transformation needs more skilled and knowledge-based sectors. The 

UNIDO report provides strategic areas that deserve particular attention: (i) developing 175 

framework conditions; (ii) fostering demand and leveraging ongoing initiatives; and 

(iii) strengthening required skills and research capabilities. The goal is to build 
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dynamic, sustainable, innovative and people-centred industrial processes with ADP 

technologies as a one driver more of our industrial development. 

When ICPSs work in complex environments (e.g., HVACs, Coating Cabins, Ovens, 180 

Robots) with high-dependencies between them, it is mandatory to build an optimal 

maintenance strategy, based on accurate positioning of fault locations and prediction of 

fault conditions (Liu et al., 2019). Improvement of maintenance scheduling tasks need 

to know, just in time, the health status of each ICPS.  As in the methodologies for 

enabling Digital-Twin (DT), technical locations and equipment  must be mapped under 185 

ICPSs’ tree to cover the entire process. Each location will be influenced by the 

degradation of the health status of the mapped resources and as a result they are used 

in context of predictive maintenance models (Aivaliotis et al., 2019; Tao et al., 2018). 

The scope of the BiDrac project does not include Digital-Twins modelling and enabling 

but the concept allows to introduce the mapping of the ICPSs in it. 190 

The ERP SAP Plant Maintenance (PM) module (Liebstuckel, 2011) includes in the 

master data equipment (PM-EQM-EQ), technical locations (all ICPSs in the process) 

for functional location (PM-EQM-FL) or a combination of them (equipment at 

functional locations), class (specifications for objects), and maintenance orders 

management and event register for each ICPSs. PM orders functional locations and 195 

equipment inside a 7-level tree map and classifies them into process, auxiliary and 

transport. This structure forms the basis for implementing data integration and, also, for 

implementing advanced and artificial intelligence modelling to introduce predictive 

maintenance. 

Using the SAP PM multi-level tree map in the data model assures data integration inside 200 

the BiDrac Data Lake and allows the multi-attribute and multi-criterion analyses. In the 

literature, the concept of super-network (Liu et al., 2019) is used to describe a 

multilayer complex network. This network’s features are multi-level, multi-attribute or 

multi-criterion and are being used to describe the interaction and influence between 

networks. The super-network consists of three sub-networks: data physical layer, data 205 

virtual layer and data service layer. Mapping between data physical layer sub-network 

is the SAP PM multi-level tree map. 
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Inside an automated industrial process, several relevant KPIs are used to describe 

the health of ICPSs in the Maintenance Department (e.g.  MTTRi, MTBFi, OEE, and 

Availability) (Yan, 2014). Also, in Maintenance, different kinds of data (related to 210 

production, energy and environment) can be found. Thus, this is the suitable atmosphere 

to build and apply advanced monitoring and predictive maintenance techniques using 

signals, parameters, warnings, alarms, faults, etc. Predictive Maintenance algorithms 

are a tool which allow scheduling preventive maintenance work orders from predictive 

analytics results in order to act when and where is needed due to the health of the 215 

equipment or installation. 

1.2 Motivation and Contribution 

This paper presents a developed innovative industrial ecosystem. Most companies 

still do not analyse the process data of the ICPSs that, in the best case, are obtained 

from several shop floor systems with advanced data analytics algorithms in an 220 

integrated way. From these data can be obtained relevant information about the status 

and behaviour of the physical elements inside the factory. However, this information is 

not easy to analyse because of the large amount of data and sources in which they are 

stored and the data heterogeneity problem (Jirkovsky, 2016).  

Monitored real-time CIS systems produce a huge amount of data, which generally 225 

includes the key issues of the actual status and behaviour of the monitored industrial 

and automated process. SCADA systems (as e.g., WinCC) are effective, but data should 

be conveniently collected and processed to enlighten this information appropriately. 

Big Data Analytics is an emerging and growing-up field which aims to extract valuable 

information from the huge amount of data available. From this information, it is 230 

possible to provide advice about the system behaviour. This process embraces from the 

raw data collection (gathered from signals of the sensors or PLCs) to the isolation of 

undesirable behaviours in the plant operation, including signal data 

validation/reconstruction and prediction because data abnormality detection, 

imputation and fault analysis for ICPS is the base of a good data analysis. 235 

BiDrac Ecosystem aims to solve research questions as the ones in the following list: 
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Research question 1: What is the optimal Ecosystem architecture that fits the 

standard of SEAT, S.A. as a member of the VW-Konzern to go from the signals of 

sensors or PLCs to the artificial intelligence techniques applied to real process data? 

Research question 2: Inside the Paint Shop process, considering the current status 240 

of installations, networks and communications protocols, which is the most suitable 

way to collect, store and distribute the raw and pre-processed data to the corporate 

network? 

Research question 3: Which is the most suitable Data Lake technical design to 

integrate pre-processed data under one data model? Which is the data model that 245 

satisfies the needs and the key performance indicators (KPIs) related to the Paint Shop 

process and Maintenance area? 

Research question 4: Which is the most suitable Data Model for this specific 

industrial process?  How can a metadata layer (based on this data model) be built to 

label each physical element of our installations (Equipments, Technical Locations) with 250 

each signal from sensors or PLCs and label each signal with their characteristics, types, 

classifications and unities of measure?  How can this heterogeneous data problem be 

dealt with? 

Research question 5: Which is the most suitable digital production platform to use 

to apply artificial intelligence techniques into specific data sets to deal with different 255 

use cases?Which are the most suitable tools to bring the Artificial Intelligence 

algorithms results to the physical elements and to the installation? Artificial Intelligence 

results may come back as actions to do into the process. There are two ways to get the 

results: as an advert in a smart peripherical device or as an automated signal to a PLC. 

