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Abstract— As an envisioned technology for future smart city
networks, this paper studies the real-time decentralized charg-
ing coordination of a fleet of plug-in electric vehicles (PEVs)
under feeder capacity constraints. In particular, inspired by
some ideas in the field of population games and payoff dynamics
models, we propose a novel form of continuous-time primal-
dual gradient dynamics and develop a real-time control method
for the charging coordination of PEVs in smart city networks.
The proposed method is able to coordinate the charging profiles
of multiple PEVs in a decentralized fashion under a general
convex optimization objective, and guarantees the satisfaction
of the operational constraints of the PEVs and the feeder lines
of the distribution network for all times. The optimality and
asymptotic stability of the proposed dynamics are formally
proven, and the advantages of the proposed method are
illustrated through numerical simulations considering a fleet
with several PEVs.

I. INTRODUCTION

Through the integration of multiple novel technologies,
future smart cities are expected to play a crucial role in
the mitigation of the environmental footprint of the modern
industry. Namely, one of the most envisioned of such novel
technologies are plug-in electric vehicles (PEVs). For in-
stance, by fostering a high penetration of PEVs, future smart
cities could not only provide low emission transportation
systems, but might also bring power flexibility to support
green energy generation services [1], [2], [3], [4]. However,
since the uncoordinated charging of multiple PEVs can
lead to power losses and overloads on the transformers and
feeders of the distribution network [5], [6], [7], having a high
penetration of PEVs imposes some significant challenges as
well. Hence, the future smart cities should provide mecha-
nisms to coordinate the charging process of their PEVs, not
only to better integrate sustainable energy resources, but also
to ensure the safe operation and economic efficiency of the
electrical grid.
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Bogotá, Colombia. Juan Martinez-Piazuelo and Carlos Ocampo-Martinez
are with the Automatic Control Department at Universitat Politécnica de
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Recently, several works have addressed the decentral-
ized charging coordination of PEV fleets [8]. One popular
approach, investigated in [9], [10], [11], [12], employs a
two-stage iterative process that operates as follows. On the
first stage, each PEV solves a local optimization problem
considering a common electricity price signal, and com-
municates its resulting charging schedule to an aggregator
node. On the second stage, the aggregator node updates
the price signal based on the PEVs responses, and broad-
casts the updated signal to the PEVs. The two stages are
repeated until convergence of the price signal. Once the
iterative process ends, the PEVs proceed to execute their
computed charging schedules. Although this approach usu-
ally converges to an optimal charging coordination profile,
the practical implementation of the method might suffer
from the uncertainty associated to the arrival and departure
times of the PEVs. Notice that if some PEVs arrive or
leave after the optimal profile has been computed, then the
entire iterative process has to be repeated. Moreover, the
algorithms in [9], [10], [11], [12] do not consider coupled
constraints over the PEVs, e.g., the capacities of the feeder
lines of the distribution network, and it remains unclear how
to properly include such constraints within the proposed
methods. On the other hand, the author in [13] proposes a
continuous-time feedback (gradient-type) control law to fill
the overnight demand valley under uncertainties. Although
the proposed approach can deal with arrival and departure
times uncertainties, it does not consider coupled constraints
over the PEVs. Similarly, the authors in [14] propose an
iterative water-filling method, but again, the method does
not consider coupled constraints and the aggregator needs
to perform sequential computations that might not properly
scale for large populations of PEVs. In contrast, the authors
in [15] and [16] propose a gradient projection method and
a primal-dual subgradient method, respectively, to deal with
the feeder capacity constraints of the distribution network.
Nevertheless, the proposed approaches only guarantee the
satisfaction of the feeder capacity constraints at the conver-
gence of the algorithms, and, thus, may not be applicable
under a real-time control scheme that could deal with the
uncertainties of the arrival and departure times of the PEVs,
while also satisfying the hard operational constraints of the
system.

