
Abstract— The use of modeling and estimation strategies
appears as a valuable tool to increase the efficiency of the
open channel irrigation systems (OCIS). This paper is focused
on exploring the feasibility, advantages, and conditions in
the implementation of a moving horizon estimation (MHE)
approach designed from an approximated model that contem-
plates mass and energy balances of the channels, which is useful
to differentiate when a change of level is a conduction change
effect, or when the change is due to an unknown input. The
estimation strategy is evaluated via simulation using a test case
reported in the literature. The results show that, with the use
of the proposed estimation strategy, it is possible to reach an
optimal estimation of the total amount of unknown inputs.

I. INTRODUCTION
The irrigation process demands nearly 70% of water that

humanity is consuming, and most of this water is transported
throughout open channel irrigation systems (OCIS). In OCIS,
problems associated with unknown actions (in control terms,
unknown inputs), such as leaks, seepage, and even robbery,
dramatically reduce the system efficiency [1]. However, in
OCIS, the problem of unknown inputs estimation has not
received enough attention, and the use of recently simplified
modeling strategies, and promising unknown input estima-
tion techniques based on the moving horizon estimation
(MHE) have not been explored. For example: in [2], two
unknown input observers are designed assuming the OCIS as
time-varying delayed state and inputs systems, using integra-
tor delay as a modeling strategy, and diagnosing faults from
residuals of the unknown observers; in [3], an observer-based
control is designed from a linear simplification of the Saint-
Venant Equations (SVE); in [4], a fault detection strategy
using linear parameter varying interval models is proposed;
and in [5], two methods developed from a simplified volume
balance model, and one method based on the SVE are
presented. It is important to realize that in the reported works,
most of the estimation strategies (i.e., [2]–[4]) have been
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Spain (e-mail: gj.conde30@uniandes.edu.co).

Nicanor Quijano is with School of Engineering, Universidad de los
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developed from simplified or approximated models that do
not contemplate energy balances along the channels, and this
could lead to inaccurate estimations of the unknown inputs.
This problem has been explained in [6], where, from test
estimation strategies in a real system, drift in the results is
reported, concluding that this drift is due to the growth of
weeds, which affects the flow conduction. On the other hand,
the direct use of the SVE contemplates the energy balances
along the channels. However, as it is highlighted in [5], the
direct use of the SVE for unknown input estimation design
increases the design and implementation complexity of the
estimation strategies.

Alternatively, showing high accuracy describing the OCIS
behavior, in [7] an approximated modeling approach formu-
lated from mass and energy balances has been proposed.
This model appears as a potential solution in order to
discriminate between levels variations due to unknown inputs
and levels variations due to changes in flow conduction.
Equally important, the moving horizon estimation (MHE) is
a strategy that in recent years has received high attention.
This estimation strategy can be formulated from a com-
prehensive description of the system, where the unknown
parameters can be associated with uncertainties instead of
residuals [8]. However, to the best of the authors’ knowledge,
the MHE strategy has not been reported for the estimation
of unknown inputs in OCIS.

Given these points, this work is focused on the develop-
ment and analysis of a strategy for OCIS that takes into
account an MHE with unknown inputs, which is designed
from the simplified model presented in [7]. As a result,
the main contributions of this paper are twofold: i) the
development of a new optimal unknown input estimation
strategy for OCIS, which incorporates knowledge about
mass and energy balances; and ii) the proposition of the
necessary conditions to obtain optimal estimations of the
unknown inputs. The performance of the unknown input
estimation strategy is evaluated by simulation using the test
case proposed in [9], and the results are contrasted with a
Luenberger-based unknown input strategy also designed by
using the model proposed in [7].

The remainder of the paper is organized as follows. Sec-
tion II starts with a summary of the modeling strategy, and
some proposed assumptions towards obtaining an estimation
model are drawn. In Section III, the use of the MHE as an
unknown input estimation strategy is explained. In Section
IV, the necessary conditions to obtain optimal estimations

An Unknown Input Moving Horizon Estimator
for Open Channel Irrigation Systems

Gregory Conde, Nicanor Quijano, Senior Member, IEEE, and Carlos Ocampo-Martinez, Senior Member, IEEE



of the unknown inputs are presented. In Section V, the
test case is explained, a comparison assessment is drawn,
and the results are discussed. Finally, in Section VI, some
conclusions are drawn.