Research question 6: How can inclusive and sustainable industrial KPIs be 260 

introduced into the Paint Shop process focused on data analytics from BiDrac 

Ecosystem? How can these digital skills and capabilities be transferred to the final users 

of BiDrac Ecosystem?  

 

This paper illustrates the application of BiDrac framework presenting some use 265 

cases’ results which answer some of the previous research questions in the automotive 

paint shop process of the car manufacturer SEAT (part of VW group) in Martorell 

(Spain). 
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1.3 Structure 

The rest of this paper is organized as follows: Section 2 provides an overview of the 270 

proposed approach. Section 3 focuses on the description of the methodology designed 

to achieve the goals and the progress beyond existing solutions. Section 4 presents the 

BiDrac application results gained in some selected use cases. Finally, Section 6 draws 

the conclusions. 

2. BiDrac approach 275 

        The wished output is to have complete descriptive and predictive input data sets 

with their results, inside the BiDrac Ecosystem (Fig. 4), to post-perform the 

corresponding action in the industrial process, giving an accurate architectural 

framework for distributed ICPS by the design, implementation and operation. The 

proposed infrastructure includes edge computing with BiDrac Data Lake, cloud 280 

computing with Digital Product Platform for artificial intelligence algorithms, smart 

gateway, industrial and corporate network, and assuring safety, privacy and security for 

ICPS. Several analytics use cases will be presented to prove the applicability and 

effectiveness of the proposed Ecosystem for a Paint Shop industrial process, with 

remarkable potential to optimize installations and reduce production volume loss to 285 

their final users. 

 
Fig. 4 BiDrac Ecosystem  

 

Paint Shop industrial process systems are complex infrastructure systems facing 290 

new challenges in their real-time operations because of several issues (as e.g., limited 
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resources, intensive energy requirements, growing production, growing installations, 

costly and ageing infrastructure, increasingly stringent product quality criterions, and 

increased attention towards the environmental impact of automotive industry). 

The number of bodies painted per day in the Paint Shop of the Martorell car 295 

manufacturer Seat, S.A. ranges from 2.200 to 2.400. This corresponds to almost one 

body coated per minute of production time. In an automotive factory the surface 

treatment is the process that consumes most energy, water and chemicals, and produces 

most waste and pollution. Roughly 50% of the energy is used in the paint shop with an 

average consumption of 800-1000 kWh per body. Within the paint shop, the dominating 300 

energy cost is the heating and ventilation of air (HVAC) in the booth (50%) followed 

by the ovens (25%).  

3. Methodology description 

The better way to introduce the proposed methodology is to start from its main 

premise that “all that can be integrated is going to be integrated”. Actually, BiDrac 305 

methodology considers integrating and labelling as main keywords. 

The different phases of  BiDrac methodology are: (1) Ecosystem design and 

technical specification and requirements; (2) Research work to achieve project’s 

objectives and (3) The development of the analytics use cases applying advanced 

analytics and artificial intelligence in order to validate and value the proposed approach. 310 

The methodology is applied from general to specific. This case focuses on the specific 

industrial process of coating bodies, but this methodology can be applied to all 

industrial process over different industry sectors. 

The first phase consists in the physical process data analysis and  the creation of a 

mapping tree of labelled signals to the Equipment or Technical Location that contains 315 

them, and in which information control system are located. Then, the pre-processing, 

transformations and data validation processes have been developed.  

Then, a relational data model, where all the data are integrated, is developed in the 

Corporate Network. The BiDrac Data Lake contains all significant data from several 

data sources prepared for analytics. The mapping tree of all the ICPSs allow to add new 320 

sensors, signals, equipment, or technical locations, making easier the growth of the 

BiDrac Data Lake. 
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ETL processes assure the feed of the BiDrac Data Lake. The extraction is scheduled 

in order to not affect the Paint Shop Production Network and bring the data to the 

Corporate Network. 325 

The applications and frameworks used to manage data from the BiDrac Data Lake 

are in the Corporate Network, so the queries run under this network. 

The technical design of the BiDrac Data Lake includes several work packages  to 

minimize or avoid design problems that could stop the project: 

− Collect all the Technical Documentation available of the two main control 330 

systems in the Paint Shop: MFS and Sicalis-PMC. MFS for the product and 

processes tracking and Sicalis-PMC for installation signals and parameters 

(faults, warnings, sensor values, parameters, boundaries, etc.).  The technical 

documentation was not updated nor digitalized at the beginning of this project. 

Digitalized version was distributed after the work package was done. 335 

− Both control systems had obsolescence and presented a high-risk to stop the 

process. The application servers and old Datawarehouse Unix-based 

information systems with only 60 shifts of historical data were analysed. At the 

beginning of this project there was no migration project scheduled for them. 

Actually, both systems have been updated to the last versions available and 340 

located in a CPD under the IT maintenance service. 