Motivated by the approaches in [13] and [16], in this paper
we propose a real-time optimization-based control method
to coordinate the charging process of a fleet of PEVs under
coupled feeder capacity constraints. The core of our method



is the development of a novel form of continuous-time
primal-dual gradient dynamics [17], which are inspired on
the ideas of population games and payoff dynamics models
[18], [19], [20], [21]. Note that various continuous-time
primal-dual gradient dynamics have been proposed for other
network and power grid related applications [22], [23], [24].
However, the dynamics proposed in this paper have certain
invariance properties that make them attractive for the PEVs
charging coordination task.

In summary, our proposed approach has the following nov-
elties. In contrast with the approaches in [9], [10], [11], [12],
[13], [14], our method considers feeder capacity constraints
that couple the PEVs’ charging schedules. Moreover, in con-
trast with [15] and [16], our approach satisfies the operational
constraints of the system for all times and thus is applicable
in real time (i.e., when operating under hard constraints,
the PEVs do not have to wait until convergence to apply
their corresponding charging profiles). Such a property of the
algorithm is especially attractive to respond, in the sense of
disturbance rejection, to uncertain arrivals and departures of
the PEVs. Finally, in contrast with the primal-dual method
in [16], our method does not require repeated hyperplane
projections to satisfy the charging constraints of the PEVs,
and, hence, reduces the computational load of the PEVs. This
is due to the invariance properties of our proposed dynamics,
which do not hold under other primal-dual gradient dynamics
as the ones in [22], [23], [24], [17]. It is also worth to
highlight that in our previous publication [25], we have
considered a charging coordination scenario similar to the
one studied in this paper. However, the dynamics proposed
here not only are fundamentally different than the ones in
[25], but also consider more general convex optimization ob-
jectives (not only convex-quadratic) and allow more general
architectures for the power distribution network.

Consequently, the main technical contributions of this
paper are fourfold. First, we formulate a novel form of
continuous-time primal-dual optimization dynamics and de-
velop a real-time decentralized charging coordination method
that considers capacity-constrained feeder lines. Second, we
show that the invariance properties of the proposed dynamics
guarantee the satisfaction of the PEVs’ charging constraints
for all times. Third, we prove that the equilibria set of
the proposed dynamics is aligned with the solutions of
the charging coordination problem. Finally, we prove that
the equilibria set of the proposed primal-dual dynamics
is asymptotically stable and, therefore, the dynamics can
indeed be applied to solve the charging coordination task.
In addition, all of our theoretical developments are validated
through numerical simulations.

The remainder of this paper is organized as follows.
In Section II we state the charging coordination problem
that is considered in this paper. Then, in Section III we
present our proposed real-time control method and the cor-
responding continuous-time primal-dual gradient dynamics.
Afterwards, in Section IV we establish our main theoretical
results regarding the proposed continuous-time optimization
dynamics. Finally, in Section V we present some illustrative

numerical simulations, and in Section VI we provide some
concluding remarks and future directions of research. Addi-
tionally, all the proofs of our theoretical developments are
provided in the Appendix.

II. PROBLEM STATEMENT

Consider a set of nV ∈ Z≥1 PEVs, V = {1, 2, . . . , nV},
which seeks to coordinate their charging profiles over a
multi-time period T . Let T i = {1, 2, . . . , nT i}, with nT i ∈
Z≥1, be the charging period of the i-th PEV, so that the
multi-time period T is constructed as T = ∪i∈VT i =
{1, 2, . . . ,maxi∈V nT i}. Here, 1 denotes the present time
slot, 2 the next one, and so on. Throughout, we assume that
all the time slots within T have the same duration δ ∈ R>0

(with units of hours). Moreover, let Vk ⊆ V be the set
of PEVs that have the k-th time slot within their charging
period, i.e., Vk = {i ∈ V : k ∈ T i}, for all k ∈ T . Finally, to
ease the forthcoming discussions, let T ie = T i ∪ {0} be the
extended set of charging time slots of the i-th PEV, which
includes a fictitious charging time slot denoted by 0 that is
used to allocate the excess of power.