II. PROBLEM STATEMENT

In the following, an overview of the model proposed in
[7] is presented, which describes the behavior of the OCIS
assuming two storage units per channel and performing mass
and energy balances for each channel (see Figure 1).

A. Modeling Approach

Fig. 1. Graphical description for the proposed energy and mass balances.

In this modeling approach, each channel is described with
two differential equations of the form:

Aupi ẏupi(t) = Q
i
(t)−Qtri(t)

Adni ẏdni(t) = Qtri(t)−Qouti(t)−Qi+1
(t),

(1)

where, for the ith channel, yupi(t) is the level at the upstream
end of the channel, ydni(t) is the level at the downstream
end of the channel, Aupi and Adni are the areas of the
assumed upper and lower storage units, Qi(t) is an inflow
that comes from the upstream channel, Q

i+1
(t) is an outflow

that feeds the downstream channel, Qouti(t) are the outflows
that feed either users or other channels. The static and
dynamic behaviors of these flows are related to the kind
of hydraulic structure that is used for flow regulation [10].
On the other hand, Qtri(t) is a flow transition between the
assumed storage units. This flow can be obtained from an
energy balance given by:

zupi + yupi(t) +
vupi

2

2g
= zdni + ydni(t) +

vdni
2

2g
+ hLi(t),

(2)
where vupi and vdni are the upstream and downstream
mean flow velocity, and zupi and zdni are the upstream and
downstream elevations, respectively. hLi(t) is known as the
head lost due to friction described by hLi(t) = fi(t)

Livi
2(t)

Di2g
,

where Li is the channel length, Di is the hydraulic diameter,
and fi(t) is the friction factor. In this model, a constant
friction factor and an equal mean flow velocity along the

channel are assumed, obtaining that hLi(t) ≈
Q2
tri

(t)

Ktri
2y2
upi

(t)
,

where Ktri is a transition constant coming from the analysis
of the system in steady-state. Therefore, the flow transition
is given by:

Qtri(t) = Ktriyupi(t)γi(t),

γi(t) =
√
yupi(t)− ydni(t) + zupi − zdni .

(3)

B. Model Assumptions

In order to use the proposed model for the estimation of
unknown inputs, some considerations should be made.

Assumption 1 (Transition constant): The friction factor is
a function of the Reynolds number, which depends on the
velocities of the fluid. In this work it is assumed that Ktri =
K̄tri + ∆Ktri(t), where K̄tri is the value of the constant
analysing the system in steady-state, and ∆Ktri(t) is the
unknown variation of the transition constant.

Assumption 2 (Energy balance constant): In the steady-
state and uniform flow cases, γi(t) in Eq (3) can be con-
sidered as a constant [11]. Therefore, a linear description of
the channel is assumed and γi(t) = γ̄i + ∆γi(t), where
γ̄i =

√
ȳupi − ȳdni + zupi − zdni can be obtained from

measurements of the real system in steady-state, and ∆γi(t)
is an unknown parameter.

Assumption 3 (Unknown inputs): The OCIS can be af-
fected by unknown flows, such as seepage, leaks, and
robbery. All of these inputs are assumed to be joint into
the upstream unknown external inputs (supi(t)), and the
downstream unknown external inputs (sdni(t)).

Based on these three assumptions, the flow transition is
given by:

Qtri(t) = (K̄tri + ∆Ktri(t))yupi(t)(γ̄i + ∆γi(t)), (4)

and the OCIS in (1) can be rewritten as:

Aupi ẏupi(t) =Q
i
(t)− K̄tri γ̄iyupi(t) + ψupi(t)

Adni ẏdni(t) =K̄tri γ̄iyupi(t)−Qouti(t)−Qi+1
(t) +

ψdni(t),

(5)

where ψupi(t) and ψdni(t) are unknown parameters de-
scribed by

ψupi(t) = −ϑyupi(t) + supi(t),

ψdni(t) = ϑyupi(t) + sdni(t),
(6)

where ϑ(t) is composed of the unknown parameters of the
flow transition, i.e., ϑ(t) = K̄tri∆γi(t) + ∆Ktri(t)γ̄i +
∆Ktri(t)∆γi(t).

