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ABSTRACT The development of modeling and estimation strategies, useful for determining the magnitude
and location of unknown flows such as seepage and leaks, appears as a valuable tool to increase the
efficiency of the open-channel irrigation systems (OCIS). However, it has been identified that in OCIS, most
of the strategies reported on detection, isolation, and magnitude estimation of unknown flows (DIMEUF)
have been developed from linear models that do not include information about energy balances along the
channels, where these balances are fundamental to differentiate changes of levels due to conduction effects,
from changes of levels due to unknown flows. Therefore, in this work, a recent OCIS modeling approach,
which includes mass and energy balances for each channel and non-linear hydraulic descriptions of the
flows, is explored in the development of two strategies for DIMEUF based on the moving horizon estimation
(MHE) approach. The first strategy is deterministic, designed under the assumption that by filtering of the
measurements, the noise can be sufficiently attenuated. Therefore, the noise information is not included
in the design process. On the other hand, the second strategy is stochastic, and includes remaining noise
information in the design process. The developed strategies have been tested using data from a testbed
implemented in a specialized software, and the results show that, in a large operation region, the proposed
strategies are capable of accurately describe the channel behavior and unknown flows, and that the inclusion
of the remaining noise information increases the performance of the strategies for DIMEUF.

INDEX TERMS Unknown flows, Leaks, Seepage, Estimation, Open channel, Irrigation systems, Open
canal

I. INTRODUCTION

In agriculture, the easiest and most cost-efficient way to
transport water is through open-channel irrigation systems
(OCIS). In this process, water is taken from a natural source
and transported by networks of OCIS. Despite that irrigation
is known as the activity that most water consumes, these
systems generally present low efficiency [1], and the major
source of losses is produced by leaks [2]. Therefore, the
opportune detection, isolation, and magnitude estimation of
unknown flows (DIMEUF) such as seepage and leaks is
an alternative to take actions that might reduce losses. In
OCIS, multiple works have been reported around the field of

fault diagnosis and DIMEUF [3]–[15]. These works highlight
the importance in the selection of an appropriate model-
ing approach, which is fundamental in the development of
strategies for detection and estimation of unknown variables.
For example, as emphasized in [8], the DIMEUF strategies
designed from linear models [3], [4], [6], [11]–[16] are
only valid close to an operation region. Hence, in order to
increase this region, some works have explored the devel-
opment of DIMEUF strategies using non-linear models such
as numerical solutions of the Saint-Venant Equations (SVE)
and approximated models. The approximated models are
those developed from basic physical principles, observations,

VOLUME 4, 2016 1



Conde et al.: Detection, Isolation, and Magnitude Estimation

and empirical knowledge of the OCIS (e.g., integrator-delay
model, gray-box models, and linear-parameter variance). In
contrast, the SVE are used to obtain fundamental models that
can offer an accurate analytical description of the water be-
havior for infinitesimal sections of the channels. In reported
works that have designed DIMEUF strategies using approxi-
mated models [5], [8]–[10], it is found that the approximated
models do not contemplate energy balances along the chan-
nels, and this could lead to inaccurate DIMEUF. For example,
in [6] strategies for magnitude estimation of unknown flows
are tested in a real system, reporting drift in the results,
concluding that this drift is due to the growth of weeds, which
affects the flow conduction. Moreover, the OCIS are usually
affected by sedimentation that also changes the resistance
and conduction offered along the channels. Meanwhile, in re-
ported works that design DIMEUF strategies from numerical
solutions of the SVE, the complexity of the algorithm is one
of the key aspects, obtaining algorithms that: i) only detects
or isolates [7]; or ii) algorithms where the estimation process
must be performed off-line [9].

Alternatively, in [17] a new and intuitive approximated
modeling approach that combines mass and energy balances
has been proposed. This modeling approach includes the
nonlinear hydraulic relationships that characterize the OCIS,
showing an accurate behavior in a broad operation region.
Furthermore, it has been identified that the moving horizon
estimation (MHE) is known for its inherent capability of
handling complex nonlinear systems and let the inclusion of
additional physical information of the system by the use of
constraints [18]. Hence, in this work, the use of the model
presented in [17] is considered in the development of a MHE
strategy for OCIS. In this direction, it has been identified that:
i) in order to obtain accurate estimations of the unknown
flows magnitude, the MHE strategy must be enhanced with
the addition of detection and isolation mechanisms; and ii)
in the OCIS high inflow or outflow variations produce small
level variations of the system, and the unknown flows can
easily be masked into small variations of level measurements
(i.e, noise measurement). Therefore, in the design of strate-
gies for DIMEUF rigorous noise analysis must be performed.

In this order of ideas, the main contributions of this work
are twofold. First, we propose a new approach for DIMEUF
in OCIS, which, takes into account the effects of flow con-
duction and is developed by enhancing an MHE approach
with the inclusion of detection and isolation mechanisms.
Then, from the proposed estimation approach, a stochastic
DIMEUF strategy that contemplates the effects of noise mea-
surement is also proposed. A comparative analysis that con-
textualizes the proposed strategies for DIMEUF is presented
in Table 1. In this table, the different modeling, flow descrip-
tion, and estimation strategies reported in the literature are
contrasted with the strategies proposed in this work. This
table highlights that, by using a no-linear modeling strategy
that contemplates conduction effects along the OCIS, the
proposed strategies, let the online detection, isolation, and
magnitude estimation of the unknown flows, and cover the

multiple gaps that in mater of DIMEUF have been identified.
The remainder of the paper is organized as follows. Section

II starts with a summary of the estimation modeling strategy,
and describes the problem of accurate unknown flows magni-
tude estimations by using an MHE approach. In Section III,
first, a deterministic MHE strategy enhanced with detection
and isolation mechanisms is proposed as a solution in getting
accurate magnitude estimations of the unknown flows; and
second, the deterministic strategy is extended with the devel-
opment of a stochastic strategy that includes measurement
noise information. In Section IV the implementations of the
deterministic and stochastic approaches are explained and
validated by using the testbed proposed in [19], which is im-
plemented in the stormwater management model (SWMM)
software. In Section V the simulation results are presented
and discussed. Finally, in Section VI some conclusions are
drawn.

II. PROBLEM STATEMENT
A rigorous analytical description of the OCIS dynamics is
given by the Saint-Venant equations (SVE), which are two
non-linear partial differential equations that relate mass and
momentum conservation for each infinitesimal section of
the OCIS [20]. However, the direct use of the SVE for
control systems and estimation design is impractical [21]. In
order to address this issue, multiple control-oriented models
have been reported in the literature. In [22] an overview of
the reported control-oriented models is given, where these
models have been classified in: i) models that come from
analytical simplifications of the SVE (simplified models);
and, ii) models that come from approximations, observations,
and assumptions of the dynamic behavior of the OCIS (ap-
proximated models). In the simplified models, most of the
nonlinear OCIS relations are neglected during the simpli-
fication process, where linearization procedures are usually
performed. On the other hand, in most approximated models
the potential energy balance along the channels is avoided,
and this balance is important to relate level changes due to
conduction changes, and level changes due to seepage and
leaks. In this work, this problem is overcome by using the
modeling approach presented in [17], which describes the
nonlinear dynamical behavior of the OCIS by using mass
and energy balances. Therefore, this modeling strategy is
presented and employed in the development of an estimation
model, which is used to show the problem in getting optimal
solutions by applying a conventional MHE strategy.

A. MODELING APPROACH
As it is shown in Fig. 1, i corresponds to the stage number
(e.g., i = 1 denotes the first channel), and each chan-
nel is analyzed as two storage units with areas aupi

for
the upstream unit, and adni

(m2) for the downstream unit,
where the size of the respective areas can be obtained using
identification techniques. In this model, the channel p

i
is

fed by the flow qi (m3/s) that comes from the upstream
canal pi−1 . Besides, xupi and xdni (m) are the depth at
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TABLE 1. Comparison between reported approaches for detection, isolation, and magnitude estimation of unknown flows in
OCIS.

Work Estimation Model Flow Description Estimation Strategy Detection Isolation Estimation Conduction Online Nonlinear
Modeling

[3] Integrator delay Linear flow
relation

Bank of unknown-input
observers ! ! !

[4] Integrator delay Linear flow
relation

Bank of unknown-input
observers ! ! !

[5] Grey-box Nonlinear flow
relation

Discrepancies between
model and real system ! ! !

[6] Linearized SVE Linear flow
relation

i) Detection of
measurement deviations
ii) Kalman filter

! ! ! !

[7] Numerical solutions
of the SVE

Linear flow
relation

i) Discrepancies between
model and real system
ii) Bank of linear observers

! ! ! ! !

[8] Linear parameter
variance

Nonlinear flow
relation

Discrepancies between
model and real system ! ! ! !

[9]
i) Grey-box
ii) Numerical solutions
of the SVE

Nonlinear flow
relation

i) Discrepancies between
model and real system
ii) Extended Kalman filter
iii) Heuristic strategy

! ! ! ! !

This
paper

Mass and energy
balances

Nonlinear flow
relation

i) Deterministic MHE-detection,
isolation, & MHE-Estimation
mechanisms
ii) Stochastic MHE-detection,
isolation, & MHE-Estimation
mechanisms

! ! ! ! ! !