Under the considered framework, for each PEV i ∈
V the charging power that is scheduled to be injected
at the time slot k ∈ T ie is denoted by xik ∈ R≥0
(with units of kW). Therefore, the scheduled charging
profile of the i-th PEV is given by the vector xi =[
xi0, x

i
1, x

i
2, . . . , x

i
nT i

]>
∈ R(nT i+1)

≥0 , where xi0 is a fictitious
charging power for all i ∈ V , and the collection of the
scheduled charging profiles of all the PEVs is given by

x =
[(

x1
)>
,
(
x2
)>
, · · · , (xnV )

>
]>
∈ Rn≥0, where n =∑

i∈V(nT i + 1). Throughout, we consider that a collection
of scheduled charging profiles x is feasible if and only if it
satisfies the constraints

xik ≥ 0, ∀k ∈ T ie , ∀i ∈ V, (1a)

xik ≤ di, ∀k ∈ T i, ∀i ∈ V, (1b)

xi0 +
∑
k∈T i

xik =
ei(0)

ηiδ
, ∀i ∈ V, (1c)∑

i∈Vk

ψz,ixik ≤ czk, ∀k ∈ T , ∀z ∈ F . (1d)

Here, the constraints in (1a) require for the scheduled
charging powers to be non-negative; the constraints in (1b)
require for the scheduled charging powers to be not greater
than the maximum charging rate di ∈ R>0 (with units of
kW) of the i-th PEV; the constraints in (1c) require for
the scheduled charging powers to avoid overcharging the
battery of the i-th PEV, where ei(0) ∈ R≥0 is the remaining
energy capacity (with units of kWh) of the battery of the
i-th PEV at the beginning of the present time slot 1, and
ηi ∈ (0, 1] is the charging efficiency of the i-th PEV; and,
finally, the constraints in (1d) require for the fleet of PEVs
to satisfy the capacity constraints of the feeder lines of
the distribution network. Regarding the constraints in (1d),
F = {1, 2, . . . , nF} denotes the set of feeder lines of the
distribution network (with nF ∈ Z≥1); czk ∈ R>0 is the



maximum capacity of the feeder line z ∈ F at the time slot
k ∈ T (with units of kW); and ψz,i = 1 if the PEV i ∈ Vk
is fed by the feeder line z ∈ F , and ψz,i = 0 otherwise.
Throughout, it is assumed that the i-th PEVs knows its feeder
dependency value ψz,i for all z ∈ F . Notice that while
(1a), (1b), and (1c) regard individual PEV-level decoupled
constraints, (1d) considers distribution network-level coupled
constraints. In particular, the parameters di, ei(0), and ηi

might depend on the characteristics of the charging port, the
vehicle type, and the driving style of each PEV, whilst the
parameters ψz,i and czk might depend on the topology and
operational constraints of the distribution network. Moreover,
observe that (1a) and (1c) imply that ηiδ

∑
k∈T i xik ≤ ei(0),

for all i ∈ V . Hence, the (non-fictitious) scheduled charging
energy to the i-th PEV must not exceed its corresponding
remaining energy capacity ei(0). It is straightforward to
verify that under the considered framework, and due to the
consideration of the fictitious charging powers xi0 in (1c),
the set of feasible collections of scheduled charging profiles
is nonempty.

Remark 1: For every di ∈ R>0, ei ∈ R≥0, ηi ∈ (0, 1],
δ ∈ R>0, and czk ∈ R>0, the set of feasible collections of
scheduled charging profiles, X = {x ∈ Rn : x satifies (1)},
is nonempty. In fact, the relative interior of X is nonempty
as well. That is, there exists some x̂ ∈ X such that the
inequality constraints in (1a), (1b), and (1d), do not bind at
x̂. �

Considering the aforementioned constraints, the charging
coordination task can be stated as the constrained optimiza-
tion problem given by

min
x∈Rn

J(x), s.t. x ∈ X , (2)

where J : Rn → R is a cost function that captures
the charging coordination objective of the PEVs and/or the
electricity provider. For instance, the cost function J(·) might
consider both the total energy generation cost as well as some
local costs related to the battery degradation of each PEV [9],
[10], [11], [12]. Throughout, we assume that J(·) satisfies
the following conditions.