− Both control systems (Sicalis-PMC and MFS) were not integrated. Sicalis-

PMC made groups of 10 variables; the name of the group informs about the 

technical location where the contained variables can be found. As technical 

locations have big amounts of signals (thousands), it is difficult to list all the 345 

signals related to one technical location. MFS has an ID per technical location, 

to do the body tracking and also an ID per body, each body has a unique PIN 

(VIN) and the Moby-I tag on the movement unit, SKID, contains all the 

parameters needed to coat the body. This information is stored in the MFS 

control system. The ERP is SAP and the maintenance department use the 350 

module PM that provides a 7-level mapping tree for Technical Locations and 

Equipments. To integrate all the data, a new semantic layer (master data and 

metadata) (Liu et al., 2019) has been constructed including all data into the 

mapping to prioritize the most relevant for advanced monitoring and artificial 

intelligence modelling. 355 
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− From BiDrac, it is possible to extract a specific data set with enough accuracy 

to create each required model on premise in a local server or, in the future, when 

the models are going to be developed and stored into the Digital Production 

Platform (DPP) where a net of algorithms is connected under the same 

industrial process ecosystem. Inside the DPP, algorithms are considered as 360 

gears; each algorithm could be part of the input of other algorithm as an infinite 

spider network with exponential growth. 

4. Application Results 

4.1 BiDrac Data Lake 

A data model for the integration in the Paint Shop have been developed in order to 365 

make analysis with all the significant data where and when it was needed without taking 

into account the initial data source where it was stored. 

First step was to introduce the SAP PM Fenix mapping tree (Fig. 5), as the 

methodology of digital twins proposed to target all the ICPSs and including the main 

control systems in the Paint Shop, Sicalis-PMC and MFS. 370 

 

 
Fig. 5. SAP PM Fenix as integrator of Sicalis-PMC and MFS (online and offline)  

 

Second step was to understand the process data intersections and correlations: time 375 

series models, dependencies between productive, auxiliary and transport Technical 
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Locations. How this gear is going to work? For instance, Fig. 6 shows how a fault 

influence the coating process and examples of analysis that could be done when the 

fault appears and is predicted by an AI model. 

380 

Fig. 6: Fault influence on the coating process.  

 

This task is the basis of the data model orchestration allowing to discover how the 

tables are going to be constructed and which relations are needed. When a fault appears 

in one of the ICPs of the Paint Shop Process mapped in BiDrac (Fig. 6), the data model 385 

constructs aims to correlate the data from the faulty ICP with other ICPs  (the 

production flow and scheduling, the nearest related ICPs, automated transport system, 

auxiliary ICPs (HVAC), energy consumptions and management, quality data of the 

coated bodies, maintenance and production KPIs) using advanced statistics, artificial 

intelligence and machine learning algorithms. 390 

In this phase, more data are added from other data sources to the BiDrac Data Lake 

that contain suitable data for complex and bigger data models, descriptive or predictive 

models (Fig. 7). 

A data model with 157 final tables and more than 700 FKs and relations is 

constructed as shown in Fig. 7. 395 
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Fig. 7. Data model of the BiDrac Data Lake 

BiDrac Data Lake included five years of historical Data prepared to be analysed. 

Finally, a semantic layer has been included. The software chosen to develop 400 

reporting with advanced monitoring and descriptive analytics is the SAP Business 

Objects 4.2 (SAP BO) (see (SAP, 2020) for more details). The SAP BO adds a semantic 

layer to the data models known as universes and contain dimensions, metrics and 

attributes using business language. 

BiDrac Data Lake has 11 linked universes with energy, faults, TPM, Surface 405 

Defects tunnels with automatic detection, Surface Defects from FISeQS quality system, 

plant calendar, program order, mixing room, and DracMaster data. 

The end users of BiDrac Ecosystems use the web environment of SAP BO to make 

their own reporting or to consult the existing ones. Every user can analyse what, where 

and when he needs. For this reason, this was a big challenge at the beginning of the 410 

project. 

4.2 Advanced Monitoring and Descriptive Analytics 

The application of the proposed methodology is illustrated presenting several use 

cases in real scenarios. These use cases are developed on edge in a local server to show 

the goodness and robustness of the BiDrac Data Lake. Future work is to replicate them 415 

in the DPP. 
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A. Sensor validation and reconstruction use case 

The BiDrac solution has been applied to the Paint Shop process in this paper for 

illustrative purposes extending the preliminary results presented in Sanz et al. (2017). 

The data validation/reconstruction module has been applied to the sensors of the 420 

Workshop 4 (T4) and 5 (T5) (see Fig. 8). 

 

Fig. 8: Model for the Production Flow analyses from T4 to Primer line in T5 

A model that relates every sensor with the physically related ones will be 

obtained using historical data. This model will be used to check the consistency of 425 

the sensor measurements to validate or invalidate the data following the 

methodology presented in Garcia et al. (2016). 

Figure 8 presents the 34 sensors considered that belong to three control systems 

(the two-monitoring systems in the Paint Shop and the Fabrik Information Systeme 

(FIS) that is the production scheduling system used in Seat, S.A.). This set of sensors 430 

includes 18 variables from the Sicalis-PMC Control System, 14 variables come 

from the MFS Control System and 2 from the FIS System. 

Using these 34 variables and basic mathematical flow relations by means of the 

structural analysis using the ranking algorithm described in Blanke et al., (2016), 

21 analytical redundancy relations (ARR) can be obtained. Every ARR allows 435 

generating a residual that will be used in the fault diagnosis module. Figure 9 

details the complete list of variables and ARRs. 
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The structural method used to generate ARRs allows also to build the Fault 

Signature Matrix (FSM) where for each ARR (row) is indicated which fault 

(columns) in sensitive by means of a one in the crossing cells as presented in Fig. 440 

10.Through FSM the residuals are detected as inconsistents (Escobet et al., 2012) 

and the fault can be detected and isolated. To enhance the robustness of the fault 

detection, an adaptive threshold for every residual is used through a set-

membership approach as proposed (Puig, 2010). If the residual value is smaller 

than its threshold, the ARR is consistent; otherwise, if it is larger it is indicated as 445 

inconsistent.  