C. Estimation Formulation

Considering that the dynamic behavior of the OCIS can
be described using (5), an estimation model is proposed as

Aupi ˆ̇yupi(t) =Q
i
(t)− K̄tri γ̄i ŷupi(t) + ψ̂upi(t)

Adni ˆ̇ydni(t) =K̄tri γ̄i ŷupi(t)

−Qouti(t)−Qi+1
(t) + ψ̂dni(t)

(7)

ψ̂upi(t) = −ϑ̂yupi(t) + ŝupi(t)

ψ̂dni(t) = ϑ̂yupi(t) + ŝdni(t),
(8)

where ŷupi(t), and ŷdni(t) are the estimated upstream and
downstream levels, and ϑ̂, ŝupi(t), and ŝdni(t) are the
estimated unknown parameters. Subtracting (5) from (7), the
estimation error is obtained as

Aupi
˙̂eupi(t) = −K̄tri γ̄i êupi(t) + ψupi(t)− ψ̂upi(t)

Adni
˙̂edni(t) = K̄tri γ̄i êupi(t) + ψdni(t)− ψ̂dni(t),

(9)



where êupi(t) = yupi(t)− ŷupi(t), and êdni(t) = ydni(t)−
ŷdni(t) are the upstream and downstream estimation errors,
respectively. Following the discretization procedure for linear
systems shown in [12], for a sampling time τs, discrete
descriptions of the estimation model and estimation error
are given by[

ŷupi(k + 1)
ŷdni(k + 1)

]
= Gi

[
ŷupi(k)
ŷdni(k)

]
+H

i

[
ψ̂upi(k)

ψ̂dni(k)

]

+Hfi

 Q
i
(k)

Qouti(k)
Qi+1(k)

 , (10)

and [
êupi(k + 1)
êdni(k + 1)

]
= Gi

[
êupi(k)
êdni(k)

]
−Hi

[
ψ̂upi(k)

ψ̂dni(k)

]
+Hi

[
ψupi(k)
ψdni(k)

]
,

(11)

where

Gi =

 e
−
K̄tri

γ̄i
Aupi

τs
0

Aupi
Adni

(
1− e−

K̄tri
γ̄i

Aupi
τs

)
1

 ,

Hi =


1

K̄tri γ̄i

(
1− e−

K̄tri
γ̄i

Aupi
τs

)
0

τs
Adni

− Aupi
AdniK̄tri γ̄i

(
1− e−

K̄tri
γ̄i

Aupi
τs

)
τs
Adni

 ,
Hfi =

[
H
i
(1, 1) 0 0

Hi(2, 1) − τs
Adni

− τs
Adni

]
.

Besides, Gi is a full-rank matrix, and considering that
yupi(k) and ydni(k) are measured variables, it can be
deduced that the system described by (10) is observable.
Therefore, the dynamic behavior of yupi(k + 1) and ydni
can be reached by appropriate sequences of ψ̂upi(k), and
ψ̂dni(k).

III. PROPOSED APPROACH

Fig. 2. Graphical description of data management along an estimation
window.

In order to find suitable sequences of ψ̂upi(k), and ψ̂dni(k)
that minimize the estimation errors êupi(k+1), and êdni(k+
1), an MHE strategy is considered. In this strategy, the
estimation is formulated as a quadratic optimization problem

over a window of data with fixed length [13]. Then, the
objective is to find the unknown parameters of (8) (i.e., ϑ̂,
ŝupi , ŝdni ) that minimize the discrete estimation error (11).
Therefore, as it is shown in Figure 2, for a sliding estimation
window with length Nh that starts in Nhp = k−Nh+1 and
ends in k, along a moving horizon estimation, the solution
of (10) is given by

Ŷ
i
(k + 1) =Φ

i

[
ŷupi(Nhp | Nhp)
ŷdni(Nhp | Nhp)

]
+ B

i
Ψ̂

i
(k)

+ BfiQi(k),

(12)

where Ψ̂
i
(k) = Ω

i
(k)Θ̂

i
(k), and Ŷ

i
(k + 1), Φ

i
, B

i
, Bfi ,

Qi(k), Θ̂
i
(k), and Ω

i
(k) are defined in the Appendix.

