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Abstract— This paper presents an adaptive non-linear ob-
server for the state of charge estimation in vanadium redox
flow batteries. The study is based directly on the use of non-
linear equations that describe the evolution of the species
concentration inside the system, and a nonlinear cell voltage
expression that takes into account the effect of overpotentials.
Moreover, a more realistic approach is used which does not
consider that the electrolyte concentration is the same in the
catholyte and anolyte sides of the system. It is shown that the
state of charge can be estimated through the measurement
of the output voltage and a high-gain observer. Nonetheless,
the accuracy of the estimation is affected by uncertainty in
the system diffusion rates. For this reason, the observer is
robustified by means of an immersive and invariance adaptive
parameter estimation. The results are validated in a numerical
simulation.

I. INTRODUCTION

The role of the renewable energy has grown during the
last years, and it will continue expanding. The International
Energy Agency (IEA) has estimated that in the next five
years the total renewable energy capacity will expand by
50% [1]. In particular, growth can be seen in the creation of
wind and solar plants. Due to their intermittent nature, the
development of large-scale energy storage as a support tool
for these plants has become one of its main challenges. Is in
this field, where redox flow batteries (RFB) have become a
promising solution [2].

A RFB is an electrochemical energy storage system that
uses four chemical species divided in two identical subsys-
tems called anolyte and catholyte. The system is composed
by two parts. On the one hand, an electrochemical cell where
redox reactions take place in order to generate a certain
load current during a charging or discharging process. On
the other hand, a set of tanks where energy is stored in
the form of electrolyte. Both tanks and cells are connected
through pipes, and by means of pumps the electrolyte can
flows through the system. A general scheme of a RFB is
depicted in Fig. 1. Among the different types of RFB, all-
vanadium redox flow batteries (VRFB) have become the best
choice due to the fact that all species are vanadium oxides
[3]. A VRFB is completely composed by vanadium species
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Fig. 1. Scheme of a redox flow battery.

in four different oxidation states. The anolyte is composed
by species V 2+ and V 3+, while the catholyte is made up of
the species V 4+ and V 5+.

Within the analysis and study of RFB systems, one of the
most important challenges has become the determination of
the state of charge (SOC). This variable indicates how much
energy is stored in the system and is crucial for its adequate
operation [4]. In VRFB, the SOC can be directly computed
by means of the concentration of species inside the tanks. In
the literature, one can find multiple techniques to estimate
the tank’s concentration [5]. For example, through the use
of color, density or conductivity analysis [6]. However, such
techniques are too slow, intrusive and inaccurate to be a
valid option for RFB real-time control. Taking into account
the impossibility to obtain an adequate measure of the SOC,
some studies propose an observer to estimate its value.

The most common measure used to estimate the SOC is
the open circuit voltage (OCV) which is the potential differ-
ence in the cell. Skyllas-Kazacos, who was a pioneer in the
use of vanadium redox flow batteries (VRFB), developed an
Extended Kalman Filter (EKF) method to estimate the SOC
measuring the OCV and assuming that the concentration of
vanadium species in both cell and stack are the same [7]. Fol-
lowing studies used the EKF to estimate the SOC by means
of an electric model [8], or thermal-dependant ones [9].
However, the EKF is based on linearizing the RBF’s model,
which results in a local solution of the estimation problem
and may present robustness issues to high nonlinearities.
For this reason, some authors studied the implementation
of nonlinear observers. Specifically, a sliding mode observer
(SMO) have been used for the presented purpose [10], being
especially useful for dealing with nonlinear models.

Another concern in the SOC estimation is the parametric
uncertainty, which deteriorates the observer’s accuracy. Con-



sequently, some authors studied the use of adaptive estima-
tion techniques to reduce the effect of said uncertainty[11].
Unfortunately, available adaptive techniques are commonly
implemented through recursive least squares methods. There-
fore, state and parameter estimation convergence can only be
proved through the persistence excitation condition[11].