 

Fig. 9: ARRs obtained from the production model presented in Fig. 8 

 

Fig. 10: Production model FSM. (own elaboration) 450 

As an example of the diagnosis result obtained, Fig. 11 presents residuals R6 

and R7 that are generated comparing the occupancy measured in the TTS_T4 

process and the estimated one. From these residuals, residual R7 shows coherence 

ID_Rel Form_Rel System
R1 V1(k)=V2(k) FIS
R2 V3(k)=V1(k)-V4(k)+V3(1) FIS-PMC
R3 V6(k)=V5(k-Ԏ1) MFS-PMC
R4 V7(k)=V6(k-Ԏ2) MFS
R5 V8(k)=V7(k-Ԏ3) MFS
R6 V10(k)=V5(k)-V9(k)+V10(1) MFS-PMC
R7 V10(k)=V5(k)-V8(k)+V10(1) MFS-PMC
R8 V11(k)=V8(k)-V12(k)+V11(1) MFS-PMC
R9 V14(k)=V28(k)-V30(k)+V14(1) MFS-PMC
R10 V15(k)=V29(k)-V31(k)+V15(1) MFS-PMC
R11 V13(k)=V16(k) MFS-PMC
R12 V17(k)=V138k)-V18(k)+V17(1) MFS-PMC
R13 V19(k)=V18(k-Ԏ4) MFS-PMC
R14 V20(k)=V19(k)-V21(k)+V20(1) MFS-PMC
R15 V22(k)=V21(k)-V23(k)+V22(1) MFS-PMC
R16 V23(k)=V21(k-Ԏ5) MFS
R17 V24(k)=V23(k-Ԏ6) MFS
R18 V25(k)=V24(k-Ԏ7) MFS
R19 V27(k)=V25(k-Ԏ8) MFS-PMC
R20 V26(k)=V24(k)-V27(k)+V26(1) MFS-PMC
R21 V4(k)=V5(k) PMC

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31
R1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R4 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R5 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R6 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R7 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R8 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

R10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
R11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
R14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
R15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
R16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
R17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
R18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
R19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
R20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
R21 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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between the signals while residual R6 incoherence. Matching this situation with 

the FSM, the diagnosis result indicates a fault in sensor V9 that provides the 455 

measured output volume of the TTS T4 PMC. 

This methodology is very useful to guarantee the consistency and quality of the 

sensor measurements collected from the two monitoring systems. In case that some 

sensor measurement is invalidated  it can be reconstructed by means of its model.  

460 

Fig. 11: Residuals R6 and R7 monitoring occupancy sensors of TTS T4   

 

B. Prognosis use case 

Once the application of sensor validation/reconstruction module has been 

presented, the prognosis module will be illustrated. After the sensor values are 465 

validated, conclusions can be extracted regarding the volumes and occupancies in 

the different phases of the painting process identifying potential problems (as e.g., 

body absences, blockages and breakdowns). 

The prognosis module will be used to evaluate the Remaining Useful Life (RUL) 

based on a predetermined Failure Threshold (FT) based on the maximum 470 

occupancy as follows 

ˆ| ( | )RUL N y t RUL t FT∈ + =                          (1) 
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where ˆ( | )y t RUL t+  is the RUL-step ahead forecast at time t of the corresponding 

predictive model ( ŷ ). 

To derive the predictive models from the data collected, the Brown’s Double 475 

Exponential Smoothing has been used (Brown et al., 1963). Itis based on the 

following multi-step forecast formula  

1 1( ) ( ) (1 ) ( 1)y t y t y tα α= + − −                      (2) 

2 1 2( ) ( ) (1 ) ( 1)y t y t y tα α= + − −                        (3) 

1 2ˆ( | ) 2 ( ) 1 ( )
1 1

h hy t h t y t y tα α
α α

   + = + − +   − −   
                (4) 480 

where h is the forecast horizon and α the smoothing parameter. The parameter α is 

obtained from historical data using parameter estimation by means of the least 

squares’ algorithm. 

Paint drying is a critical process while the time spent inside the oven by the body 

should not exceed the maximum allowed heating time (aprox. 25 min) and 485 

temperature. Figure 12 presents the effect in the Primer Cabin of a robot failure at 

time t = 250 minutes. As a result of this problem, an increase of occupation is 

observed in the Primer process and in the rest of subsequent processes upstream of 

the UBS oven.  The occupation of the Preparation Primer shows no change because 

their occupancy was already saturated. The T4-T5 Bridge saturates very fast since 490 

it is very close to maximum occupancy while the P9 batch starts increasing its 

occupancy. Because of the drop in Primer occupancy and the observed rise of the 

P9 batch occupancy, an anomaly is detected at the entrance (block) of the Primer 

process. By means of the proposed prognosis module, the RUL (corresponding in 

this case to the time of reaching the maximum capacity of P9 batch) can be 495 

estimated, preserving the maximum capacity of the UBS Oven. This will allow 

ensuring the bodies evacuation of the UBS Oven and avoid to block the UBS exit 

with the vehicles inside the process. 
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Fig. 12: Effects in the occupancy of the processes when a robot failure occurs 500 

The prognosis module will be able to estimate when the drop in Primer 

occupancy will create a problem at the vehicle entrance of the painting process. 