Fig. 1. Graphical description of the proposed energy and mass balances.

the upstream and downstream end, respectively. From the
channel p

i
, there could be multiple outflows to other channels

or users. However, the outflows have been simplified into
the outlet flow to the users qouti and the flow that feeds
the downstream channel qi+1. In OCIS, the inflows and out-
flows have an hydraulic relationship with the corresponding
regulation structures, which could be classified into gates
(Fig. 2) and weirs (Fig. 3) that regulate in either free-flow
or submerged-flow configurations [23]. Table 2 summarizes
the mathematical relationships for the discharge through each
kind of regulation structure, where wi (m) is the width of the
regulation structure, g (m/s2) is the gravity constant, ci (with
corresponding dimensions) is the discharge coefficient, and
u

i
(m) is the position of the regulation structure.

Flow Transition
The modeling strategy assumes a flow transition qtri(t)
(m3/s) between the two storage units. This flow is obtained
from an energy balance along the channel, which is given by

zupi
+ xupi

+
vupi

2

2g
= zdni + xdni +

vdni
2

2g
+ hLi ,

(1)

TABLE 2. Flow relation for different categories of regulation
structures

Free-flow

Gate qi = ciwiui

√
2g

√
xdni−1

− 0.5ui

Weir qi = ciwi

√
2g(xdni−1

− ui)
3/2

Submerged-flow

Gate qi = ciwiui

√
2g

√
xdni−1

− xupi
Weir qi = ciwi

√
2g(xdni−1

− xupi )
3/2

where the difference between zupi
and zdni

is the potential
energy related to the channel inclination, vupi and vdni are
the upstream and downstream mean flow velocities, vupi

2

2g

and vdni
2

2g are the kinetic energies at the upper and lower part
of the channel. Besides, hLi is known as the head loss due
to friction, which can be described by the Darcy-Weisbach
equation [24]. In this model, equal mean flow velocity along
the channel is assumed. Moreover, in this model, the head
loss due to friction is assumed to be a function of: i) the
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Fig. 2. Flow relation for: a) Gate in free-flow. b) Gate in submerged-flow.

Fig. 3. Flow relation for: a) Weir in free-flow. b) Weir in submerged-flow.

upstream level; ii) the flow transition between the two storage
unities (qtri(t)); and iii) a transition constant ktri , which
could be obtained from experimental tests, and is related
to both channel dimensions (diameter, length, and width),
and conduction conditions (friction factor). Then, assuming

that hLi ≈
q2
tri

ktri
2x2

upi

, and performing the energy balance
proposed in (1), the flow transition is given by

qtri(t) = ktri(t)xupi
(t)

√
xupi

(t)− xdni
(t) + zupi

− zdni
.

(2)

Unknown Flows
In this paper, the problems associated with DIMEUF, such
as seepage and leaks, are considered. In OCIS, leaks can
be given by accidental losses of water through orifices. A
common example of a leak is illustrated by [5], describing
a gate letting water through, even when it is fully closed.
Another example can be given when water percolates through
channel fissures. In these cases, such losses can be modeled
as functions of the level, where these unknown flows are
localized, i.e., κmi

(t)g(xmi
(t)), where xmi

is the level at the
mth

i position and κmi is a parameter related to the size of the
orifice or fissures aperture [25]. In this paper, the hydraulic
description of an unknown flow at the upstream part of the
channel i is expressed as

supi
(t) = κupi

(t)
√
xupi

(t), κupi
(t) ≥ 0, (3)

where κupi(t) is a parameter that could suddenly change
and is associated with the upstream orifice aperture. The
hydraulic description of a leak at the downstream part of the
channel is expressed as

sdni
(t) = κdni

(t)
√
xdni

(t), κdni
(t) ≥ 0, (4)

where κdni
(t) is the parameter associated with the down-

stream orifice aperture.

Simulation Model

Once the flows that affect the OCIS have been defined, a
model of the system can be obtained by performing a mass
balance for each storage unit, obtaining a model described as

aupi ẋupi(t) = qi(t)− qtri(t)− supi(t) (5a)
adni ẋdni(t) = qtri(t)− qouti(t)− qi+1(t)− sdni(t) (5b)

yupi(t) = xupi(t) (5c)
ydni(t) = xdni(t), (5d)

where yupi
(t) ≥ 0 and ydni

(t) ≥ 0 are the measured up-
stream and downstream levels, respectively. Flows qi(t) ≥ 0,
qi+1(t) ≥ 0, and qouti(t) ≥ 0 can be obtained by measuring
the levels associated with the respective regulation structure
(see Table 2). At this point, a nonlinear control-oriented mod-
eling approach designed from mass and approximated po-
tential energy balances for each channel has been presented.
The modeling approach (5) can be categorized as a grey-box
model, where its structure is obtained from knowledge about
the system’s behavior, and parameters associated to the flows
q
i
(t), q

i+1
(t), and qouti(t) can be obtained from physical

features of the real system. On the other hand, the parameters
that cannot be obtained from physical dimensions, such as the
upstream and downstream areas (aupi , and adni ), the tran-
sition constant (ktri ), and the parameters associated to the
upstream and downstream leaks or seepage (κupi

, and κdni
)

can be obtained through either data fitting or estimation. In
this work, the upstream and downstream areas are considered
time-invariant, and are obtained by formulating a data fitting
problem, where, if the absence of unknown flows and reduced
noise measurements is assumed, the unknown flow transition
can be neglected by the addition of the two mass balances that
describe the system (5), which, by using an Euler method, can
be discretized yielding to
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aupi

τs
(xupi

(k + 1)− xupi
(k)) +

adni

τs
(xdni(k + 1)− xdni(k))

= q
i
(k)− qouti(k)− q

i+1
(k).

(6)

Therefore, the upstream and downstream model areas are
obtained by solving the optimization problem given by

min
θai

‖φxiθai − yqi‖2

s.t.

aupi
+ adni

= a
i
,

(7)

where for an experiment with n data,

φxi =


xupi

(k+1)−xupi
(k)

τs

xdni
(k+1)−xdni

(k)

τs
xupi

(k+2)−xupi
(k+1)

τs

xdni
(k+2)−xdni

(k+1)

τs
...

...
xupi

(k+n)−xupi
(k+n−1)

τs

xdni
(k+n)−xdni

(k+n−1)

τs

 ,

yqi =


qi(k)− qouti(k)− qi+1(k)

qi(k + 1)− qouti(k + 1)− qi+1(k + 1)
...

qi(k + n− 1)− qouti(k + n− 1)− qi+1(k + n− 1)

 ,
and θai = [aupi adni ]

>. Here, the constraint aupi + adni = ai

is included to ensure that the overall area of the approximated
model is equal to the physical system area. As it can be seen,
this modeling strategy presents some important qualities that in the
estimation approach are exploited: i) with the modeling strategy an
exact overall mass balance for each channel can be guaranteed; ii)
the dynamic behavior of the model can be tuned by adjusting the
upstream and downstream areas with real data; iii) the upstream and
downstream channel levels can be used in the nonlinear hydraulic
description of inflows and outflows of interacting channels; and
iv) the nonlinear descriptions of the inflows and outflows can be
integrated into the estimation model, increasing the operation region
where this model is valid. Note that the upstream and downstream
areas have been considered as time-invariant identified parameters.
On the other hand, ktri , κupi , and κdni are parameters that can
change due to sedimentation, and incorrect gate closing, or a sudden
channel fissure. Therefore, an estimation model is developed in
order to consider the online estimation of such parameters.

Estimation Model
At this point, the OCIS can be modeled using two non-linear dif-
ferential equations that describe mass and energy balances for each
channel. Now, with the objective to develop a strategy for DIMEUF,
by using an Euler discretization method, the modeling approach (5)
is used in the development of a discrete-time estimation model as
follows:

x̂upi(k + 1) =x̂upi(k) +
τs
aupi

(qi(k)− q̂tri(k)− ŝupi(k)),

x̂dni(k + 1) =x̂dni(k) +
τs
adni

(q̂tri(k)− qouti(k)

− qi+1(k)− ŝdni(k)),

(8)

where τs (s) is the sampling time; x̂upi(k) ≥ 0, x̂dni(k) ≥ 0,
q̂tri(k) ≥ 0, ŝupi(k) ≥ 0, and ŝdni(k) ≥ 0, are considered
unknown variables to be estimated. These variables correspond to

the upstream level, the downstream level, the flow transition, and
the upstream and downstream leaks, respectively. In contrast, the
flows qi(k) ≥ 0, qouti(k) ≥ 0, and qi+1(k) ≥ 0 are considered
known variables that can be obtained from measurements of the
real system. A compact description of the discrete-time estimation
model (8) is given by

x̂i(k + 1) = Gi x̂i(k) +Hi ψ̂i(k) +Hfiξi(k),

ŷi(k) = x̂i(k),
(9)

where the variables correspond to: the vector of unknown states
x̂i(k) = [x̂upi(k) x̂dni(k)]>; the vector of unknown flows to
be estimated ψ̂i(k) = [q̂tri(k) ŝupi(k) ŝdni(k)]>; the vector of
known flows ξi(k) = [qi(k) qouti(k) qi+1(k)]>; and the vector of
unknown outputs to be estimated ŷi(k) = [ŷupi(k) ŷdni(k)]>. The
state matrix, the unknown flows matrix, and the known flows matrix
are given by