Standing Assumption 1: The cost function J(·) is convex
and twice continuously differentiable. �

Standing Assumption 2: For all i ∈ V and all k ∈ T ie , the
partial derivative ∂J(·)/∂xik can be evaluated using the local
information available at the i-th PEV, i.e., each PEV i ∈ V
knows the functional form of ∂J(·)/∂xik and has enough
local information to evaluate ∂J(x)/∂xik, for all k ∈ T ie . �

Granted that the goal is to develop a decentralized charging
coordination algorithm, we assume that each PEV i ∈ V
computes its own scheduled charging profile xi using only
local information available at the i-th PEV. Such local
information comprises both individual information of the cor-
responding PEV (e.g., battery level, charging period, battery
degradation parameters, maximum charging rate, charging
efficiency, and feeder dependency values ψz,i), as well as
global aggregated variables sent to the fleet of PEVs by an
aggregator node (e.g., aggregated scheduled charging profiles
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Fig. 1. Distribution network with 5 feeder lines and 3 charging nodes.

and distribution network-level variables). More formally, we
consider the following assumption.

Standing Assumption 3: There is an aggregator node that
communicates with all the PEVs. The aggregator node is
able to receive the scheduled charging profile of each PEV,
and is able to send the aggregated scheduled charging profile
(i.e.,

∑
i∈Vk x

i
k, for all k ∈ T ) and distribution network-level

variables to the fleet of PEVs. Moreover, the aggregator has
full information regarding the feeder dependency values ψz,i,
for all i ∈ V and all z ∈ F . �

To ease the exposition of the presented framework, let us
introduce some illustrative examples. In particular, Example
1 illustrates the constraints in (1d), and Example 2 provides
some optimization objectives that satisfy Standing Assump-
tions 1 and 2.

Example 1 (Distribution network constraints): Consider
the distribution network of Fig. 1. Without loss of generality,
assume that there are only three PEVs to be charged (one
at node B → 1, one at node D → 2, and one at node E
→ 3). Thus, V = {1, 2, 3} and F = {1, 2, 3, 4, 5}. Moreover,
suppose that T 1 = {1}, T 2 = {1, 2}, and T 3 = {1, 2, 3}.
Hence, T = {1, 2, 3}, V1 = {1, 2, 3}, V2 = {2, 3}, and V3 =
{3}. Under such a framework, the constraints in (1d) are as
follows. For feeder 1: x11 +x21 +x31 ≤ c11, x22 +x32 ≤ c12, and
x33 ≤ c13; for feeder 2: x11 ≤ c21; for feeder 3: x21 + x31 ≤ c31,
x22 + x32 ≤ c32, and x33 ≤ c33; for feeder 4: x21 ≤ c41, and
x22 ≤ c42; and, finally, for feeder 5: x31 ≤ c51, x32 ≤ c52, and
x33 ≤ c53. �

Example 2 (Optimization objectives): Perhaps the simplest
optimization problem that might be considered under the
proposed framework is

min
x∈X

Jchg(x) :=
1

2

∑
i∈V

(
xi0
)2
. (3)

Solving such a problem means that the PEVs will charge
as much as possible while satisfying the constraints in (1).
Clearly, Jchg(·) satisfies Standing Assumptions 1 and 2 (note
that ∂Jchg(x)/∂xi0 = xi0 relies only on local information of
the i-th PEV). Moreover, although Jchg(·) is separable over
the PEVs, the optimization problem in (3) is still coupled
over the fleet of PEVs due to the constraints in (1d).

Another optimization problem that could be considered is

min
x∈X

J(x) := Jchg(x) + Jref (x) + Jdeg(x), (4)



where Jchg(·) is defined as in (3), and

Jref (x) =
1

2

∑
k∈T

(
rk −

∑
i∈Vk

xik

)2

,

Jdeg(x) =
1

2

∑
i∈V

∑
k∈T i

(
αi
(
xik
)2

+ βixik + γi
)
.