After the problem detecting, the occupancy forecasting based on (2)-(4) with 

smoothing parameter α = 0.8 is used to predict the occupancy in P9. This will allow 

determining the RUL by using (1) considering FT equal to the maximum 505 

occupancy of P9 batch minus the maximum occupancy of the UBS Oven to ensure 

the UBS Oven is not going to be blocked.  The obtained RUL is equal to 68 

minutes. Thus, if in this time the robot failure in the Primer Booth cannot be solved, 

the UBS Oven will be blocked. 

4.3 Machine learning use case to predict HVAC energy consumption. 510 

This use case has been developed in a local server to show the goodness and 

robustness of the BiDrac Data Lake. Future work will be devoted to replicate them in 

the DPP. 

The issue of energy performance of industrial installations is of great concern to 

management nowadays as it translates to cost. Some industries have adopted energy 515 

savings targets for their industrial processes to reduce air pollution and climate change 

in urban areas as well as regionally and globally. 
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The plant purchases electricity and natural gas from the utility’s companies. 

Electricity is used to power the equipment. Natural gas is mostly used for space heating 

and paint curing. Main energy conversion and transmission happens at the Energy 520 

Centre Purchased energy from the utility companies is converted to different energy 

forms (Technological Heating (steam), chilled water, compressed air, and so on) to 

cover the main production area needs. 

The main goal of this use case is to use information about time and weather to 

predict energy demand of one specific process based on historical data and weather 525 

predictions. Easy-to-implement models with minimal input requirement and high 

accuracy have been considered. Such models will benefit managers of facilities, smart 

grid and industrial areas commissioning projects. For industry facilities, if they can 

predict the energy use of all their installations, they can make plans to optimize the 

operations of chillers, boilers and energy storage systems. The model will produce 530 

accurate energy demand forecasts that the Energy Centre can use to decide the optimal 

amount of electricity to purchase in the future and minimize cost. In industrial areas 

commissioning, engineers need to verify the energy savings after energy-saving 

measures have been implemented. However, it is difficult to have enough data points 

with the same conditions before and after the changes. Therefore, engineers need to 535 

interpolate and/or extrapolate the data (Cugueró-Escofet et al., 2016). This is also an 

important application of this research. Questions of the metering and data systems need 

to be made clear before modelling. Regression models correlating the energy 

consumption with the weather information and productivity or simple time series 

models with historical data are both good choices. Detailed physical models or 540 

statistical models can be built based on the data availability. 

In this use case, different Machine Learning methods have been applied to the same 

dataset to: 

1. Identify clusters (Unsupervised Learning), at this point expert knowledge is 

used in the dataset to discover the inherent groupings in the data, 545 

2. Predict energy demand using the clustered inputs (Supervised Learning) and  

3. Prepare, for furthers studies, the inputs needed to optimize the program of the 

controllers (PIDs) in different parts of an air supply group (Reinforcement 

Learning). Considering the set-points for the temperature and humidity inside 

the coating cabin and the State Meteorological Agency (AEMET) weather 550 
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predictions, a reward function that minimizes the energy consumption is 

added. 

In brief, very different algorithms with very different goals working on the same 

dataset are concatenated to maximize the knowledge discovered to solve a common 

problem: energy saving based on time (working or non-working hours), weather (data 555 

from meteo-station and AEMET predictions) and sensor data involved. 

Machine Learning is frequently applied to energy demand prediction and energy 

saving in industrial areas. Energy modelling and analyses have been widely studied to 

understand how and where the energy is used inside of the industrial processes (trends 

and patterns). The most sensitive variables affecting energy consumptions have been 560 

investigated  identifying the different clusters and finding the best model that 

maximizes the accuracy for the energy predictions. While considering the current 

process metering status, the proposed approach has  progressed in information sharing 

and improved suggestion determination. 

There are many papers out there regarding the topics of energy demand prediction 565 

and energy saving. But it is more difficult to find studies that apply complementary 

Machine Learning techniques that solve the same problem from different perspective. 

This is one of the reasons why the scope of the use case includes the techniques 

described above applied in same season data (summer) from two consecutive years and 

with sensor data of one specific installation. 570 

The industrial process environment is controlled through an HVAC system. For the 

most part, heating energy is provided through hot water from natural gas and 

cogeneration system, and cooling energy is provided through chilled water, mainly 

from electricity. One of the main causes of fluctuation in the monthly purchased energy 

is local seasonally weather changes. During the summer months, when the weather is 575 

hot, the heating energy (hot water/ technological heating (steam)) for processes is at the 

lowest point, but chilling energy (chilled water) for spacing cooling is at the peak. On 

the other hand, during the winter months, electricity used for generating chilled water 

is at the lowest point, but the natural gas for hot water is at the peak. This is one of the 

reasons why natural gas and electricity show a seasonal trend. It is also known that the 580 

cogeneration system runs at its full capacity year-round, all energy consumptions show 

a stable linear trend during all the seasons of the year. 
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Coating cabin, as painting spray booths, are small separate rooms isolated from the 

Paint Shop areas to prevent particle matters and gases like volatile organic compounds 

(VOCs) form paint to release into the working environment. Meanwhile, the painting 585 

spray processes required controlled temperature and humidity to provide a high-quality 

finish. It needs certain amount of air blowing from the roof of the booth to collect the 

sprayed paint and prevent residuals from affecting the next coming body. It is known 

that the energy used air conditioning to maintain the booth environment is huge. 