Then, in order to minimize the deviation of the estimated
upstream and downstream levels from the measured levels,
an MHE objective function is proposed as follows:

V
i
(k + 1) =‖Y

i
(k + 1)− Ŷ

i
(k + 1)‖2R1i

+

‖Ω
i
(k− 1)Θ̂

i
(k− 1)−Ω

i
(k)Θ̂

i
(k)‖2R2i

,
(13)

where ‖Y
i
(k + 1)− Ŷ

i
(k + 1)‖2R1i

accounts for
the estimation error along an estimation window,
‖Ω

i
(k− 1)Θ̂

i
(k− 1)−Ω

i
(k)Θ̂

i
(k)‖2R2i

is included as
a forgetting factor that retains influence of past estimations
[14], and Θ̂

i
(k− 1) is the sequence of parameters estimated

in a previous iteration. Moreover, R1i ∈ R2Nh×2Nh and
R2i ∈ R2Nh×2Nh are diagonal and positive definite
weighting matrices that penalize the estimation error and
the forgetting factor, respectively.

IV. MAIN THEORETICAL RESULTS

Note that the reachability of suitable sequences of the
unknown inputs (Θ̂

i
(k)) depends on the convexity of the

objective function (13). In this section, in the next two
lemmas and in the proposition, it is shown that an optimal
estimation of Θ̂

i
(k) cannot be reached. However, the reach-

ability of optimal sequences of the total amount of upstream
and downstream unknown flows (Ψ̂

i
(k)) can be guaranteed,

and this property can be exploited in order to find the total
amount of unknown flows (supi + sdni ) that affect an open
channel.

Lemma 1: From the objective function (13), only sub-
optimal estimations of Θ̂

i
(k) can be reached.

Proof: A necessary condition for any local minimum
to be a global minimum is the convexity of the objective
function (13). This condition can be reached if the Hessian
with respect to Θ̂

i
(k) of the objective function is positive

definite, i.e.,

∇2
Θ̂

i
(k)Vi

(k) = Ω
i
(k)>B

i

>R1iBi
Ω

i
(k) +R2i � 0.

(14)
Since R1i and R2i are positive defined, if
Ω

i
(k)>B

i

>B
i
Ω

i
(k) � 0, the condition established in

(14) is achieved.
A sufficient condition for Ω

i
(k)>B

i

>B
i
Ω

i
(k) � 0 is

that the rank of B
i
Ω

i
(k) should be equal to 3Nh. But,



given the dimensions of B
i

and Ω
i
(k), the maximum rank

of B
i
Ω

i
(k) is 2Nh. Therefore, the condition (14) and an

optimal estimation of Θ̂
i
(k) cannot be reached.

However, by definition, Ω
i
(k)>B

i

>B
i
Ω

i
(k) is positive

semi-definite [15], then, the term

Ω
i
(k)
>

B
i

>R1iBi
Ω

i
(k),

is positive semi-definite.
Therefore, the Hessian (∇2

Θ̂
i
(k)Vi

(k)) is positive semi-

definite and only sub-optimal estimations of Θ̂
i
(k) can be

guaranteed.
Lemma 2: From the objective function (13), an optimal

estimation of Ψ̂
i
(k) can be guaranteed.

Proof: Note that Ψ̂
i
(k) is a linear combination of

Ω
i
(k) and Θ̂

i
(k). Then if the convexity of the objective

function (13) is analyzed in function of Ψ̂
i
(k), it can be

established that (13) is convex if its Hessian with respect to
Ψ̂

i
(k) is positive definite, i.e.,

∇2
Ψ̂

i
(k)Vi

(k + 1) = B
i

>R1iBi
+R2i � 0. (15)

In (15), R2i is positive definite, and if B
i

>B
i
� 0, the term

B
i

>R1iBi
is also positive definite. A sufficient condition

for B
i

>B
i
� 0, is that the amount of linear combinations

of B
i
Ψ̂

i
(k) should be equal to the length of Ψ̂

i
(k) (2Nh)

or, in other words, that the rank of B
i

should be equal to
2Nh. Note that G

i
and H

i
are full-rank matrices, then it can

be deduced that the rank of B
i

is equal to 2Nh. Therefore,
an optimal estimation of Ψ̂

i
(k) can be reached.