Gi =

[
1 0
0 1

]
, Hi =

[− τs
aupi

− τs
aupi

0
τs
adni

0 − τs
adni

]
, and

Hfi =

[
τs
aupi

0 0

0 − τs
adni

− τs
adni

]
,

respectively.
Note that, according to the hydraulic descriptions of the unknown

flows given in (2), (3), and (4), the vector of unknown flows ψ̂i(k)
can be described as a linear combination of known or measured
variables and unknown parameters as

ψ̂i(k) = Ωi(k)θ̂i(k), (10)

where Ωi(k) ∈ R3×3 is a matrix of hydraulic relations that can be
obtained from measurements of the real system by

Ωi(k) =

γi(k) 0 0

0
√
yupi(k) 0

0 0
√
ydni(k)

 ,
γi(k) = yupi(k)

√
yupi(k)− ydni(k) + zupi − zdni ,

and θ̂i(k) ∈ R3 is a vector of time-varying unknown parameters to
be estimated, described as
θ̂i(k) = [k̂tri(k) k̂upi(k) k̂dni(k)]>.
These unknown parameters are associated to real and non-

negative physical variables such as areas and conduction coefficients
(i.e., k̂tri(k), k̂upi(k), k̂dni(k) ≥ 0). This is important information
that must be included into the estimation strategies.

B. MHE PROBLEM
In order to estimate the vector of unknown parameters θ̂i(k), the
MHE strategy is considered. This is an optimization-based estima-
tion strategy that consists in minimizing a cost function defined over
a receding time window of inputs and outputs data with fixed length
[26]. This technique is known for its inherent capability of handling
complex nonlinear systems with constraints [18], showing that it
could be a suitable strategy to deal with the estimation problem
in OCIS. However, following, it is shown that the direct use of
the MHE strategy leads to inaccurate estimations of the unknown
parameters. As it is shown in Figure 4, in the MHE strategy an
estimation window with lengthNh that starts inNhp = k−Nh+1
and ends in k is established. Note that the notation ŷi(k | Nhp)
indicates that the data ŷi(k) depends on the conditions at the time
Nhp. Over this window, the estimation of the model (8) is given by

ŷ
i

=Φi x̂i(Nhp | Nhp) +BiΩi(k)θ̂i(k) +Bfiξi
(k), (11)
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Fig. 4. Graphical description of data over an estimation window.

where

ŷ
i

=[ŷi(Nhp + 1 | Nhp)> ŷi(Nhp + 2 | Nhp)>

· · · ŷi(k + 1 | Nhp)>]>,

Φi =[(Gi)
> (G2

i
)> · · · (GNh

i
)>]>,

Bi =


Hi 0 · · ·
GiHi Hi · · ·

...
...

...
GNh−1

i
Hi GNh−2

i
Hi · · ·

 ,
Ωi(k) =diag(Ωi(Nhp | Nhp) Ωi(Nhp + 1 | Nhp)

· · · Ωi(k | Nhp)),
θ̂i(k) =[θ̂i(Nhp | Nhp)

> (θ̂i(Nhp + 1 | Nhp))>

· · · (θ̂i(k | Nhp))
>]>

Bfi =


Hfi 0 · · ·
GiHfi Hfi · · ·

...
...

...
GNh−1

i
Hfi GNh−2

i
Hfi · · ·

 ,
ξ
i
(k) =[ξi(Nhp | Nhp)

> (ξi(Nhp + 1 | Nhp))>

· · · (ξi(k | Nhp))
>]>,

with ŷ
i
∈ R2Nh , Φi ∈ R2Nh×2, Bi ∈ R2Nh×3Nh , Ωi(k) ∈

R3Nh×3Nh , θ̂i(k) ∈ R3Nh , Bfi ∈ R2Nh×3Nh , ξi(k) ∈ R3Nh ,
and 0 a null matrix with appropriate dimensions.

In order to find the estimated parameters θ̂i(k) that minimizes
the deviation between estimated and measured levels, first, the
development of a conventional MHE strategy is formulated. A
block diagram of the MHE strategy is shown in Fig. 5, where
additionally to the estimation model and the optimization stage,
it is taken into account that the known flow measurements ξ(k)
and the known hydraulic relations Ωi(k) are obtained from levels
measurements and positions of the regulation structures (Table 2).
Also, it is assumed that the level measurements are performed using
ultrasound sensors, and these measurements should be sampled and
filtered. Therefore, a low-pass filter stage and a sampling stage are
included. As a result, as long as the noise is sufficiently attenuated
(in the estimation mechanism), the proposed objective function to
be minimized can be given by

V i =‖y
i
− ŷ

i
‖2R1i

+ ‖θ̂i(k − 1)− θ̂i(k)‖2R2i
, (12)

where y
i

is a vector of the measured levels given by

y
i

=[yi(Nhp + 1 | Nhp)> yi(Nhp + 2 | Nhp)>

· · · yi(k + 1 | Nhp)]>,

with y
i
∈ R2Nh . In (12), the term ‖θ̂i(k − 1)− θ̂i(k)‖2R2i

is
included as a forgetting factor that takes into account the influence
of past estimations [27], where θ̂i(k − 1) is the sequence of
unknown parameters estimated in a previous iteration. Moreover,
R1i ∈ R2Nh×2Nh andR2i ∈ R3Nh×3Nh are diagonal and positive
definite weighting matrices that penalize the estimation error and
the forgetting factor, respectively. The constraints inclusion is used
to add information to the estimation problem [28], then, as the
unknown parameters must be positive, the minimization problem
is proposed as

min
θ̂i(k)

V i

s.t.

θ̂i(k) ≥ 0.

(13)

Note that the reachability of suitable sequences of the unknown pa-
rameters (θ̂i(k)) depends on the convexity of the objective function
(12). In Lemma 1, it is shown that the use of a conventional MHE
strategy does not guarantee an optimal estimation of θ̂i(k).

Lemma 1. From the objective function (12), only sub-optimal
estimations of θ̂i(k) can be reached.

Proof. A necessary condition for any local minimum to be a global
minimum is the convexity of the objective function (12). This
condition can be reached if the Hessian with respect to θ̂i(k) is
positive definite, i.e.,

∇2
θ̂
i
(k)V i = Ωi(k)>B>

i
R1iBiΩi(k) +R2i � 0. (14)

Since R1i and R2i are positive defined, the condition established
in (14) is achieved if Ωi(k)>B>

i
BiΩi(k) � 0.

A sufficient condition for Ωi(k)>B>
i
BiΩi(k) � 0 is that

the rank of BiΩi(k) should be equal to 3Nh. But, given the
dimensions of Bi and Ωi(k), the maximum rank of BiΩi(k) is
2Nh. Therefore, the condition (14) and an optimal estimation of
θ̂i(k) cannot be reached.

However, by definition, Ωi(k)>B>
i
BiΩi(k) is positive semi-

definite [29], then, the term

Ωi(k)>B>
i
R1iBiΩi(k)

is positive semi-definite.
Therefore, the Hessian ∇2

θ̂
i
(k)V i is positive semi-definite and

only sub-optimal estimations of θ̂i(k) can be guaranteed.

A contextualized explanation of the problem can be synthesized
in that the minimization of the error between the upstream and
downstream levels can be reached with inaccurate combinations of
the estimated unknown flows. Therefore, if only an unknown flows
estimation algorithm is used, inaccurate estimations of the unknown
parameters can be reached.
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Fig. 5. Estimation mechanism.

According to the approximate model order (5), the maximum
rank ofBi is 2Nh. Therefore, if only two unknown inputs are con-
sidered, the convexity of the objective function can be guaranteed.
For the two inputs case, Hi is in R2×2, and the rank of Bi is still
2Nh. This solution can be reached by estimation of the total amount
of the upstream unknown flows (−qtri(t) − supi(t)) and the total
amount of the downstream unknown flows (qtri(t)−sdni(t)). Then,
by direct addition of the upstream and downstream unknown flows,
the total amount of unknown flows that affect an open-channel can
be estimated. This problem is solved in [30] by using an MHE
strategy. Other strategies such as unbiased minimum-variance state
estimation [31], and state estimators with quadratic boundedness
[32] could be explored to solve this issue. However, by using the
two unknown-inputs consideration, the upstream and downstream
origins of the unknown flows cannot be established. Therefore, as
a proposed solution, following, an enhanced strategy that includes
detection and isolation mechanisms is proposed.

III. PROPOSED APPROACH
In order to overcome the non-convex estimation problem, in Fig. 6
an enhanced strategy for DIMEUF is proposed, where: i) the de-
tection mechanism uses information about variations of the known
flows (∆ξi(k)) and variations of the measured levels (∆yi(k + 1))
to estimate variations of the unknown flows (∆ψ̂i(k)); ii) in the
isolation mechanism, the information about the estimated variations
of the unknown flows are used to establish the origin of the unknown
flow, which can be an either upstream or downstream unknown
flow; and iii) in the estimation algorithm, the forgetting factor of
the unlikely unknown flow is penalized in order to estimate the flow
transition and the corresponding unknown flow that minimizes the
objective function (12).

