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Abstract—Nowadays, competitiveness is a reality in all indus-
trial fields and the plastic injection industry is not an exception.
Due to the complex intrinsic changes that the parameters
undergo during the injection process, it is essential to monitor
the parameters that influence the quality of the final part to
guarantee a superior quality of service provided to customers.
Quality requirements impose the development of intelligent
systems capable to detect defects in the produced parts. This
article presents a first step towards building an intelligent system
for classifying the quality of produced parts. The basic approach
of this work is machine learning methods (Artificial Neural
Networks and Support Vector Machines) and techniques that
combine the two previous approaches (ensemble method). These
are trained as classifiers to detect conformity or even defect types
in parts. The data analyzed were collected at a plastic injection
company in Portugal. The results show that these techniques are
capable of incorporating the non-linear relationships between the
process variables, which allows for a good accuracy (~99%) in
the identification of defects. Although these techniques present
good accuracy, we show that taking into account the history of
the last cycles and the use of combined techniques improves even
further the performance. The approach presented in this article
has a number of potential advantages for online predicting of
parts quality in injection molding processes.

Index Terms—Artificial Neural Network, Support Vector Ma-
chines, Injection Molding and Machine Learning.

I. INTRODUCTION

The world is in constant evolution and today to remain
competitive in the market, quality standards must be higher
to offer the customer a product that leaves a process with the
least possible failures. By increasing the quality of processes,
it is possible to reduce production costs, reaction time, and
company downtime, which allows them to be more produc-
tive with the same number of equipment and thus survive.
Therefore, there must be constant innovation and investment
in this area.

The size of the global plastics market was valued at $579.7
billion in 2020 and is expected to expand at a compound
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annual growth rate of 3.4% from 2021 to 2028 [1]. Increased
plastic consumption in the construction, automotive and elec-
trical, and electronics industries are expected to support market
growth over the forecast period.

To obtain an injected part with high quality, it is necessary
to use the best machine and process parameters [2] [3] which
are not always easy to define and most of the time are obtained
through trial and error method by injection technicians based
on their field experience [4]. Injection molding is the most
common process in the production of plastic parts and this
process is very dynamic in regard to variations in its parame-
ters. Therefore, it is difficult to understand and predict the
quality of the final parts by varying the process parameters.

The production of defective parts must always be avoided,
but the delivery of defective parts to the customer must never
take place because it generates unpredictable costs. To mitigate
this, it is very useful to build an online monitoring and
classification system that is capable of detecting all defective
parts. To do this analysis it is necessary to access the data in
real-time. If the equipment is not capable of making the data
available, it is necessary an adaption process [5] [6]. Some of
the most frequently occurring defects during injection molding
are unfilled, burr, burn marks, short shot, warpage, and flow
line [7] [8].

In the literature, there are several approaches to defect
classification. Although the use of these techniques indivi-
dually has good accuracy (=99%), in industrial terms, we are
still talking about significant monetary losses. The automatic
classification of parts will change the way the plastic industry
works, in the sense that it will move from a reactive action to
preventive action. That is, in the past, we expected that a pro-
blem would occur for it to be identified and corrected, which
implied the production of non-conforming parts that only serve
to material and production time-wasting, and then the machine
was stopped and the problem was solved upon. With this new
approach, the objective is to detect the problem even before
it occurs so that the process can be intervened before non-
conforming parts are produced [9]. It is an important step
because often machine operators do not immediately detect the



problem of non-compliance, because they may be on another
machine, or defects may not be easily seen with the naked eye
until the process is very degraded. This causes problems and
losses not only in terms of production of conforming parts,
but also in terms of logistics, quality, and human resources
allocation (full inspection until finding the first defective part),
among others. This leads to the reduction of the environmental
footprint in this type of industry because only a percentage
of the material can be changed and reused, but much of the
remaining are still not recyclable, so by reducing these non-
conforming produced parts we are moving in a direction of
increased sustainability.