Lemma 1 shows that optimal estimations of the unknown
parameters ϑ̂, ŝupi , and ŝdni cannot be guaranteed. However,
the unknown flow ϑyupi(k) associated with the uncertainty
of the flow transition (6) presents a physical behavior that
can be exploited: note that the unknown flow ϑyupi(k)
leaves the upstream part of the channel and goes into the
downstream part. Then, since optimal estimations of Ψ̂

i
(k)

can be guaranteed (Lemma 2), optimal estimations of the
total amount of unknown flows (supi + sdni ) that affect an
open channel can be reached by

Ψ̂upi(k) + Ψ̂dni(k) =supi(k) + sdni(k). (16)

Finally, in Proposition 1 the convergence rate of Ψ̂
i
(k) can

be established.
Proposition 1: If in the objective function (13), the for-

getting factor is neglected (R2i = 0), an optimal estimation
of Ψ̂

i
(k) will converge to Ψ

i
(k) in one iteration.

Proof: In order that (10) and (11) have the same state
matrix Gi, and the same input matrix Hi, from (12) it can
be established that a receding estimation error is given by

ê
i
(k + 1) =Φ

i

[
êupi(Nhp | Nhp)
êdni(Nhp | Nhp)

]
−B

i
Ψ̂

i
(k)

+ B
i
Ψ

i
(k),

(17)

where

ê
i
(k + 1) =[êupi(Nhp+1 | Nhp) êdni(Nhp+1 | Nhp) · · ·

êupi(Nhp + 2 | Nhp) êdni(Nhp + 2 | Nhp) · · ·
êupi(k + 1 | Nhp) êdni(k + 1 | Nhp)]>.

Then, if the forgetting factor is neglected, an optimal solution
of (13) is given by ê

i
(k + 1) = 0. Therefore,

B
i
Ψ̂

i
(k) =Φ

i

[
êupi(Nhp | Nhp)
êdni(Nhp | Nhp)

]
+ B

i
Ψ

i
(k). (18)

One step ahead, along an estimation window, an iterative
solution of the estimation error is given by

ê
i
(k + 1) =Φ

i

[
êupi(Nhp−1 | Nhp+1)
êdni(Nhp−1 | Nhp+1)

]
−B

i
Ψ̂

i
(k + 1)

+ B
i
Ψ

i
(k + 1).

(19)
Note that in this step, [êupi(Nhp−1 | Nhp+1) êdni(Nhp−1 |
Nhp+1)]> are the two first elements of ê

i
(k) with optimal

solution ê
i
(k) = 0 then Φ

i

[
êupi(Nhp−1 | Nhp+1)
êdni(Nhp−1 | Nhp+1)

]
= 0.

Therefore, the optimal solution of (19) is given by
Ψ̂

i
(k + 1) = Ψ

i
(k + 1).

The introduction of the forgetting factor allows preventing
aggressive changes in the estimated parameters, which can
be induced for disturbances such as measurement and process
noise. Therefore, the use of a forgetting factor different from
zero must be considered.

V. TEST CASE

The estimation strategies are validated using as a ref-
erence model, the test case introduced in [9], which has
been proposed by the ASCE Task Committee on Canal
Automation Algorithms as a standardized testbed case on
canals with well-studied and realistic properties. Even though
the test case is composed by 8 channels, since the estimation
strategies present the same structure for any channel, the
simulation is focused only on one channel (the first channel
of the test case Figure 3). This is a rectangular channel with
the following dimensions: length of 7000m, width of 6m,
upstream elevation of 4.4m, and downstream elevation of
3.29m. In order to obtain data useful to test the estimation al-
gorithm, the test case has been implemented in EPA-SWMM,
which numerically solves the SVE of the hydraulic system,
and the data of the simulation have been used as entries
to the estimation algorithm, guaranteeing that the design and
simulation models are different. Additionally, a measurement
noise, normally distributed with mean 0 and variance 0.005
has been included in order to emulate the uncertainty that
conventional level sensors present (e.g., ultrasound sensors).
In the test case, the apertures of the inflow and outflow
gates (u

1
, u

2
) are kept fixed in the operation condition,

with areas of 2.45m2, and 8.24m2, respectively. The source
level is fixed in 5m, and the upstream and downstream
levels of the eight channels are initialized at the steady-
state. The generation of the unknown inputs is performed
by variations of the orifices areas that limit the seepages.
The parameters of the estimation model are obtained using
Equations (3) and (5) without unknown disturbances and in
steady-state where Q

i
= Qtri . The values of the areas Aupi

and Adni are obtained by data fitting, using Equation (10)
and experimental data from the reference model, obtaining
Aup1

= 21864m2 and Adn1
= 27163m2. On the other hand,



Fig. 3. Simulation diagram of the considered case study.

the sampling time has been obtained from the dominant
dynamics of (5) following the recommendations presented
in [10], i.e., τs = 1000s.