Next, deterministic and stochastic analyses of the proposed
strategies are performed. The deterministic analysis is developed
assuming that the noise can be sufficiently attenuated by the filtering
stage. On the other hand, the stochastic analysis is developed
including information about remaining measurement noise that can
affect the detection, isolation, and estimation processes.

A. DETERMINISTIC APPROACH
Note that under the assumption that the measurement noise can
be sufficiently attenuated, the difference between the estimation
mechanisms (Figures 5 and 6) is that in the proposed strategy for
DIMEUF the weighting matrix that penalizes the forgetting factor
(R2i(k)) is time variant. This weighting matrix is adjusted by the
isolation mechanism, which receives information from the detection
mechanism as it is described next.

Detection Mechanism
The proposed detection mechanism is developed using a similar
MHE strategy than the developed for the estimation mechanism,
with the difference that in the detection strategy, the objective is
to estimate the variations of the unknown flows. Therefore, from
the proposed estimation model (9), a variational estimation model
is derived as

∆x̂i(k + 1) =Gi∆x̂i(k) +Hi∆ψ̂i(k) +Hfi∆ξi(k)

∆ŷi(k) =∆x̂i(k),
(15)

where, ∆x̂i(k + 1) = x̂i(k + 1) − x̂i(k); ∆ψ̂i(k) = ψ̂i(k) −
ψ̂i(k−1); and ∆ξi(k) = ξi(k)−ξi(k−1). Note that the variational
estimation model maintains the same state and input matrices than
the estimation model (9). Therefore, over an estimation window, the
variational estimation model is given by

∆ŷ
i

=Φi∆x̂i(Nhp | Nhp) +Bi∆ψ̂i(k) +Bfi∆ξi
(k),

where

∆ŷ
i

=[∆ŷi(Nhp + 1 | Nhp)> ∆ŷi(Nhp + 2 | Nhp)>

· · · ∆ŷi(k + 1 | Nhp)>]>,

∆ψ̂i(k) =[∆ψ̂i(Nhp | Nhp)
> ∆ψ̂i(Nhp + 1 | Nhp)>

· · ·∆ψ̂i(k | Nhp)
>]>.

∆ξ
i
(k) =[∆ξi(Nhp | Nhp)

> ∆ξi(Nhp + 1 | Nhp)>

· · ·∆ξi(k | Nhp)
>]>,

with ∆ŷ
i
∈ R2Nh , ∆ψ̂i(k) ∈ R3Nh , ∆ξi(k) ∈ R3Nh .

In the detection strategy, the objective is to find the vector of
variations of the unknown flows (∆ψ̂i(k)) that minimizes the
quadratic error between the variations of the measured levels (∆y

i
)

and the variations of the estimated levels (∆ŷ
i
). Therefore, it is

proposed to minimize the cost function given by

J i =‖∆y
i
−∆ŷ

i
‖2D1i

+ ‖∆ψ̂
i
(k − 1)−∆ψ̂

i
(k)‖2D2i

,

(16)
where the vector of variations of the measured levels is given by

∆y
i

=[∆yi(Nhp + 1 | Nhp)> ∆yi(Nhp + 2 | Nhp)>

· · ·∆yi(k + 1 | Nhp)>]>.

Besides, ‖∆ψ̂
i
(k − 1)−∆ψ̂

i
(k)‖2D2i

is included as a forgetting

factor, and ∆ψ̂
i
(k−1) is the vector of variations of unknown flows

estimated in a previous iteration. Moreover, D1i ∈ R2Nh×2Nh and
D2i ∈ R3Nh×3Nh are diagonal and positive definite weighting ma-
trices that penalize the variational estimation error and the forgetting
factor, respectively.

Isolation Mechanism
As it is shown in Fig. 6, the proposed isolation mechanism uses
unknown flows estimated variations (∆ψ̂i(k)) to establish the pos-
sible origin of the unknown flow and penalizes the corresponding
forgetting factor of the unlikely unknown flow. This is developed
under the following assumption.
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Fig. 6. Proposed detection, isolation, and estimation mechanisms.

Assumption 1 (No simultaneous variations of leaks). In an open-
channel, upstream and downstream variations of unknown flows do
not coincide at the same time.

Based on Assumption 1, the isolation mechanism can be de-
scribed as a signal comparison mechanism, where: i) a thresh-
old value (Λ∆i ) is established in order to discriminate between
noise and real variations of unknown flows; ii) the magnitudes
of the estimated upstream and downstream variations of unknown
flows are compared in order to establish the feasible origin of
the variation; and iii) in the objective function of the estima-
tion mechanism (12), the diagonal weighting matrix is trans-
formed into a dynamic matrix that penalizes the forgetting factor
R2i(k). Therefore, the forgetting factor is adjusted as R2i(k) =
diag(Rktri(k) Rkupi(k) Rkdni(k) . . . Rkdni(k)), and the
isolation mechanism modifies Rktri(k), Rkupi(k), and Rkdni(k)
as follows:
• if an upstream unknown flow variation is most likely, then
Rktri(k) = αi,Rkupi(k) = αi,Rkdni(k) = βi;

• if a downstream unknown flow variation is most likely, then
Rktri(k) = αi,Rkupi(k) = βi,Rkdni(k) = αi;

where, if βi >> αi, the change of the unlikely unknown parameter
is avoided, and the minimization of the objective function of the es-
timation mechanism (12) is performed by ktri(k) and the unknown
parameter of the origin of the variation kupi(k) or kdni(k).

Estimation Mechanism
Finally, the information of the isolation mechanism is included in
the cost function of the estimation mechanism as follows:

V i =‖y
i
− ŷ

i
‖2R1i

+ ‖θ̂i(k − 1)− θ̂i(k)‖2R2i
(k). (17)

The cost function is minimized in order to obtain the magnitudes
of the estimated parameters k̂tri(k) k̂upi(k), and k̂dni(k). Note
that the magnitude of leaks and seepage can be obtained by linear
combinations of the estimated parameters and functions of the
upstream and downstream measured levels (10).

B. STOCHASTIC APPROACH
Even though the deterministic approach contemplates noise reduc-
tion with the inclusion of a low-pass filter, the remaining mea-
surement noise can affect the detection, isolation, and estimation
processes. Therefore, in this section, mechanisms that maximize the
likelihood detection and likelihood estimation of the unknown flows
are designed. The stochastic approach maintains the same detection,
isolation, and estimation sequence of the deterministic approach
(see Fig. 6). However, for the sake of simplicity, the stochastic
estimation mechanism is discussed first, and then the stochastic
detection and isolation mechanisms are addressed.

Stochastic Estimation Mechanism
In the stochastic estimation mechanism, the remaining measurement
noise after filtering is considered. Moreover, as the known inputs

qi , qouti , and qi+1 are obtained from measurements of the levels
(see Table 2), the remaining measurement noise can also affect the
model dynamics. Consequently, an estimation model that includes
remaining measurement noise information can be stated by

x̂i(k + 1) =Gi x̂i(k) +Hi ψ̂i(k) +Hfiξi(k) + ωi(k),

ŷi(k) =x̂i(k) + νi(k),
(18)

where ωi(k) = [ωupi(k) ωdni(k)]> is the process estimation
noise, ωupi(k), and ωdni(k) are normally distributed noise, with
zero mean and standard deviation σωupi and σωdni , respectively.
Similarly, νi(k) = [νupi(k) νdni(k)]> is the remaining measure-
ment noise, with zero mean and standard deviation σνupi and σνdni ,
respectively.

In order to consider the remaining measurement noise, and the
expected values of the levels, the estimation is performed under the
following assumption.

Assumption 2 (Expected estimated levels). Over an estimation
window, the expected values of y

i
can be estimated from

ˆ̄y
i

=Φi x̂i(Nhp | Nhp) +BiΩi(k)T i
ˆ̄θi(k)

+Bfiξi
(k) +W i(k) +N i ,

(19)

where ˆ̄y
i
∈ R2Nh is the vector of estimated expected values of

the output, ˆ̄θi(k) = [ˆ̄ktri(k) ˆ̄kupi(k) ˆ̄kdni(k)]> ∈ R3 are the
expected values of the unknown parameters, and T i ∈ R3Nh×3

is a block of identity matrices such that T i
ˆ̄θi(k) ∈ R3Nh . Finally,

W i(k) ∈ R2Nh and N i ∈ R2Nh are the corresponding process
and measurement noise vectors, respectively.