In steady state, temperature, humidity and flow rate of the air inlet are controlled to 590 

be constant. The sensors in the unit will measure the temperature and relative humidity 

to the inlet air in the different parts inside an air supply group. The measured 

temperature and humidity will be used to compare with target parameter. Controllers 

(PIDs) will decide whether the air needs to be dehumidified, heated or cooled. Direct 

heating and cooling process is straightforward. The air goes through the heat exchanger 595 

(hot water heat exchanger for heating or chilled water cool exchanger for cooling) to 

reach the target temperature. Humidity is controlled through nozzles to increase water 

content. The studied case uses a cooling process for dehumidification. To include the 

weather information in the regression model is a good idea to make the model more 

informed and robust. The data studied is the summer one, so our electric consumption 600 

is going to be at the peak. 

 

Fig. 13.  Vertical Section of an HVAC of a Coating Cabin and sensors installed  
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The first step is to understand the data system. “Where are the meters that record 

the data located?" (see Fig. 13). Questions of the metering and data system need to be 605 

made clear before modelling. For plants that lack data systems, it is required either to 

install feasible meters for data collecting or use utility bill information instead. 

Before describing each variable in the data set, it is necessary to relate the parts of 

a Coating Cabin, as appear in its vertical section: 

 Enthalpic Wheels 610 

 Air Supply Group 

 Plenum 

 Coating Cabin / Station 

 Overspray Separation System 

 Air Extraction 615 

To predict the energy consumption of a coating cabin, the first step is to classify the 

different types of energy that can be found. Actually, for some large-scale coating 

cabins in industrial processes, there are seven types of energy consumption: electricity, 

chilled water, technological heat (steam), gas, water, demineralized water and 

compressed air. Chilled water is for cooling and steam is for heating. 620 

In one of the most intensive energy processes, it is possible to find the relation 

between many different energy forms: hot and chilled water for process conditioned 

environment, electricity for power equipment and robots, compress air for coating 

process and robots. 

The energy demand in every process can be calculated through enthalpy (before and 625 

after each phase of an air supply group, temperature and humidity are measured). In a 

scenario in which the air needs to be dehumidified, energy demand is the sum of 

enthalpy change in cooling process and enthalpy change in heating process. Dataset 

includes several meters for energy consumption, avoiding using enthalpy calculations 

unless the data collected are not significant or incorrect. 630 

Here, it is considered one station of a coating cabin and it is analysed the energy 

consumption data of May, June and July in two consecutive years, 2018 and 2019, 

focusing on summer seasonality data. For each variable in our dataset, the control 

system provides us data hourly, that it, 24 data/day. 

The temperature from our meteostation and the temperature inside our coating 635 

process are relevant variables for the use case (see Fig. 14). The temperature inside the 
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process should be maintained in the range 23+/-2 ºC with a PID control system to obtain 

good coating results. 

 

640 

Fig. 14.  Statistics of temperature outside in Martorell and inside the DL2 Coating 

Cabin. 

Inside the coating cabin the standard deviation for temperature is lower than the 

outside temperature. This result is good because the air supply group is working well, 

a priori, and also because seasonality component is present inside our dataset (summer). 645 

In the considered scenarios, PID controllers are working under the summer program. 
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Fig. 15.  Statistics of energy consumptions for the entire HVAC and for the heating 

battery of the DL2 Coating Cabin  

In summer, the bigger consumption is on the IAA1_Energy_Cooler variable (Cooler 650 

Battery), due to high temperatures in Martorell, but the data of consumption of the 

IAA1_Energy_Heater (Heating Battery) is not depreciable (because of the night lower 

temperatures) (see Fig. 15). 

One of the methods to reduce energy consumption is the modification of the set point 

temperatures adapted to the external climate conditions but maintaining coating process 655 

specifications. In particular, as above commented, this process has to respect a 

temperature restriction, while it should be maintained in the range, 23+/-2 ºC. Out of 

this boundaries quality of coated bodies could be affected because of the quantity of 

surface defects arise. So, the coating environment is tightly controlled, temperature and 

humidity are sensitive variables. To introduce how the inferencing technology can be 660 

used in the energy management, a pattern-based energy consumption analysis by 

chaining Principal Component Analysis (PCA) and logistic regression is presented to 

correlate energy and operations and further use the power data to predict when 

operation events of interest (e.g. start up, idle, peak operation, etc.) occur, resulting in 

determining how current energy usage levels in manufacturing operations compares to 665 

the optimal usage patterns (Oh, 2016). 

Although, the goal is to predict the IAA1_Energy_Cooler variable, so a PCA 

analysis of the Heating Battery variables is carried out. 

Computing pairwise correlation of columns is also a good idea to reduce the number 

of variables in furthers analysis, and, also when the unsupervised analysis is applied, 670 

PCA with a subset of variables. 

The final model created for this use case combines several different machine 

learning techniques. This problem is, from a macro view, an example of a machine 

learning regression and classification task because it requires predicting a continuous 

target variable (energy consumption of the air supply group) based on one or more 675 

explanatory variables (values from sensors installed). This problem is a supervised task 

because the targets for the training data are known ahead of time and the model will 

learn based on labelled data. 

Going deeper in the macro view described above, a two-phase use case is proposed: 
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1. Unsupervised Learning approach: PCA, K-Means. 680 

2. Supervised Learning approach: Xgboost, GradientBoostingClassifier, 

BaggingClassifier, scoring method using GridSearchCV() and a decision tree 

regressor to tune the model. 