This paper presents a nonlinear high-gain observer [12]
that can estimate the SOC of a VRFB, dealing directly with
the nonlinear electrochemical model. This work implements
a model that describes the behaviour of the different vana-
dium species in both cell and tanks. Moreover, differing
from other studies, it has been considered a distinction
between the flow rates in both parts of the system, as well
as the total vanadium concentration. This leads to a more
realistic model of the real system. Regarding the OCV, the
model uses a more realistic approximation from the Nerst
equation that takes into account not only the species, but
also the proton concentration, as well as the overpotential
effect, which improves the estimation accuracy. Moreover,
it is assumed that the species diffusion rates are unknown.
For this reason, the observer is coupled with an adaptation
mechanism that estimates the unknown parameters [13]. The
adaptation dynamics are based on immersive and invariance
(I&I) ideas which allows to prove the state and parameter
convergence with a relaxed excitation assumption [14].

This paper has been organized as follows: Section II
presents the problem formulation with the nonlinear model
and the OCV expression. In Section III, an observability
analysis is presented. Section IV presents the high-gain
observer observer designed. Section V introduces the param-
eter adaptation dynamics. All the study has been validated
through numerical simulation in Section VI. Finally, Section
VII presents the conclusions of the work.

II. PROBLEM FORMULATION

A dynamic electrochemical model that has been widely
used is the one proposed by Skyllas-Kazacos [15] that
presents the evolution of the species concentration inside the
cell and tanks. Using this approach, it has been formulated
a nonlinear model for a VRFB that takes into account that
the flow rates, q, and the total vanadium concentration, cv ,
are different for the anolyte and catholyte. This nonlinear
formulation can be expressed in terms of vanadium V 2+

and V 5+ species:

ẋ1 =
2

vc

[
(x3 − x1)q1 +

I

F
− k2x1 − k4x2 − 2k5cv+

]
ẋ2 =

2

vc

[
(x4 − x2)q2 +

I

F
− k3x1 − k5x2 − kccv−

]
ẋ3 =

1

vt
(x1 − x3)q1

ẋ4 =
1

vt
(x2 − x4)q2 (1)

where x1 is the concentration of V 2+ in the anolyte cell,
x2 is V 5+ in the catholyte cell, x3 is the concentration of
V 2+ in the anolyte tank and x4 the ones of V 2+ in the

catholyte tank. q1 is the flow rate in the anolyte and q2 in the
catholyte, I is the charging or discharging current, F is the
Faraday constant, ki the diffusion coefficients of vanadium
species i, vc is the volume of the cell and vt the volume of
each tank.

The expression of the cell voltage, E, considering the
effect of the protons concentration inside the cell [16], as
well as the ohmic losses is the following one:

E = Eθ+
RT

F
·ln


x2 ·

(
cH+(0) + x2

)2
cv− − x2

( x1

cv+ − x1

)±rI
(2)

where Eθ is the standard electrode potential, R is the gas
constant, T is the cell temperature, cH+

(0) is the initial
proton concentration, cv+ is the total vanadium concentration
in the catholyte part, cv− in the anolyte, and r is the ohmic
resistance considering the sign positive during a charging
process and negative during the discharging one.

To compute the SOC, a distinction is made between
the available Vanadium concentration in the catholyte and
anolyte, generating two distinct SOC definitions,

SOC− =
x3
cv−

, SOC+ =
x4
cv+

.

In this work, both definitions will be combined to present a
unique SOC definition as follows:

SOC = min{SOC−, SOC+}. (3)

The objective is to design an observer that using the mea-
sured cell voltage can estimate the value of the states x3 and
x4, which is later used for the SOC estimation through (3).

To facilitate the design of the observer, and knowing that
the current and temperature can be easily measured, it is
possible to obtain a more simplified expression to work with.
Assuming that Eθ and r are constants, they can be subtracted
from the cell voltage to obtain an expression h(x) that only
depends on the cell concentrations x1, x2, cH+(0) and the
total vanadium concentration cv− and cv+

h(x) =
E − Eθ −±rI

RT/F

= ln


x2 ·

(
cH+(0) + x2

)2
cv− − x2

( x1

cv+ − x1

) .