It is emphasized that additionally to the noise inclusion, the
deterministic and stochastic cases (Equations (11) and (19)), differ
in the configuration of the unknown parameters. Note that in (11),
θ̂i(k) ∈ R3Nh is the estimated unknown parameters for each
instant of the estimation window. In contrast, in (19), it is considered
that the unknown parameters ( ˆ̄θi(k) ∈ R3) are the same over the
entire estimation window. In that form, in the stochastic estimation
mechanism, the objective is to find the unknown parameters ( ˆ̄θi(k))
that makes the vector of measured levels y

i
most likely. For that

a likelihood function must be established, where over an estimation
window, the process covariance can be obtained from the estimation
error ei = yi(k + 1) − ˆ̄yi(k + 1), and the covariance is the
expected value given by

Pi(k + 1) = E
(
ei(k + 1)ei(k + 1)>

)
. (20)

Consequently, if a discrete model of the system is given by

xi(k + 1) =Gixi(k) +Hiψi(k) +Hfiξi(k),

yi(k) =xi(k),
(21)
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and if the unknown flows (ψi(k)) are considered to be zero or
identical to the unknown estimated flows (ψ̂i(k)), by subtraction,
from (18) and (21), the estimated error can be written as

ei(k + 1) =Giei(k) + ωi(k) + νi(k + 1).

Therefore, from (20), the process covariance is given by

Pi(k + 1) =GiPi(k)G>
i

+R+ S, (22)

where

R =

[
σ2
ωupi

0
0 σ2

ωdni

]
, S =

[
σ2
νupi

0
0 σ2

νdni

]
.

Finally, the process covariance (22) is given by

Σi(k) =diag[(Pi(Nhp | Nhp), Pi(Nhp + 1 | Nhp), · · ·
Pi(k | Nhp))].

(23)

The process covariance contains information about the deviation
that the expected values present over an estimation window. Next,
the process covariance is included in the development of the like-
lihood function used to find the expected values of ˆ̄θi(k). Then
given the process covariance (23) and the estimation process (19), a
probability density function (likelihood function) can be formulated
as

f(y
i
| ˆ̄θi(k)) =

1

(2π)Nh

∣∣Σi(k)
∣∣1/2 e− 1

2
Υ, (24)

where

Υ = (y
i
− ˆ̄y

i
)Σi(k)−1(y

i
− ˆ̄y

i
).

Now, the goal is to find the estimated values ˆ̄θi(k) that makes the
measured vector (y

i
) most likely. Therefore, the probability density

function (24) must be maximized with respect to ˆ̄θi(k). However, as
it is shown in [33], for the sake of simplicity, the logarithm of (24)
can be maximized leading to the following minimization problem:

minimize
ˆ̄θi(k)

Υ.
(25)

Similarly to the deterministic case, in the objective function, in
order to retain influence of past estimations, also the forgetting
factor (‖ ˆ̄θi(k − 1)− ˆ̄θi(k)‖2Rsi

) can be included, leading to the
cost function

V si =‖y
i
− ˆ̄y

i
‖2
Σ

i
(k)−1 + ‖ ˆ̄θi(k − 1)− θ̄i(k)‖

2

Rsi(k)
,

(26)
where Rsi(k) ∈ R3×3 is used to penalize the forgetting factor.
Moreover, if constraints on the unknown parameters are included,
the minimization problem of the estimation mechanism is formu-
lated as

min
ˆ̄θi(k)

V si

s.t.

ˆ̄θi(k) ≥ 0.

(27)

Note that by following a similar analysis as in Lemma 1, the
convexity of the stochastic objective function (26) can be reached
if the rank ofBiΩi(k)T i is 3Nh, but given the dimensions ofBi ,
Ωi(k), and T i , the maximum rankBiΩi(k)T i is 2Nh. Therefore,
in order to obtain accurate estimations of the unknown flows, in the
stochastic approach, stochastic detection and isolation mechanisms
must be included.

Stochastic Detection and Isolation Mechanisms
In the stochastic case, by following a similar procedure as employed
in the obtaining of the variational estimation model of the determin-
istic case, from (18), the variational estimation model is given by

∆x̂i(k + 1) =Gi∆x̂i(k) +Hi∆ψ̂i(k)+

Hfi∆ξi(k) + ω∆i(k)

∆ŷi(k) =∆x̂i(k) + ν∆i(k),

(28)

where ω∆i(k) = [ω∆upi(k) ω∆dni(k)]> is related to the remaining
process noise, ω∆upi(k) and ω∆dni(k) are normally distributed
noise with zero mean. Similarly, ν∆i(k) = [ν∆upi(k) ν∆dni(k)]>

is related to the remaining measurement noise, where ν∆upi(k) and
ν∆dni(k) are normally distributed noises with zero mean. Similarly
to the stochastic estimation mechanism, in order to consider the ex-
pected values of the level variations over an estimation window, the
variational model (28) is presented under the following assumption.

Assumption 3 (Expected estimated variations). Over the estima-
tion window, the expected values of ∆y

i
can be estimated from

∆ ˆ̄y
i

=Φi∆x̂i(Nhp | Nhp) +BiT i∆
ˆ̄ψi(k)

+Bfi∆ξi
(k) +w∆i(k) + n∆i ,

where ∆ ˆ̄y
i
∈ R2Nh is the vector of estimated expected values of

the output variations, and

∆ ˆ̄ψi(k) = [∆ˆ̄qtri(k) ∆ˆ̄supi(k) ∆ˆ̄sdni(k)]>,

is the vector of expected values of the unknown flows variations.
Finally, w∆i(k) ∈ R2Nh and n∆i ∈ R2Nh are the corresponding
noise vectors.

In the same way as in (22), the process covariance can be
modeled as

P∆i(k + 1) =GiP∆i(k)G>
i

+R∆ + S∆.

Note that the measurement and process noises at different time
instants are not correlated (i.e., there is no correlation between
ωi(k) and ωi(k − 1), and νi(k) and νi(k − 1)). Therefore,
the noise standard deviations of ω∆upi(k), ω∆dni(k), ν∆upi(k),
and ν∆dni(k) are given by 2σωupi , 2σωdni , 2σνupi , and 2σνdni ,
respectively. Hence,

R∆ =

[
2σ2

ωupi
0

0 2σ2
ωdni

]
, S =

[
2σ2

νupi
0

0 2σ2
νdni

]
.

As a result, the process covariance (Σ∆i(k) ∈ R3Nh×3Nh ) can
be calculated yielding to a diagonal matrix of the form

Σ∆i(k) =diag(P∆i(Nhp | Nhp),
P∆i(Nhp + 1 | Nhp),
· · · P∆i(k | Nhp)).

(29)

Consequently, following the same procedure to obtain (26), the
estimation of the unknown flow variation, can be reached by mini-
mizing the following objective function

Jsi =‖∆y
i
−∆ˆ̄y

i
‖2
Σ∆i

(k)−1 + ‖∆ ˆ̄ψi(k − 1)−∆ ˆ̄ψi(k)‖
2

Dsi
,

(30)
where Dsi ∈ R3×3 penalize the forgetting factor.

Likewise as in the deterministic case, in the stochastic case, the
isolation mechanism uses the estimation of the expected unknown
flow variations to establish the origin of the unknown flow and
to penalize the corresponding forgetting factor of the estimation
mechanism.
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IV. CASE STUDY
The proposed deterministic and stochastic strategies are tested using
the benchmark based on the Corning canal in California, which has
been presented in [19] and the ASCE Task Committee on Canal
Automation Algorithms as a standardized testbed on canals with
well-studied and realistic properties.

The testbed has been implemented in the storm water manage-
ment model (SWMM), developed by the United States Environmen-
tal Protection Agency (EPA), which numerically solves the SVE of
the implemented testbed. The implementation is presented in Fig
7. Even though the testbed is composed by eight channels, since
the estimation strategies present the same structure for any channel,
the simulation is limited to only one channel (the first channel of the
testbed in Figure 7). This is a rectangular channel with the following
dimensions: length of 7000m, width of 7m, upstream elevation of
4.4m, and downstream elevation of 3.29m. As it is highlighted in
Fig. 7, in the first channel, in order to emulate the unknown flows
to be detected and estimated, two orifices with variable areas from
0 to 0.04m2 have been included. A more detailed description of the
design and implementation process follows.

A. SAMPLING TIME
Although most of the OCIS are large-scale systems with very slow
dynamics, it has been observed that the time response of the system
variation can be almost ten times faster than the system dynamics.
Therefore, in order to capture the dynamics of the system variation,
the sampling time has been selected by analysis of the time response
level variation. In this analysis, the classical control rule of choosing
a sampling time ten times smaller than the rise time [23] is used,
yielding to a sampling time of τs = 100s.

B. MODEL AREAS
The model areas have been found by using data fitting (7), with
the constraint given by aup1 + adn1 = 49000, obtaining upstream
and downstream areas given by aup1 = 21864m2 and adn1 =
27136m2.

C. NOISE AND LOW-PASS FILTER
As it is shown in [34], there is a close relationship between the
measurement noise standard deviation and the sensor quality. In this
case study, it is considered that in OCIS, levels are measured with
ultrasound sensors, and according to the quality of the commercial
sensors, the measurement noise standard deviation could be between
1 × 10−3m and 2.5 × 10−3m. Therefore, the deterministic and
stochastic algorithms have been tested with measurements obtained
from the testbed implemented in the SWMM, and the measurements
have been contaminated with noise of these standard deviations.