In order to clarify these methods, a description for each one and its parameters is 

given. Principal Component Analysis is a classification method that is often used to 685 

reduce dimensionality of large data sets but still contains most of the information in the 

large set. Principals components are eigenvectors of the data’s covariance matrix. When 

a large dataset is to be clustered into a user specified number of clusters (k), which are 

represented by their centroids, K-Means will cluster the data by minimizing the squared 

error function (MSE), and often misclassifies some data due to outliers; also, the time 690 

complexity will be greater. To overcome these problems, principal components analysis 

(PCA) can be used to reduce the dataset to a lower dimension, while ensuring that the 

least information is lost, and providing a better centroid point for clustering. K-Means 

clustering partitions a dataset into different groups of similar objects. Clusters that are 

highly dissimilar from the others are regarded as outliers and discarded. Logistic 695 

regression is an efficient regression predictive analysis algorithm. Logistic regression 

is used in the description and analysis of data  to explain the relationship between one 

dependent binary variable and one or more independent variables. 

XGBoost (Chen and Guestrin, 2016; Nielsen, 2016) is an algorithm that has recently 

been dominating applied machine learning and Kaggle competitions for structured or 700 

tabular data. It gives slightly better results than GradientBoostingClassifier. XGBoost 

is an implementation of gradient boosted decision trees designed for speed and 

performance. The XGBoost stands for eXtreme Gradient Boosting, which is a boosting 

algorithm based on gradient boosted decision trees algorithm. XGBoost applies a better 

regularization technique to reduce overfitting, and it is one of the differences from the 705 

gradient boosting. The ‘xgboost’ is an open-source library that provides machine 

learning algorithms under the gradient boosting methods. The two reasons why use 

XGBoost are also the two goals of the project: Execution Speed and Model 

Performance. Generally, XGBoost is fast. Really fast compared to other 

implementations of gradient boosting. XGBoost dominates structured or tabular 710 

datasets on classification and regression predictive modeling problems. 
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Gradient boosting is an approach where the new models created predict the residuals 

or errors of prior models and then add together to make the final prediction. It is called 

gradient boosting because it uses a gradient descent algorithm to minimize the loss 

when adding new models. This approach supports both regression and classification 715 

predictive modeling problems. 

  Bagging is an ensemble machine learning algorithm that combines the predictions 

from many decision trees. Bagging is provided via the BaggingRegressor and the 

BaggingClassifier classes. Both models operate the same way and take the same 

arguments that influence how the decision trees are created. 720 

Machine learning algorithms have hyperparameters that allow you to tailor the 

behaviour of the algorithm to your specific dataset. Hyperparameters are different from 

parameters, which are the internal coefficients or weights for a model founded by the 

learning algorithm. Know which values use for the hyperparameters of a given 

algorithm on a given dataset is a challenge, therefore it is common to use random or 725 

grid search strategies for different hyperparameter values. The more hyperparameters 

of an algorithm are needed to tune, slower the tuning process will work. Therefore, it is 

desirable to select a minimum subset of model hyperparameters to search or tune. The 

most important parameter for bagged decision trees (BaggingClassifier) is the number 

of trees (n_estimators). In the case of Random Forest, the most important parameter is 730 

the number of random features to sample at each split point (max_features). The 

gradient boosting algorithm has many parameters to tune. There are some parameters 

pairings that are important to consider. The first ones are the learning rate, also called 

shrinkage or eta (learning_rate in [0.001, 0.01, 0.1]), and the number of trees in the 

model (n_estimators [10, 100, 1000]). Both could be considered on a log scale, although 735 

in different directions. Another important pairing is the number of rows or subset of the 

data to consider for each tree (subsample in [0.5, 0.7, 1.0]) and the depth of each tree 

(max_depth in [3, 7, 9]). These could be grid searched at a 0.1 and 1 interval 

respectively, although common values can be tested directly. 

Grid search is the process of performing hyper parameter tuning  to determine the 740 

optimal values for a given model. This is significant as the performance of the entire 

model is based on the hyper parameter values specified. GridSearchCV() does for each 

iteration, a test with all the possible combinations of hyperparameters, by fitting and 

scoring each combination separately. 
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Decision tree builds regression or classification models in the form of a tree 745 

structure. It breaks down a data set into smaller and smaller subsets while at the same 

time an associated decision tree is incrementally developed. The final result is a tree 

with decision nodes and leaf nodes. Decision trees regression normally use mean 

squared error (MSE) to decide to split a node in two or more sub-nodes. As a supervised 

machine learning model, a decision tree learns to map data from outputs in what is 750 

called the training phase of model building. During training, the model is fitted with 

any historical data that is relevant to the problem domain and the true value we want 

the model to learn to predict. The model learns any relationship between the data and 

the target variable. When we want to make a prediction the same data format should be 

provided to the model to make a prediction. The prediction will be an estimate based 755 

on the train data that it has been trained on. Decision trees regression normally use mean 

squared error (MSE) to decide to split a node in two or more sub-nodes. 

Correlation matrix (Fig. 16 and Fig. 17) and PCA (Fig. 18) are applied to the data 

set. The first and second principal components (PCA(n_components=11)) explain 

93.76% of the data variance, while the first four principal components explain 99.36% 760 

of the data variance. That is a good approach because considers the seasonality of data. 

Data from May to July months of two consecutive years, 2018 and 2019, are considered. 
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Fig. 16: Correlation matrix 765 
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Fig. 17: Detail of the correlation matrix presented in Figure 16 

 

From the heating map of the dataset, a data subset is extracted (see Figure 17) 770 

including heating battery signals and other needed to induce a good medialisation of 

our data (called semi-unsupervised learning because technical knowledge is added to 

the unsupervised techniques). 
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Fig. 18: PCA of the data set 775 

 

The data exploration had underscored the need for dimensionality reduction. 