Our motivation is to design an automatic procedure to
rapidly identify defective parts based on some machine pa-
rameters’ evolution and to classify the type of defect. This
may avoid the need for human inspection in real-time, leading
to considerably reducing the wasting material, the downtime
and even mitigating the risk of compromising the company’s
image in a scenario with increasingly demanding customers.

In this paper, models to classify the quality of the pro-
duced parts are proposed by using Artificial Neural Networks
(ANN) and Support Vector Machines (SVM) algorithms. The
proposed approaches are able to distinguish good parts (OK)
and defective parts (NOK), either parts with burr problems or
parts with filling problems. By observing the temporal nature
of the data, we propose and evaluate a windowed approach
that obtains improved classification results. Additionally, we
further propose the combination of two different techniques
to obtain an improved performance. Problems related to the
classification in transition zones between conforming and non-
conforming parts were also identified and a first approach was
made to the interpretation of these problems. Regarding the
process data, this was collected in a real environment in a
plastic injection company in Portugal, the Vipex company.

The paper is organized as follows. In Section II are pre-
sented some of the works done in the area and how they
can relate to our work. Section III resumes the methodology
followed to carry out the work presented. Section IV is
concerned with the results obtained from the tests and with
their explanation. To conclude, the last section presents some
conclusions and future work to be developed.

II. RELATED WORK

The quality of injection molded parts depends on a lot of
factors and they are related both to plastic material properties
and the process parameters [10]. Related to the identification
of the variables to be monitored, Tripathi ef al. [11] state that
the temperature, the maximum pressure, and the cushion are
variables that must be taken into account. Bernardete [8] states
that cycle time, plastification time, injection time, barrel tem-
perature before the nozzle, cushion must be monitored. Saleh
et al. [12] identify that the variables that have the most impact
on the injection process are melt temperature, plastification
time, maximum pressure, mold wall temperature, and injection
time. Jung [9] concluded that temperature, injection time,
and cycle time are important variables commonly selected

by machine learning techniques. As we can see in these and
other research works, there are variables that are transversal
in the researcher’s opinion to be monitored. In this work, and
since it was not possible to access the temperature value in
each cycle, the cycle time, injection time, plastification time,
cushion, and maximum injection pressure were considered for
analysis. These process parameters are also typically used on
a daily basis on the factory floor by injection technicians to
diagnose the process.

It is possible to find in the literature works related to the
use of injection process parameters to classify the quality of
parts [3], [8], [13]. These works compare different methods
and their respective performances. There are also works that
include not only the use of parameters but parameters in con-
junction with other methods such as computer vision images
[14]. This means that other types of approaches may have
been considered to complement the analysis. Lately, studies
are not restricted only to the use of separate machine learning
methods but have started to integrate the use of combinations
of methods (ensemble methods [15]) and also the use of deep
learning techniques such as, for example, autoencoders, to
improve the efficiency of classification/regression [9], [16].
Thus, in this work, we compare different classifiers, the use of
ensemble methods, and a first approach to the use of a deep
learning technique to solve classification problems directly
related to the injection process.

In [17] the data is used to build a model based on support
vector machine (SVM) regression algorithm and Schreiber
[18] proved the efficiency when using an injection molding
process model based on artificial neural networks. As men-
tioned in [19] several methods have been developed for
online diagnosis and fault detection, such as expert systems
and systems based on mathematical models. Both require that
the system must be well known [20], [21], which is not always
the case in this type of process, especially when we are talking
about the start of a new product in production. Artificial Neural
Networks (ANN) and Support Vector Machine (SVM) require
little or no prior knowledge [22], [23] of the system. These
were some of the points that made us try these two types of
classifiers, but there are still other studies in this area that use
these machine learning techniques [8], [19].

Regarding the accuracy values obtained, there are studies
that obtain identical values [3], [19], and despite these values
being high (=99%), they do not go any further in improving
these percentages. This is because, as will be shown later in
the results, 1% failure in a classifier, for example, in 100
000 pieces means a bad classification out of 100. Taking into
account, a 20-second injection cycle, we are talking about a
production of approx 1 600 000 pieces in a year which means
16 000 are poorly classified. This in terms of monetary losses
is significant for a company. So in the study presented in this
article, we go further and tried to identify and improve these
performances in order to understand where the biggest failure
in the classification was and the results showed that it is in
the transition zones between conforming and non-conforming
parts.
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Fig. 1. Production cycle with NOK parts associated with filling problems
(blue).
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Fig. 2. Production cycle with NOK parts associated with burr problems (blue).