(4)

Taking into account this new expression, it is possible to
formulate the nonlinear system with the following nomen-
clature:

ẋ = Ax + q1H1x + q2H2x + cI + d
y = h(x)

(5)

where x are the concentrations, and matrices and vectors
A, H1, H2, c and d have the following values:

A =
2

vc


−k2 −k4 0 0
−k3 −k5 0 0

0 0 0 0
0 0 0 0





H1 =


− 2
vc

0 2
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0
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1
vt

0 − 1
vt
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 H2 =
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0 − 2

vc
0 2

vc
0 0 0 0
0 1

vt
0 − 1

vt



c =
2

vc


1/F
1/F

0
0

 d =
2

vc


−2k5cv+
−kccv−

0
0

 .

III. OBSERVABILITY ANALYSIS
First, it is crucial to study whether the states can be

estimated from the model equations, ẋ, and the output y. A
system is (locally) observable if it satisfies the observability
rank condition, which implies that the rank of an observ-
ability space Os must be equal to the number of states n
[17]. For the concerned nonlinear system, the study of the
observability rank condition can be done in a simple and
automatic way computing the observability codistribution Ω.
For the case of study, the observability codistribution of order
4 is computed as follows [17]:

Ω4 = span{Oh} ⊕ span{OLAx+q1H1x+q2H2xh(x)}
⊕ span{OL2

Ax+q1H1x+q2H2xh} ⊕ span{OL3
Ax+q1H1x+q2H2xh}

where ⊕ is the direct sum operator, and Li is the Lie
derivative function that can be computed as:

L1
f(x)+g(x)h =

∂h

∂x
· (f(x) + g(x))

Lkf(x)+g(x)h =
∂Lk−1h

∂x
· (f(x) + g(x)).

Carrying out the analysis for the system formulated in (5)
it can be shown that observability codistribution Ω4 is full
rank in the concerned operating region, therefore the system
is observable and the concentrations can be recovered from
the measured output.

IV. OBSERVER DESIGN
Once the system observability has been analysed, the next

step corresponds to the design of an appropriate observer
capable of estimating the states x3 and x4. The procedure to
design the observer has been: first, transform the system to a
strict feedback form, which accepts the design of a non-linear
observer, and later, invert the transformation to recover the
estimation in the original coordinates. In particular, consider
following map:

Φ(x, q1, q2) ,


h(x)

LAx+q1H1x+q2H2xh(x)
...

L3
Ax+q1H1x+q2H2xh(x)

 . (6)

By means of the observability results in Section III, the
map in (6) defines a diffeomorphism between the original
variables in the concerned system and the new ones in the
strict feedback form [18].

Consequently, it is possible to formulate a high-gain
observer as follows [19]:

˙̂x = Âx̂ + q1H1x̂ + q2H2x̂ + cI + d

+

(
∂Φ

∂x

)−1 [α1

ε
,

α2

ε2
,

α3

ε3
,

α4

ε4

]ᵀ
(y − h(x̂)) (7)

where αi and ε are the observer parameters to be designed
and Â is the matrix A with the estimated values of the
unknown parameters.

Lemma 4.1: [20] Consider the high-gain observer (7), and
let the parameters αi be tuned such that the polynomial

s4 + α1s
4 + α2s

3 + α3s+ α4 (8)

has all the roots in the left half-plane. Then, there is a positive
constant ε∗, such that, for all ε ≤ min{ε∗, 1}, the estimation
error of the observer (7) is ultimately bounded as follows

‖x− x̂‖ ≤ κ1‖K− K̂‖, (9)

where κ1 are some positive constants and K =

[
k2
k5

]
.