Moreover, it must be contemplated that in comparison with the
system sampling time (τs), the sensor’s sampling time should be
small. This data availability is exploited with the integration of low-
pass filters to reduce the measurement standard deviation. For this
reason, a third-order low-pass filter is included with a cutoff fre-
quency of 0.02Hz. This frequency is chosen by using the Nyquist-
Shannon sampling theorem, and the selected sampling time of 100s.
With the inclusion of the low-pass filter, the standard deviation of
the remaining measurement noise is almost ten times lower than the
original.

D. WEIGHTING MATRICES
Detection Weighting Matrices of the Deterministic
Mechanism
In the deterministic mechanism, for the sake of simplicity, the
detection weighting matrices of (16) can be described as D1i =
d1iI2Nh , and D2i = d2iI3Nh , where d1i , and d2i are positive

weighting constants and I2Nh , and I3Nh are identity matrices
with dimensions 2Nh × 2Nh and 3Nh × 3Nh, respectively. In the
deterministic case, the relation between the weighting parameters
(d1i , and d2i ) has been used as a tuning parameter. In the tuning
procedure: i) the weighting parameter that penalizes the forgetting
factor has been chosen as d2i = 1; and ii) Monte Carlo tests
have been developed, where a key performance indicator (KPI) has
been established in order to find the value of d1i that minimizes
the detection error of the unknown flows. The KPI that has been
established in order to mitigate the noise detection and give strong
penalization of large detection errors is given by

KPI =

kf∑
k=1

(∆supi(k)−∆ŝupi(k))4

kf − 1
+

(∆sdni(k)−∆ŝdni(k))4

kf − 1
,

(31)

where kf is the length of data used in the tests. The tests show
that small values of d1i attenuate the estimation noise, but also
increase inaccurate detections. On the other hand, large values of
d1i increase the detection accuracy but also increase the noise
detection. The results of the Monte Carlo tests are shown in Fig.
8, where it is observed that d1i values close to 2 × 105 offer the
lowest detection errors.

Estimation Weighting Matrices of the Deterministic
Mechanism
Note that in the estimation cost function of the deterministic mech-
anism (12), the weighting matrix that penalizes the forgetting factor
R2i is modified by the isolation mechanism. In this mechanism,
the parameters αi and βi have been selected as αi = 1 and
βi = 1 × 106, where the arbitrary value of βi is higher enough
to avoid the change of the unlikely flow. On the other hand, the
weighting matrix R1i has been simplified as R1i = r1iI2Nh ,
where r1i is a tuning constant. In order to find accurate r1i values,
Monte Carlo tests have been performed. In these tests, the r1i values
are evaluated in order to minimize the mean square error (MSE)
between the estimated and measured unknown flows by

MSE =

kf∑
k=1

(supi(k)− ŝupi(k))2

kf − 1
+

(sdni(k)− ŝdni(k))2

kf − 1
.

(32)
As it is shown in Fig. 9, it has been found that small values of
r1i reduce the noise estimation with an inaccurate estimation of
the unknown flows, and large values of r1i increase the estimation
accuracy but also the noise estimation, finding that with r1i values
close to 0.5×105, accurate and readable estimations of the unknown
flows can be reached.

Weighting Matrices of the Stochastic Mechanism
Note that in the stochastic mechanism, the penalization matrices
Σi(k)−1 and Σ∆i(k)−1 (Equations (26) and (30), respectively),
are obtained from the process covariance (23) and (29), where
the information about the noise standard deviations (σνupi , σνdni ,
σωupi and σωdni ) is required. All the standard deviations have been
obtained from system measurements at steady state. σνupi , and
σνdni have been estimated directly from the standard deviation of
the measured noise. The standard deviations associated to the flows
measurements (σωupi and σωdni ) have been estimated using the
respective hydraulic relation presented in Table 2, and discretized
multiplying by τs

aupi
or τs

adni
as appropriate. On the other hand, the

forgetting penalization matrices (Dsi andRsi(k)) have been set as
Dsi = I3, andRsi(k) is modified by the isolation mechanism with
αi = 1 and βi = 1× 106.
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Fig. 7. Case Study simulation in EPA-SWMM.
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Fig. 8. Monte Carlo tests to establish the d1i
values that offer the lowest detection errors
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Fig. 9. Monte Carlo tests to establish the r1i values that offer the lowest estimation errors.

E. ISOLATION MECHANISM THRESHOLD
For the deterministic and stochastic cases, the threshold value has
been adjusted from tests of the detection mechanisms at steady
state, where the standard deviations of the estimated upstream and
downstream unknown flow variations have been used to adjust the
threshold value.

As it is shown in Fig. 10, by the development of Monte Carlo
tests, it has been found that a threshold value equal to 4.5 times
the maximum standard deviation of the estimated upstream and
downstream unknown flow variations avoids false detections and
allows unknown flows detections.

F. IMPLEMENTATION
Finally, the deterministic and stochastic approaches are imple-
mented by using the algorithms 1, and 2 respectively. In these algo-
rithms, the fl variable has been included to prevent false triggering
of the stochastic and deterministic detection mechanisms.

V. SIMULATION RESULTS AND DISCUSSION
In the simulation results, the deterministic and stochastic ap-
proaches are contrasted using filtered measurement noise, where
a noise attenuation close to 20dB is obtained. Therefore, in order
to test the approaches in the highest and lowest measurement
noise scenarios, first, the approaches are contrasted with a filtered
measurement noise with a standard deviation of 1 × 10−4m; and
second, the approaches are contrasted with a filtered measurement
noise with a standard deviation of 2.7× 10−4m.

A. EVALUATION FOR THE SMALLEST NOISE CASE

Figure 11 shows the performance comparison of the deterministic
and stochastic detection mechanisms, where it is observed that
when an unknown flow variation occurs, both approaches present
estimated upstream and downstream unknown flows variations.
Also, as expected, the stochastic mechanism presents the lowest
noise amplitude. Additionally, in both cases, it is observed small
false detections that account for the upstream and downstream levels
interactions. Figure 12 shows the operation mode of the deter-
ministic and stochastic isolation mechanisms, where the threshold
Λ∆1 is established at six times the maximum experimental standard
deviations between ∆ŝup1 and ∆ŝdn1 . Therefore, only detections
that overcome the threshold value are used to establish the origin of
the unknown flow and change the corresponding forgetting factor.
In Fig. 12, the deterministic and stochastic strategies present similar
behavior. However, the relations between the maximum detected
variation and the threshold of the deterministic and stochastic ap-
proaches are close to 3.8 and 6.6, respectively. That means that the
stochastic detection mechanism offers a better relationship between
the estimated signal and the estimated noise. Therefore, with the
stochastic mechanism, it is most likely to detect unknown flows
from noisy measurements. In Fig. 13, the behaviors of the deter-
ministic and stochastic estimation mechanisms are shown, where
the deterministic mechanism presents more accurate estimations
than the stochastic mechanism. It occurs since the deterministic
estimation mechanism finds the optimal unknown parameters (k̂tr1 ,
k̂up1 , and k̂dn1 ) for each time instant. On the other hand, in the
stochastic approach, over the estimation window, it is found the
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Fig. 10. Monte Carlo tests, where the red line correspond to a threshold value of 4.5 times the maximum standard deviation of
the estimated upstream and downstream unknown flow variations.
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Fig. 11. Performance comparison of the deterministic and stochastic detection mechanisms.
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Fig. 12. Comparison of the deterministic and stochastic isolation mechanisms, only detections that overcome Λ∆1
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to establish the origin of the unknown flow.
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Fig. 13. Performance comparison of the deterministic and stochastic unknown flows estimators.

Algorithm 1 Deterministic estimation algorithm

Define, build, and obtainNh, Φi ,Bi ,Bfi ,D1i ,D2i , Λ∆i ,
βi, αi, andR1i .
while estimation is on do

Acquire and evaluate yupi
(k), ydni

(k), u
i
(k), ξ

i
(k),

∆yupi
(k), ∆ydni

(k), ∆ξ
i
(k)

if k > Nh + 1 then
Obtain y

i
, ξi(k), ∆y

i
, ∆ξi(k)

Obtain ∆ψ̂ by minimizing J
i

if |∆ŝupi(k)| < 0.1Λ∆i and |∆ŝdni(k)| < 0.1Λ∆i

then
fl = 0

end if
if fl = 0 and |∆ŝupi

(k)| > Λ∆i
and |∆ŝupi

(k)| >
|∆ŝdni(k)| then
Rktri = αi,Rkupi = αi,Rkdni = βi

else if fl = 0 and |∆ŝdni
(k)| > Λ∆i

and
|∆ŝdni

(k)| > |∆ŝupi
(k)| then

Rktri = αi,Rkupi
= βi,Rkdni

= αi

end if
BuildR2i

Obtain θ̂i(k) by minimizing V i

Obtain the unknown flow ψ̂
i
(k) = Ω

i
(k)θ̂

i
(k)

end if
end while

expected value of the unknown parameters, showing difficulties for
rapid changes response. However, it is observed that the estimations
of the stochastic approach are suitable enough to be used for
DIMEUF.