III. DATA COLLECTION

A typically stable injection process was chosen and domi-
nated at Vipex, operating on a 220 Tonne Negri Bossi machine
working with LLDPE (Linear Low-Density Polyethylene) ma-
terial, working for 5 days, and being made a quality control
piece by piece by the machine operator and a weight and cycle
control by the quality operator every 15 minutes to create the
dataset. The variables to be monitored (features used in the
analysis) were injection time, plasticization time, cycle time,
cushion, and maximum injection pressure.

During this process, two types of parts in non-compliance
with burr and filling defects were identified and labeled, as
shown in Fig. 1 and Fig. 2.

Moreover, we offer some intuition about the two non-
compliance labels. In Fig. 1 it is possible to observe that in
case the cushion value increases, which means that there was
more material in the spindle after the machine was injected a
part, the part was left with a lack of material, as shown in the
real example in the graphic.

Alternatively, in Fig. 2 it is possible to observe the opposite
effect, when the cushion value decreases, it means that more
material was placed in the mold than expected, hence the
amount of material in the piece that is also possible to observe.
In this case, it is worth highlighting the fact that the difference
between the pieces with filling and burr problems in terms of
cushion value, the drop is more significant in the case of burr
(the NOK(Filling) pieces in this chart scale on the yy’s axis
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Fig. 3. Maximum injection pressure parameter representation.

appear mixed with OK). That suggests that cushion is not the
only parameter that plays a role.

Fig. 3 shows the maximum injection pressure for the same
cycles as Fig. 2. It is possible to observe a lag of the
average values in the two types of failures, and suggests that
by analyzing this combination of parameters (cushion and
maximum injection pressure) it is possible to understand what
type of failure we are dealing with.

The dataset contains 39827 injection cycles, with 892 non-
conforming parts (499 NOK Filling and 393 NOK Burr). Since
this is a dataset of a real process taken from the normal shop
floor operation of an injection process, the dataset will be made
available to the academic community (through a request to
the authors) in order to be useful in further research work so
allows other groups to replicate, draw other conclusions or
apply other data analysis techniques.

In Fig. 4 it is possible to observe a representation of the
dataset in four dimensions, namely cushion, injection time, and
plastification time (graphic axes) and the maximum injection
pressure (represented by color, the darker the greater the value
of the parameter). The variables were normalized between the
values 0 and 1.

By observing the graph and by way of explanation of the
injection process, it is possible to observe that the higher the
cushion value (which means that more material remains in the
spindle after the injection of the part), the plasticization time
is shorter, because there is less material to solidify and thus
the injection time is shorter. Regarding the maximum injection
pressure for this case, it is also lower, because the machine
did not have to apply as much force to put all the material in
the mold cavity.

That said, it is possible to observe three zones where there is
a larger cluster of points, but they are not totally isolated which
shows that there is no clear threshold between the different
behaviors of the process parameters during a production, this
can make it difficult to classify the different cycles.

Thus, classifiers such as artificial neural networks (ANN)
and support vector machines (SVM) were used as is often
applied in similar studies [9] [3] [8]. In order to observe the
improvement in the performance of the classifiers, ensemble
methods and the use of the deep-learning technique Gaussian
Process Latent Variable Model were tested.
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Fig. 4. Dataset 4D representation.

IV. METHODS AND DATA ANALYSIS

The main goal of this study was to create classification
models capable of distinguishing between OK, NOK (Filling)
and NOK (Burr) parts based on process parameters. After
training the model, it is capable of notifying a machine
operator that the parameters need to be adjusted not to produce
defective parts.