A. Simulation Results

The MHE design process presents three elements to be
tuned. The first one is the estimation window length (Nh),
the second one is the weighting matrix that penalizes the
estimation error (R1i ), and the third one is the weighting
matrix that penalizes the forgetting factor (R2i ). In order to
find appropriate values for these parameters, a Monte Carlo
experiment has been performed, where two key performance
indicators (KPI) for the upstream, downstream, and unknown
input estimation errors (êupi(k), êdni(k), and êψi(k)) have
been evaluated. The first KPI is the integral of the abso-
lute error (IAE), which offers information about the mean
behavior of the errors. The second KPI is the mean square
error (MSE), which penalizes errors with large values. This
kind of error occurs immediately after an unknown input
change. Thus the MSE index accounts for overshoots and
slow convergence rates. Concerning the estimation window
length, the Monte Carlo experiment shows that variations
of Nh offer minor changes. On the other hand, variations
between the weighting matrices ratios present remarkable
results. In this direction, R1i has been established as a
2Nh × 2Nh identity matrix, and the forgetting factor value
has been established from the results of the Monte Carlo
experiment, where the KPIs have been normalized and added
obtaining the results shown in Figure 4. From this figure, an
optimal forgetting factor of 0.027I has been obtained.
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Fig. 4. Results of the Monte Carlo experiment for multiple forgetting factor
values.

On the other hand, in order to contrast the obtained
results, a Luenberger-based unknown input estimator has
been designed. In this strategy, the objective is to estimate
the unknown flows (Ψ̂i ) that guarantee an accurate estimation
of the upstream and downstream levels. From (11), it can be
deduced that if the steady-state estimation error converges to
zero, the estimated unknown flows (Ψ̂

i
) must converge to the

unknown flows (Ψ
i
), and by using Equation (16) the total

amount of unknown flows that affect an open channel can
be reached. Therefore, in order to find the unknown flows

TABLE I
EVALUATION RESULTS OF THE MHE AND LUENBERGER ESTIMATORS

MHE Luenberger
1× 10−3 R2i

2×
10−1I

1×
10−1I

2.7×
10−2I

1×
10−3I

1×
10−4I

êup1

IAE 9.9 m 8.5 m 8.4 m 11.8 m 12.6 m 10.9 m

MSE 0.04 m2 0.02 m2 0.01 m2 0.02 m2 0.02 m2 0.03 m2

êdn1

IAE 11.5 m 9.8 m 9.5 m 12.5 m 13.4 m 22 m

MSE 0.07 m2 0.03 m2 0.02 m2 0.02 m2 0.02 m2 0.2 m2

êψ1

IAE 227 m3/s 130 m3/s 95 m3/s 389 m3/s 555 m3/s 245 m3/s

MSE 19.7 m6/s2 10.5 m6/s2 4.6 m6/s2 23 m6/s2 47 m6/s2 10.8 m6/s2

that ensure the convergence to zero of the estimation errors,
in this estimator, the strategy guarantees the stability of the
estimated integral of the upstream and downstream errors
(ξ̂upi(k) and ξ̂dni(k)). In this order of ideas, the estimated
unknown flows are given by Ψ̂

i
= L

i
Ê
i
(k), where Ê

i
(k) =

[êupi(k) êdni(k) ξ̂upi(k) ξ̂dni(k)]> is the augmented vector
of errors, and Li ∈ R2×4 has been found by pole placement
[16], looking for the gain Li that ensures a dominant constant
time estimation of (10τs).

In Table I, five tests that evaluate the MHE forgetting fac-
tor incidence are contrasted with the Luenberger estimator.
In this table, the upstream level estimation error (êup1

), the
downstream level estimation error (êdn1

), and the unknown
input estimation error (êΨ1

) are considered.
From the evaluation test presented in Table I, it can be

inferred that even in presence of noise and using realistic
data, the proposed estimation strategies presents high perfor-
mance. With the use of the proposed estimation strategies, it
is possible to reach a mean upstream and downstream level
estimation errors close to 9× 10−3m, and a mean unknown
input estimation error close to 0.1m3/s. In this table, it is
highlighted that the MHE presents better results using a
forgetting factor of 2.7× 10−2I . This is due to the fact that
large forgetting factor values reduce the variability of the
estimated variables but increase the estimation convergence
rates. On the other hand, lower forgetting factor values
increase the convergence rate but increase the noise incidence
increasing the variability of the estimated variables.