The total amount of the estimated unknown flows and the
estimated flow transition are shown in Fig. 14, where both, the
deterministic and stochastic strategies present an ideal estimation of
the total unknown flows. That means that despite the discrepancies
that the upstream and downstream unknown flows may show, the

Algorithm 2 Stochastic estimation algorithm

Define, build, and obtain Nh, Φ
i
, B

i
, Bfi , Σ∆i

(k), Dsi ,
Λ∆i

, βi, αi,Rsi(k), ωi
(k), ν

i
(k), and T

i
.

while estimation is on do
Acquire and evaluate yupi(k), ydni(k), ui(k), ξi(k),
∆yupi(k), ∆ydni(k), ∆ξi(k)
if k > Nh + 1 then

Obtain y
i
, ξi(k), ∆y

i
, ∆ξi(k)

Obtain ∆ ˆ̄ψ
i
(k) by minimizing Jsi

if |∆ˆ̄supi
(k)| < 0.1Λ∆i

and |∆ˆ̄sdni
(k)| < 0.1Λ∆i

then
fl = 0

end if
if fl = 0 and |∆ˆ̄supi

(k)| > Λ∆i
and |∆ˆ̄supi

(k)| >
|∆ˆ̄sdni

(k)| then
Rktri = αi,Rkupi

= αi,Rkdni
= βi

else if fl = 0 and |∆ˆ̄sdni(k)| > Λ∆i and
|∆ˆ̄sdni(k)| > |∆ˆ̄supi(k)| then
Rktri = αi,Rkupi

= βi,Rkdni
= αi

end if
BuildRsi

Obtain ˆ̄θi(k) by minimizing V si

Obtain the unknown flow ψ̂
i
(k) = Ω

i
(k)ˆ̄θ

i
(k)

end if
end while

estimation satisfy the overall channel mass balance, and levels and
flows discrepancies are compensated with the flow transition. Note
that, in order to compensate rapid changes, the flow transition of the
deterministic approach presents rapid variations.

The level’s estimation of the deterministic and stochastic ap-
proaches are similar and accurate (Fig. 15). This result corroborates
the suitability of the selected modeling strategy because, despite the
downstream level of the reference model changes almost a meter,
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Fig. 14. Total amount of the estimated unknown flows and the estimated flow transition.
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ŷup1
yup1

0 2 4 6 8 10
Time (s) ×105

2

2.2

2.4

2.6

2.8

Le
ve

l (
m

)

ŷdn1
ydn1

D
et

er
m

in
ist

ic
 A

pp
ro

ac
h

St
oc

ha
st

ic
 A

pp
ro

ac
h

Fig. 15. Levels estimation comparison.

the simplified selected strategy describes accurately the behavior of
the system. Moreover, it is highlighted that in the measured and
estimated level, the presence of remaining noise is almost imper-
ceptible. This shows one of the hardest problems in the estimation
of unknown flows in OCIS, where due to the usual large areas that
the OCIS present, even large flow variations can be imperceptible
from level measurements, or can be masked between measurement
and process noises. For that, next, the behavior of the stochastic
and deterministic approaches are tested in presence of highly-noised
measurements.

B. EVALUATION FOR THE HIGHEST NOISE CASE
Figure 16 shows the advantage of the stochastic strategy in the
detection of unknown flows. In the deterministic strategy, it is
observed that there are unreadable unknown flow detections, which
are masked for the noise estimation. Similarly, in Fig. 17 it is

shown that the deterministic isolation mechanism is not capable
of distinguish between the estimated noise and all the estimated
unknown flow variations. On the other hand, the stochastic isolation
mechanism is capable to accomplish with suitable detections for all
variations.

Fig. 18, shows how the isolation problems of the deterministic
mechanism induce wrong penalizations and inaccurate estimations
of the unknown flows. Conversely, in the stochastic mechanism, the
highest noise induce negative effects to the estimation algorithm.
However, in the stochastic mechanism, the estimated unknown
flows are accurate enough to be used for DIMEUF.

In the deterministic case, the isolation mechanism problems also
affect the total estimation flow (Fig. 19), and the estimation of the
upstream and downstream levels (Fig. 20). In contrast, the stochastic
mechanism only presents small discrepancies in the estimation of
the upstream and downstream unknown flows (Fig. 18), highlighting
the proper performance of the stochastic strategy in presence of
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∆ ŝdn1
∆ sdn1

0 2 4 6 8 10
Time (s) ×105

-2

-1.5

-1

-0.5

0

0.5

1

F
lo

w
 m

3
/s

∆ ŝup1
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Fig. 16. In presence of highly-noised measurements, it is highlighted that the deterministic detection mechanism presents
unreadable unknown flow detections.

Fig. 17. In presence of highly-noised measurements, it is highlighted that the deterministic isolation mechanism is not capable
of distinguish between the estimated noise and all the estimated unknown flow variations.

noisy measurements.

C. UNKNOWN FLOWS ESTIMATION ERRORS
COMPARISON
In order to summarize the performance comparison among the
deterministic and stochastic approaches under the smallest and
highest noise scenarios, Fig. 21 shows the box plots corresponding
to distribution data of the upstream plus downstream unknown flows
estimation error, where the red lines are the average error value, and
the blue lines are first and third quartiles (25th percentile and 75th

percentile), showing that even tough the distribution is not normal,
in the four cases the error is distributed close to zero. The black
lines represent the upstream and downstream limits that contain
about 93% of the data, the red marks correspond to the outliers
(0.7% of the data). This comparison reveals the advantage of using

the stochastic approach (b, d). In the smallest and highest noise
scenarios, the data dispersion of the stochastic approach is smaller
than the data dispersion presented for the deterministic approach. It
must be highlighted that, according to the data distribution, in both
scenarios, by using the stochastic approach the estimation precision
is increased almost ten times. This finding justifies the use of the
stochastic over the deterministic approach.

D. HYDRAULIC CONDITIONS
Despite the developed test has been performed over a realistic
system, and the estimation strategies have been contrasted against
data obtained from a modeling tool that numerically solves the SVE
of the hydraulic systems (obtaining successful results), one ques-
tion arises over the operative hydraulic conditions of the proposed
DIMEUF strategies. Note that the selected simplified modeling
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Fig. 18. In presence of highly-noised measurements, the isolation problems of the deterministic mechanism induce wrong
penalizations and inaccurate estimations of the unknown flows.
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Fig. 19. In presence of highly-noised measurements, the isolation mechanism problems of the deterministic case also affect the
total flow estimated.

strategy is the fundamental element of the DIMEUF approaches.
Therefore, the operative hydraulic conditions of the estimation
strategies can be addressed from hydraulic analyses of the different
flows that conform the simplified modeling strategy. With respect
to the known channel inflows and outflows, by using the respective
flow relations, such as the presented in Table 2, the modeling strat-
egy can be easily adapted to multiple types of hydraulic structures.
On the other hand, the flow transition in (2) presents a hydraulic
condition that must be analyzed. The flow transition only is real
if the head loss due to friction (hLi ) is strictly positive. In that
way, the proposed estimation approaches are only useful in OCIS
with a considerable potential decay. In order to illustrate this claim,
the testings of the estimation strategies using a canal inspired on
lateral canal WM of the Maricopa Stanfield Irrigation and Drainage
District in central Arizona, reported in [19] is also proposed. This

canal is chosen because it presents hydraulic characteristics that are
highly different from the characteristics of the Corning canal. The
WM canal is a 100m length canal, with upstream elevation of 3.6m,
downstream elevation of 3.3m, and width of 1.5m. Moreover, due
to the short length of the WM canal, their potential decay can be
easily changed by modification of the channel roughness.

In this order of ideas, in Fig. 22, the performance of a stochastic
DIMEUF strategy over the WM channel is shown. In this case, the
WM channel has been simulated in EPA-SWMM using a Manning
roughness coefficient of 0.004 s/m1/3, and the DIMEUF strategy
has been designed following the same procedure that had been
exposed to the Corning canal. Moreover, in Fig. 22, the behavior
of the head loss due to friction is shown. Note that despite the
head loss due to friction is small, this is always positive and the
DIMEUF strategy reaches an accurate estimation of the unknown
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Fig. 20. In presence of highly-noised measurements, the isolation mechanism problems of the deterministic case also affect the
estimation of the upstream and downstream levels.
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Fig. 21. Comparison of the upstream plus downstream unknown flows estimation error, where: a. corresponds to the evaluation
for the smallest noise case of the deterministic approach; b. corresponds to the evaluation for the smallest noise case of the
stochastic approach; c. corresponds to the evaluation for the highest noise case of the deterministic approach; and d. corresponds
to the evaluation for the highest noise case of the stochastic approach.

flows. On the other hand, in Fig. 22, the head loss due to friction
behavior of the WM channel with a Manning roughness coefficient
of 0.001 s/m1/3, is shown, where it is observed that the head loss
due to friction is close to zero, and there are sections that show
negative values of the head loss due to friction. This negative values,
which could be attained to the equal mean flow velocity assumption
of the approximated model, make impossible the implementation
of the developed DIMEUF strategies. This result, which could
be interpreted as a limitation of the simplified modeling strategy
and therefore of the DIMEUF strategies, can be overcome if, for
control and estimation purposes, the channels that have a small
head loss due to friction are modeled as a unique storage unit,
with area equal to the channel area and known inflows modeled

by using the hydraulic relation given in Table 2. In this case, there
is a limitation on identifying the either upstream or downstream
unknown flow origin, and there is no need to use detection and
isolation mechanisms. Another option, which is out of this work
scope, could be to eliminate the modeling assumption of an equal
mean flow velocity along the channel. This solution implies to use of
the SVE in order to establish differential equations that describe the
momentum conservation. This information could be used to identify
the instant differences between the momentum conservation of the
real and modeled systems. Therefore, the development of DIMEUF
strategies designed from the SVE have the potential of improving
the reached results in this work. However, due to the complexity of
the SVE, and the probable model order increases, this development
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is not evident.