As mentioned, the classifiers were created using ANN and
SVM. These were programmed in python language through the
scikit-learn library. In the ANN case, several tests were carried
out with different numbers of neurons in the hidden layers,
and with different numbers of hidden layers. Several solvers
were also tested (Ibgfs, sgd and adam) and several activation
functions (logistic, relu and tanh), and the architecture for
which the best performance was obtained was the use of a
hidden layer with 200 neurons with the logistic activation
function and Ibfgs solver.

In the case of SVM, the grid search was drawn using the
GridSearchCV from the scikit-learn library to define the most
suitable parameters. The parameters that resulted from the
grid search were a cost function value of 1000, a gamma
of 0.01, and the linear kernel. Fig. 5 represents the referred
architectures (can be identified at the top of each table) and the
confusion matrices related to the classification of the different
labels. 80% of the data were used for training and 20% for
testing (the values presented in the confusion matrices are
related to this latter percentage).

The performance is below the expected values as the classi-
fiers fail to classify many of the parts (as can be observed in
the confusion matrices in Fig. 5).

We observed that for some errors there was a temporal
component, so we proposed a method that includes a moving
window technique, that is, including in the input vector
information about the previous and subsequent cycles. The
cycles taken into account were the five previous ones [t-5]

ANN - Artificial Neural Network

Average values of 10 tests.

A: HL—1, N— 200, ACT — Logistic, V - 20% , S: Lbfgs

CDM";”::" NOK(Burr) | NOK(Filling) | 0K

NOK (Burr) 41 55 42,5

NOK (Filling) 3 12 91
oK 33,5 14,5 7720

SVM - Support Vector Machine
A:- C- 1000, Gamma - 0.01 and Kernel - linear

mhmf" NOK (Burr) | NOK (Filling) | Ok

NOK (Burr) 42 1 46

NOK (Filling) 3 2 101
oK 32 8 7728

Fig. 5. ANN and SVM confusion matrices.

ANN - [Moving Window Solution]

[t-3, -2, t-1, t]
Precision Recall | F1-Score
NOK (Burr) 0,94 0,93 0,93
NOK (Filling) 0,87 0,57 0,69
0K 0,99 1 1
Accuracy 0,99
Macro Average 0,93 0,83 0,87
Weighted Average 0,99 0,99 0,99
Confusion Matrix | NOK(Burr) [ NOK(Filling) | 0K
NOK (Burr) 82,67 0,33 6
NOK (Filling) 1 60,33 44,67
0K 4,33 9 7754,67

Fig. 6. ANN accuracy and confusion matrix regarding windows solution.

and the three following ones [t+3] and for both cases, the best
performance was for the three previous ones [t-3, t-2 and t-1].
Fig. 6 and Fig. 7 show the results and the accuracy of ANN
and SVM classifiers.

Analyzing the classification performances with the window
solution technique, it is possible to observe that they have
improved significantly, although the accuracy of both being
99%, in the case of classification of parts in non-conformity
with filling problems, there is still a significant error in their
classification. 99% is not an unreasonable value since in
identical works these results were also obtained [3] [19],
but for the industry, this 1% still represents a high number
of failures.



SVM - [Moving Window Solution]

[t-3, -2, t-1, 1]
Precision Recall F1-Score
NOK (Burr) 0,97 0,98 0,97
NOK (Filling) 0,83 0,81 0,82
0K 1 1 1
Accuracy 0,99
Macro Average 0,93 0,93 0,93
Weighted Average 0,99 0,99 0,99
Confusion Matrix | NOK(Burr) [ NOK(Filling) OK
NOK (Burr) 86 0 3
NOK (Filling) 0 86 20
0K 3 17 7748

Fig. 7. SVM accuracy and confusion matrix regarding windows solution.

Ensemble Method
Precision Recall F1-Score
NOK (Burr) 0,94 0,99 0,96
NOK (Filling) 0,88 0,79 0,84
QK 1 1 1
Accuracy 1
Macro Average 0,95 0,54 0,94
Weighted Average 1 1 1
Confusion Matrix MNOK(Burr) | NOK[Filling) oK
NOK (Burr) 87 1 1
NOK (Filling) 3 94 9
QK 5 11,25 7751,75

Fig. 8. Ensemble method confusion matrix regarding windows solution [t-3].