Remark 4.1: To design the ε it is important to take into
account their properties. On the one hand, small values of ε
ensure fast convergence rates and observer robustness. On
the other hand, too small values will induce the peaking
phenomena and aggravate the observer noise sensitivity [20].
Taking into account these issues, It is important to correctly
design the value of ε to avoid these phenomena, while
obtaining a correct estimate.

V. PARAMETER ESTIMATION

In this work, it has been considered that only the diffusion
rates k2 and k5 are unknown. Notice that these parameters
appear in the first derivative of the concerned output func-
tion (4). Therefore, the unknown parameters appear on the
considered observability map (6). Consequently, the observer
will always present a bias that can not been reduced by means
of increasing its gain.

This problem can be relaxed by means of a parameter es-
timation method based in I&I technique [14]. This approach
is based on the design of an invariant and attractive manifold
that can be used to estimate the parameters.

Lemma 5.1: Consider the following parameter estimation
dynamics:

˙̂
θ = −∂β(x̂)

∂x

[
f(x̂,u) + ϕ(x̂)

(
θ̂ + β(x̂)

)]
K̂ = θ̂ + β(x̂), (10)

where f(x̂, u),ϕ(x̂) and β(x̂) are the vector functions

f(x̂,u) =

 2
vc

[
(x̂3 − x̂1)q1 + I

F − k4x̂2
]

2
vc

[
(x̂4 − x̂2)q2 + I

F − k3x1 − kccv−
]




ϕ(x̂) =

[
−x̂1 −2cv+

0 −x̂2

]
β(x̂) =

γ

2


−1

2
x21

−1

2
x22

 (11)

been γ a positive constant to be tuned.
Then, the parameter estimation error will converge to:

‖K− K̂‖ ≤ κ2‖x− x̂‖ (12)

being K̂ =

[
k̂2
k̂5

]
and κ2 a positive constant.

Proof: Taking into account (11) the following expres-
sion can be obtained:

∂β(x̂)

∂x
ϕ(x̂) = γ


x̂21
2

x̂1cv+

0
x̂22
2

 ,
that has positive eigenvalues. Then, define the following

manifold z as follows:

z , θ̂ − K + β(x). (13)

The dynamics of the off-the-manifold coordinates z are

ż = −∂β(x)

∂x
ϕ(x)z + δ

= −γ


x21
2

x1cv+

0
x22
2
.

 z + δ (14)

where δ is defined as:

δ ,
∂β(x)

∂x

[
f(x,u) + ϕ(x)

(
θ̂ + β(x)

)]
(15)

− ∂β(x̂)

∂x

[
f(x̂,u) + ϕ(x̂)

(
θ̂ + β(x̂)

)]
.

As the functions β,f(x,u) and ϕ(x) are (locally) Lipschitz
and the factor ∂β(x)

∂x is upper bounded, it is possible to find
a positive constant Lδ such that

‖δ‖ ≤ Lδ‖x− x̂‖ . (16)

Now, consider the Lyapunov function candidate

V =
1

2
zᵀz,

its derivative is

V̇ = −γzᵀ


x21
2

x1cv+

0
x22
2
.

 z + zδ,

and considering the δ bound expressed in (16) the following
inequality is satisfied

V̇ ≤ −γzᵀ


x21
2

x1cv+

0
x22
2

 z + zLδ‖x− x̂‖ . (17)

TABLE I
VRFB SYSTEM PARAMETERS

Variable Value [units]
vc 1 [ml]
vt 45 [ml]
cv− 0.35 [mol · l−1]
cv+ 0.4 [mol · l−1]

cH+(0) 1.6 [mol · l−1]
Eθ 1.267 [V ]
r 1.33 [Ω]
R 8.311 [J ·mol−1 ·K−1]
T 297 [K]
F 96.485 [s ·A ·mol−1]

As the matrix is not L2 integrable in all the operating region,
it is possible to show that there is a positive constant κ3 such
that the off-the-manifold variable is ultimately bounded as

‖z‖ ≤ κ3‖x− x̂‖. (18)

Finally, by considering the parameter estimation (10), the
off-the-manifold coordinate definition (13) and the fact that
β(x) is Lipschitz, the bound (12) can be deduced.