Luckily, one common technique for reducing the number of features, Principal 

Components Analysis (PCA), is an unsupervised technique that does not require an 

understanding of the physical representation of the features. PCA played a crucial role 780 

in reducing the input number of features into the algorithm and as discussed in the Data 

Pre-processing section. Figure 18 presents the result of the PCA analysis of the 

considered data set. Knowing that the first and second principal components explain 

93.76% of the variance, considering a rough hypothesis of how many clusters to expect, 

a K-means clustering algorithm is used where the number of clusters is 2. 785 

After our unsupervised Learning Approach, the output was a cluster prediction for 

each row in the data subset.  So, at this point, the characteristics from our data, that are 

not obvious and stayed hidden inside the number of rows of data, have been identified. 

To properly evaluate the performance of each model, a training and predicting 

pipeline is created to allow us to quickly and effectively train models using various 790 

sizes of training data and perform predictions on the testing data. 

In the initial model evaluation, training the 1%, 10% and 100% of the data set (1710 

samples) XGBClassifier has given the best results, followed by the 

GradientBoostingClassifier. Unless solve it considering time as a constraint, in this case 

the BaggingClassifier with few goodness penalization has been taken. In order to refine, 795 
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improve the results, from the XGBClassifier a grid search optimization is performed 

for the model over the entire training set (X_train and y_train). By tunning parameters 

to improve the model’s F-score, the initial model used is: 

XGBClassifier(subsample=1.0, min_samples_split=3, random_state=0, verbose=3) 

and the initial parameters are: parameters = {'n_estimators': [100, 200, 500],   800 

'max_depth': [8, 10],  'learning_rate': [0.05, 0.08, 0.1]}. After evaluating 18 

combinations of parameters in 26.37 minutes, the final accuracy score and the F-score 

on the testing data is 0.5047.  Optimized Model Parameters:  

XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, 

       colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.08, 805 

       max_delta_step=0, max_depth=10, min_child_weight=1, 

       min_samples_split=3, missing=None, n_estimators=200, n_jobs=1, 

       nthread=None, objective='multi:softprob', random_state=0, 

       reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, 

       silent=None, subsample=1.0, verbose=3, verbosity=1) 810 

Then, fine tuning the chosen model, GridSearchCV is applied. The model evaluation 

and validation are also applied. To validate the robustness of this model and its solution 

it might be applied sensitivity analysis. The final model gives a reasonable solution 

aligned with early expectations even though a need to improve final parameters appears. 

Small perturbations in training data affects the robust model because of the seasonality 815 

correlation between features and the need of a bigger dataset, which add more rows 

with the same columns.  

Produce learning curves for varying training set sizes and maximum depths with 

ModelLearning and ModelComplexity functions. The final accuracy score and the F-

score on the testing data after the fine tune is 0.4486. Parameter 'max_depth' is 9 for the 820 

optimal model. 

The model final solution and its results are compared to the benchmark established 

before: 

RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', 

            max_depth=10, max_features=3, max_leaf_nodes=None, 825 

            min_impurity_decrease=0.0, min_impurity_split=None, 

            min_samples_leaf=3, min_samples_split=8, 

            min_weight_fraction_leaf=0.0, n_estimators=150, n_jobs=1, 
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            oob_score=False, random_state=42, verbose=0, warm_start=False) 

The accuracy of the logic by passing the data through a model that hast the feature 830 

importance method, the Ada Boost Classifier. The final model trained on reduced data 

final accuracy score and the F-score on the testing data is 0.4930. 

The considered variable to be predicted is “IAA1_Energy_Cooler” since the 

summer season is analysed. The predictions can be compared with the historical data 

in the Figure 19 to show the obtained fitting. 835 

 
Fig. 19: Graph for the Performance of the Best Prediction vs real data on the 

variable IAA1_Energy_Cooler (Cooler Battery) on X_Test 

 

XGBClassifier provides the best results as can be seen in Figs. 20 and 21, followed 840 

by the GradientBoostingClassifier, unless the time is a constraint. In this case, the 

BaggingClassifier with few goodness penalizations is considered. 
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845 

Fig 20: Graph for the Performance Metrics for Three Supervised Learning Models  

 
Fig. 21: Table for the Performance Metrics for three Supervised Learning Models  
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5. Conclusions 850 

This paper has presented the BiDrac project, that aims to profit from the integration 

of computing, communication and control under an Industrial Cyber-Physical Systems 

(ICPSs) ecosystem combined with Artificial Intelligence and Industrial Internet of 

Things (IIoT) inside the Industry 4.0 paradigm on an Automotive Paint Shop Process.  

BiDrac is the Ecosystem in which integrate Equipments, Technical Locations, 855 

PLCs, sensors, communication protocols, production networks, industrial networks, 

corporate networks, Complex Infrastructure Systems (CIS), ETL tools, Data Bases, 

Datawarehouse, Data Lake, Digital Platform, Algorithms, Machine Learning models, 

Artificial Intelligence models, Infrastructure, MES, ERPs and so on, and it is constantly 

growing to help solving problems in the Paint Shop. Focusing on the ICPSs, a 860 

Framework for applying Artificial Intelligence and Predictive Maintenance models 

have been presented and several use cases have been implemented for testing purposes. 

Four different uses cases of BiDrac have been presented showing how three 

important problems can be addressed: sensor data validation/reconstruction using fault 

diagnosis techniques, prognosis of the fault effect in the Paint Shop process and finally 865 

energy consumption prediction.  

As a future work, the proposed approach is being extended to other uses cases in the 

SEAT plant in Martorell profiting from the BiDrac framework already available. 
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