Note that the mean unknown input estimation error is
higher than the mean upstream and downstream level es-
timation errors. This reflects one of the hardest problems
of unknown inputs estimations in OCIS, where due to the
usual large areas that these systems present, even large flow
variations can be imperceptible from levels measurements,
or can be masked between measurement and process noise.

Finally, the Luenberger estimator also exhibits good per-
formance. This confirms the usefulness of the selected mod-
eling strategy. However, in the Luemberger-based strategy,
the mean of the unknown input estimation error is more than
twice the mean of the estimation error of the MHE. This



difference could be crucial if the estimated unknown inputs
are used to calculate the system efficiency or for automatic
control purposes.

VI. CONCLUDING REMARKS

In this paper, an unknown inputs moving horizon esti-
mation approach for open-channel irrigation systems has
been presented. The estimation strategy has been designed
from proposed considerations around a simplified non-linear
model formulated from a mass and energy balance for each
channel. Along the design process, the necessary conditions
to obtain optimal estimations of the total amount of unknown
inputs, and the convergence rate of the moving horizon
estimation have been presented. The proposed estimation
strategy has been tested using a benchmark of the liter-
ature, showing that, even though the estimator has been
designed using a simplified modeling strategy, the unknown
input estimation strategy is capable of accurately estimate
the total amount of unknown inputs of an open channel.
In the proposed strategy, the incorporation of a forgetting
factor that retains the influence of past estimations has been
considered and selected as a tuning parameter. The effects of
the forgetting factor parameter have been evaluated using a
Monte Carlo experiment and contrasted with a Luenberger-
based unknown input estimation strategy, showing that in
most of the tests, the moving horizon strategy presents better
performance than the Luenberger-based strategy. However, it
must be highlighted that the Luenberger-based strategy could
be an interesting option in situations where high performance
is not demanded. Moreover, along the tests, the close rela-
tionship that the forgetting factor has with the noise incidence
has been exposed. Moreover, it is important to realize that the
development of new localization strategies, the incorporation
of the proposed estimators with control strategies, and the
real system implementation also are important future tasks.

APPENDIX

Ŷ
i
(k + 1) =[ŷupi(Nhp + 1 | Nhp) ŷdni(Nhp + 1 | Nhp)

ŷupi(Nhp + 2 | Nhp) ŷdni(Nhp + 2 | Nhp)
· · · ŷupi(k + 1 | Nhp) ŷdni(k + 1 | Nhp)]>,

Φ
i

=[(G
i
)> (G2

i
)> · · · (GNh

i
)>]>,

B
i

=


H
i

0 · · ·
G
i
H
i

Hi · · ·
...

...
...

GNh−1
i

H
i

GNh−2
i

H
i
· · ·

 ,

Bfi =


H
i

0 · · ·
G
i
Hfi Hfi · · ·
...

...
...

GNh−1
i

Hfi GNh−2
i

Hfi · · ·

 ,
Qi(k) =[Q

i
(Nhp | Nhp) Qouti(Nhp | Nhp) · · ·

Q
i
(Nhp + 1 | Nhp) Qouti(Nhp + 1 | Nhp) · · ·

Q
i
(k | Nhp) Qouti(k | Nhp) Q

i+1
(k | Nhp)]>,

Θ̂
i
(k) =[ϑ̂(Nhp | Nhp) ŝupi(Nhp | Nhp)ŝdni(Nhp | Nhp)

ϑ̂(Nhp + 1 | Nhp) ŝupi(Nhp + 1 | Nhp) · · ·
ϑ̂(k | Nhp) ŝupi(k | Nhp)ŝdni(k | Nhp)]>

Ω
i
(k) =

αi(Nhp | Nhp) 0 0

0
. . . 0

0 0 α
i
(k | Nhp)

 ,

where 0 is a matrix of suitable dimensions with null entries,
and

α
i
(Nhp | Nhp) =

[
−yupi(Nhp | Nhp) 1 0
ydni(Nhp | Nhp) 0 1

]
.
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