VI. CONCLUSIONS
In this paper, two strategies for detection isolation and magnitude
estimation of unknown flows, which take into account the effects
of flow conduction, have been proposed. These strategies have been
developed exploiting the advantages that the moving horizon esti-
mation approach has in dealing with constrained non-linear systems.
The proposed strategies also take advantage of the forgetting factor,
which has been used to incorporate physical information about
the most likely unknown flow detected. The strategies have been
designed from deterministic and stochastic points of view, showing
that including information about noise and expected level values
increase the estimation performance. The strategies have been tested
using two well-known benchmarks, which have been implemented
in an specialized software, showing that although the strategies
have been developed using a simplified modeling approach, they
are capable of accurately estimate the channel behavior and un-
known flows in long operation regions. Into the test, it has been
highlighted that due to the nature of the OCIS, in the estimation
of unknown flows, the most important challenges to overcome are
the measurement and process noise and the uncertainties. For this
reason, the real system implementation is an important pending task.
Moreover, the integration of the estimation mechanism with control
strategies that minimize losses due to unknown flows could be an
interesting future direction. Finally, the development of more tests
and strategies that mitigate noise detection and estimation impact is
an open problem that deserves more attention.

18



Conde et al.: Detection, Isolation, and Magnitude Estimation

0 2 4 6 8 10 12 14

Time (s) ×10
4

0

0.05

0.1

F
lo

w
 m

3
/s
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Fig. 22. Head loss due to friction for channel with high roughness coefficient.
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Fig. 23. Head loss due to friction for channel with low roughness coefficient.
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TABLE 3. Notation

i ∈ Z Stage number (e.g., i = 1 denotes the first channel)
pi ith channel
qi ∈ R (m3/s) pi inflow
xupi ∈ R (m) Upstream depth
xdni ∈ R (m) Downstream depth
qouti ∈ R (m3/s) Outflow to the users
wi ∈ R (m) Regulation structure width
g ∈ R (m/s2) Gravity constant
ci ∈ R Discharge coefficient
ui ∈ R (m) Regulation structure position
κupi(t) ∈ R (m2.5/s) Upstream unknown flow parameter
κdni(t) ∈ R (m2.5/s) Downstream unknown flow parameter
aupi ∈ R (m2) Area of the upstream part of the channel
adni ∈ R (m2) Area of the downstream part of the channel
qtri(t) ∈ R (m3/s) Flow transition
hLi (m) Head loss due to friction
zupi ∈ R (m) Upstream elevation
zdni ∈ R (m) Downstream elevation
ktri(t) ∈ R ∈ R (m2/s) Transition parameter
τs ∈ R (s) Sampling time
θai ∈ R2 Vector of estimated areas
φxi ∈ Rn−1×2 Vector of measured variations of levels
yqi ∈ Rn−1 Vector of measured flows
x̂upi(k) ∈ R (m) Estimated upstream level
x̂dni(k) ∈ R (m) Estimated downstream level
q̂tri(k) ∈ R (m3/s) Estimated flow transition
ŝupi(k) ∈ R Estimated upstream unknown flow parameter
ŝdni(k) ∈ R Estimated downstream unknown flow parameter
x̂i(k) ∈ R2) Vector of estimated states
ψ̂i(k) ∈ R3 Vector of estimated unknown flows
ξi(k) ∈ R3) Vector of known inputs
ŷi(k + 1) ∈ R2) Vector of estimated outputs
Gi ∈ R2×2 State matrix
Hi ∈ R2×3 Unknown flows matrix
Hfi ∈ R2×3 Known inputs matrix
Ωi(k) ∈ R3×3 Matrix of hydraulic relations
θ̂i(k) ∈ R3 Vector of unknown parameters to be estimated
k̂tri(k) ∈ R Estimated transition parameter
k̂upi(k) ∈ R Estimated upstream unknown flow parameter
k̂dni(k) ∈ R Estimated downstream unknown flow parameter
Nh ∈ Z Estimation window length
Nhp ∈ Z Initial position of the estimation window
ŷ

i
∈ R2Nh Vector of estimated outputs

x̂i(Nhp | Nhp) ∈ R2) Initial estimated states over the estimation window
Φi ∈ R2Nh×2 State estimation matrix
Bi ∈ R2Nh×3Nh Unknown flows estimation matrix
Ωi(k) ∈ R3Nh×3Nh Estimation matrix of hydraulic relations
θ̂i(k) ∈ R3Nh Vector of unknown parameters to be estimated
Bfi ∈ R2Nh×3Nh Known inputs estimation matrix
ξi(k) ∈ R3Nh Vector of known inputs
V i ∈ R Estimation cost function
y

i
∈ R Vector of measured levels

θ̂i(k − 1) ∈ R3Nh Sequence of unknown parameters estimated in a previous iteration
R1i ∈ R2Nh×2Nh Estimation weighting matrix
R2i ∈ R3Nh×3Nh Estimation weighting matrix
∇2 ∈ R2 Hessian operator
∆x̂i(k) ∈ R2 Vector of estimated variation of the states
∆ψ̂i(k) ∈ R3 Vector of estimated variations of the inputs
∆ξi(k) ∈ R3 Vector of variations of known inputs
∆ŷi(k + 1) ∈ R2 Vector of estimated variation of the outputs
∆ŷ

i
∈ R2Nh Vector of the estimated variations of the outputs
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∆y
i
∈ R2Nh Vector of the measured variations of the outputs

∆x̂i(Nhp | Nhp) ∈ R2 Initial estimated variations of the states
∆ψ̂i(k) ∈ R3Nh Vector of the estimated variations of the unknown flows
∆ξi(k) ∈ R3Nh Vector of the known inputs variation
J i ∈ R Detection cost function
∆ψ̂

i
(k − 1) ∈ R3Nh Sequence of variations of the unknown flows estimated in a previous iteration

D1i ∈ R2Nh×2Nh Detection weighting matrix
D2i ∈ R3Nh×3Nh Detection weighting matrix
Λ∆i ∈ R2 Threshold value
Rktri ∈ R Estimation weighting parameter related to the flow transition
Rkupi ∈ R Estimation weighting parameter related to upstream unknown flows
Rkdni ∈ R Estimation weighting parameter related to downstream unknown flows
βi ∈ R Parameter used to avoid the change of the unlikely unknown flow
αi ∈ R Parameter used to avoid the change of the unlikely unknown flow
ωi(k) ∈ R2 Process estimation noise
ωupi(k) ∈ R Normally distributed upstream process noise
ωdni(k) ∈ R Normally distributed downstream process noise
σωupi ∈ R Standard deviation of the upstream process noise
σωdni ∈ R Standard deviation of the downstream process noise
νi(k) ∈ R2 Remaining measurement noise
νupi(k) ∈ R Upstream remaining measurement noise
νdni(k) ∈ R Downstream remaining measurement noise
σνupi ∈ R Standard deviation of the upstream measurement noise
σνdni ∈ R Standard deviation of the downstream measurement noise
ˆ̄y
i
∈ R2Nh Vector of estimated expected values of the output

ˆ̄θi(k) ∈ R3 Vector of the unknown parameters expected values
ˆ̄ktri(k) ∈ R Expected value of the estimated transition parameter
ˆ̄kupi(k) ∈ R Expected value of the estimated upstream unknown flow parameter
ˆ̄kdni(k) ∈ R Expected value of the estimated downstream unknown flow parameter
T i ∈ R3Nh×3 Block of identity matrices
wi(k) ∈ R2Nh Process noise vector
ni(k + 1) ∈ R2Nh Measurement noise vector
ei(k + 1) ∈ R2Nh Estimation error
Pi(k + 1) ∈ R2×2 Process covariance
R ∈ R2×2 Process variance
S ∈ R2×2 Measurement variance
Σi(k) ∈ R2Nh×2Nh Process covariance
V si ∈ R Stochastic estimation cost function
ω∆i(k) ∈ R2 Process detection noise
ν∆i(k) ∈ R2 Measurement detection noise
w∆i(k) ∈ R2Nh Process detection noise vector
n∆i(k + 1) ∈ R2Nh Process measurement noise vector
P∆i(k + 1) ∈ R2×2 Process detection covariance
R∆ ∈ R2×2 Process detection variance
S∆ ∈ R2×2 Process detection covariance
Σ∆i(k) ∈ R2Nh×2Nh Process detection covariance
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