To go even further and with the observation that each
method classifies correctly one type of NOK but not the
other one, we designed a voting-based ensemble method
technique [24] (with window solution). Our proposal is to
create a classifier with both the contribution of ANN and SVM
previous approaches. As can be seen in Fig. 8, the performance
of this method is better than the performance of previous
methods. The values correspond to the average value of 10
ANN trains.

Although with the use of this technique there is an improve-
ment in the classifier performance compared to the isolated use
of ANN and SVM, we experimented with other approaches
to go even further. Taking into account that there was still
a failure in the classification of the part in non-conformity
related to a burr problem, and some related to the classification
of the pieces NOK (Filling) and OK, an analysis of the
weights of the classifications of the different labels (Fig. 9) was

NOK (Burr) NOK (Fill) oK

3.91806e-17
3.9861e-17

5.41326e-17

3.92849e-17

8.8568626 9.
1.89829e-85 2.1726e-11

2044 1.79365e-905 1.8774e-11

Fig. 9. Probabilistic weights of the different classification labels.
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Fig. 10. Two-dimension representation of the process data.

carried out to understand if this failure was at a classification
threshold between two different labels. It should be noted that
as previously mentioned (Fig. 2), the distinction between NOK
(Burr) parts is easy to identify, for example, in the case of the
cushion parameter and is not mixed with the values related to
the parts OK and this is highlighted in the performance of the
classifier.

Analyzing the weights of the different classifications, it
is possible to conclude that the misclassifications occur in
transition zones between labels (as shown in Fig. 9). The two
penultimate lines are misclassified and are in the transition
between conforming and non-conforming parts.

In order to verify whether it is possible to improve per-
formance and despite our dimensional space only having five
dimensions, the use of the dimensionality reduction technique
Gaussian Process Latent Variable Model was tested to try to
reduce the representation space to only two dimensions and
thus understand whether it is easier to identify the different
classification groups. The Gaussian Process Latent Variable
Model (GPLVM) is a dimensionality reduction method that
uses a Gaussian process to learn a low-dimensional represen-
tation from (potentially) high-dimensional data.

Fig. 10 shows the result of the application of this tool where
we can see that reducing the total dimension to two, although



there are still some values on the transition border (less than
in the case of the ensemble) it is possible to observe that
the labels are grouped by distinct clusters. This means that
this tool can be an asset in analyzing data related to injection
processes and it will be a good tool to explore in the future and
with other datasets to see if these types of issues are common
for different materials and different types of parts.

V. CONCLUSIONS AND FUTURE WORK

In this study, experimental data has been collected from
a 220 Tonne Negri Bossi molding machine working with
LLDPE (Linear Low-Density Polyethylene) material. The data
includes 5 process parameters (features) from 39827 parts
produced and labels indicating OK or 2 different NOK values.

We present several approaches for the classification of the
data. We started using two different quality prediction models
based on ANN and SVM methods. Although these models
present accuracy of around 99%, there were still some flaws
in the classification of non-conforming parts, so the best
accuracy was obtained when it introduced a combination of
these models through the Voting Based Ensemble Method and
taking into account a windowed approach using the last three
injection cycles history.

Even so, and despite the few wrong classified parts, the
classification weights of the different parts produced were
analyzed and it was possible to identify that the failures
occurred in-between transition phases between conforming
and non-conforming parts.

For this purpose, the Gaussian Process Latent Variable
Model (GPLVM) technique was used to reduce the dimension
of the dataset and thus see if this facilitates the analysis of
the difficult cases. Although not conclusive, this technique
has shown to be promising and so this may be a work to
be developed in the future to test whether it applies to more
injection processes and thus help to improve the performance
of the classifiers.

In the future, we aim to use classification methods using
windowed approaches to alert of the existence of problems in
the process that are often only detected hours later, reducing
the production of non-conforming parts. This leads to the
reduction of the environmental footprint in this type of industry
because only a percentage of the material can be changed and
reused, but much of the remaining are still not recyclable,
so by reducing these non-conforming produced parts we are
moving in a direction of increased sustainability.
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