A. Observer stability

It is important to properly select the conditions in which
the coupling between the state observer and the parameter
estimator remains stable.

It has been shown that the state-estimation error is input
to the state stable taking the parameter-estimation error as an
input, see (9). Moreover, a similar property is fulfilled for the
parameter-estimation error, considering the state-estimation
error as an input, see (12).

Lemma 5.2: The coupling between the high-gain observer
(7) and the adaptation dynamics (10) is stable if the following
holds:

κ1κ2 ≤ 1. (19)
Proof: This statement can be proved by means of the

small gain theorem [21].

VI. NUMERICAL SIMULATION

In order to validate the proposed SOC observer, a numer-
ical simulation has been carried out. The parameters of the
battery are summarized in Table I.

Regarding the current, it has been selected a charging
process with a constant value of 1.8 A. For the case of the
flow rates q1 and q2, there has been considered as different,
taking into account that in practice they will never be exactly
the same. A flow rate of 100 ml/min has been considered
in the catholyte part, and 110 ml/min in the anolyte.

Furthermore, the concentrations estimation have been ini-
tialized in a feasible point considering that the battery is prac-
tically discharged, presenting an initial 50% relative error1.
As the diffusion coefficients are assumed to be unknown,
their initial estimated values have been set to zero. In the
true system, the values have been fixed to k2 = 4.5 · 10−11

and k5 = 1.65 · 10−11.
Regarding the observer parameter tuning, the values of α

have been selected making Hurwitz the polynomial presented

1The relative error between x and x̂ is computed as: ‖x−x̂‖
‖x‖ · 100



TABLE II
VRFB SYSTEM PARAMETERS

Variable Value
α1 4 · 10−4

α2 5.81 · 10−8

α3 3.59 · 10−12

α4 7.8 · 10−17

ε 0.5
γ 1 · 10−7

in (8). For the case of the ε constant, it has been designed
to guarantee a balanced between perturbation rejection and
noise sensitivity. On the other hand, for the diffusion coeffi-
cients estimator, the parameter γ has been adjusted to present
an adequate parameter convergence rate while preserving
the condition (19). All values of the observer design are
summarized in Table II.

To analyze the robustness of the design relative to sensor
noise, an 800 seconds simulation has been carried out
introducing a high-frequency noise of variance 0.001 with
respect to the voltage measurement, which is a reasonable
value for a voltage sensor.

The simulations obtained show the correct operation of
the coupling between the state observer and the parameter-
estimation observer, obtaining a correct estimation in both
SOC and the diffusion parameters. For the case of the SOC,
which has been computed as the minimum between both
catholyte and anolyte SOC’s, in Fig.2 it is shown how the
error is reduced from a 43% presented in the initialization
until a 0.0082% presented in the end of the simulation.

For the diffusion coefficient results, Fig.3 shows the es-
timation of the k2 and k5 coefficients, obtaining that there
are correctly adjusted to the real ones. For the case of the
k2 estimation, the error presented is 0.13%, while for the
estimation of k5 its value does not exceed a 0.5%. In the
detail, it can be observed how the k5 estimation presents
a bias. This bias is due to the introduction of noise in
the voltage output, which causes the estimation to not be
perfectly estimated.

Fig. 2. Estimation of the SOC (red) versus the real value (blue).

VII. CONCLUSIONS

This work has presented a non-linear observer to monitor
correctly the states of a VRFB supposing differences, in

Fig. 3. Diffusion coefficients estimation (red) versus the real values (blue).
k2 behaviour and detail (above) and k5 profile (below).

terms of flow rates and total vanadium species, between the
catholyte and anolyte. For that reason, it has been possible
to estimate separately both SOC presented in the system.
Moreover, an online estimation of the diffusion parameters
has been carried out using an I&I high-gain observer. The
results have been validated in a numerical simulation where
significant sensor noise is considered.
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