Here, Jref (·) is a cost associated to the deviation from a
reference demand profile1, and rk ∈ R≥0 is the reference
demand (in kW) to be consumed by the fleet of PEVs over
the time interval k ∈ T (it is assumed that rk, for all k ∈ T ,
is broadcast by the aggregator to the PEVs). In contrast,
Jdeg(·) is a cost associated to the battery degradation2 of the
PEVs, and αi, βi, γi ∈ R>0 are constants that depend on the
voltage and energy capacity parameters of the battery of the
i-th PEV.

Clearly, the cost function J(·) defined in (4) is convex and
twice continuously differentiable. Hence, Standing Assump-
tion 1 holds under such a cost. Moreover, note that

∂J(x)

∂xj0
= xj0, ∀j ∈ V,

∂J(x)

∂xjl
= −rl +

∑
i∈Vl

xil + αjxjl +
βj

2
, ∀l ∈ T j , ∀j ∈ V.

Here, notice that besides the reference profile rl and the ag-
gregated term

∑
i∈Vl x

i
l , all of the other terms in ∂J(x)/∂xjl

depend only on individual information of the j-th PEV.
Furthermore, since the aggregator is able to send distribution
network-level variables and aggregated power profiles, the
information regarding rl and

∑
i∈Vl x

i
l , for all l ∈ T , is also

available at every PEV. Therefore, Standing Assumption 2
also holds under the cost defined in (4).

Finally, notice that in (4) one could replace Jref (x)

with Jdem(x) = (1/2)
∑
k∈T

(
Dk +

∑
i∈Vk x

i
k

)2
, where

Dk denotes the aggregated non-PEV demand at the time
slot k ∈ T (broadcast by the aggregator to the PEVs), and
thus consider the same optimization objectives as in [9], [10],
[11], [12], [15], [16]. �

III. REAL-TIME DECENTRALIZED CHARGING CONTROL

In this section, we design a continuous-time optimization-
based control law to coordinate the charging process of a
fleet of PEVs in real time. The main motivation behind such
a real-time approach is its capability to respond, in the sense
of disturbance rejection, to unexpected arrivals or departures
of the PEVs [8]. Throughout, let

gid,k(xik) = xik − di, ∀k ∈ T i, ∀i ∈ V,

gzc,k(x) =
∑
j∈Vk

ψz,jxjk − c
z
k, ∀k ∈ T , ∀z ∈ F .

1Such a reference demand profile might be related, for instance, to some
power bought by the electricity provider in a day-ahead market or to some
forecast energy profile [26], [27].

2The considered cost Jdeg(·) is consistent with battery degradation cost
models of LiFePO4 battery cells [28], e.g., [9, Equation (7)], [10, Equation
(5)], [12, Equation (9)].

Using these functions, the constraints in (1b) can be written
as gid,k(xik) ≤ 0, and the constraints in (1d) as gzc,k(x) ≤ 0.
Here, the sub-indices d and c are to differentiate decoupled
and coupled constraints, respectively. Finally, following such
a notation, let yid,k ∈ R≥0 and yzc,k ∈ R≥0 denote the
Lagrange multipliers associated to the constraints gid,k(xik) ≤
0 and gzc,k(x) ≤ 0, respectively.

Our proposed approach is as follows. Let t ∈ R≥0
denote the continuous-time variable representing the current
(continuous) time, and let the charging dynamics of the PEVs
be characterized by

ėi(t) = −ηiui(t) [with initial condition ei(0) ∈ R≥0],

for all i ∈ V , where ui(t) ∈ R≥0 denote the charging power
(in kW) that is currently applied to the PEV i ∈ V . We set

wz(t) =
cz1

max
{
cz1,
∑
j∈V1 ψ

z,jxj1(t)
} , ∀z ∈ F , (5a)

vi(t) = min
ζ∈{z∈F :ψz,i=1}

wζ(t), ∀i ∈ V, (5b)

ui(t) = min
{
vi(t)xi1(t), di

}
, ∀i ∈ V, (5c)

where xi1(t) is the value of the optimization variable xi1
at time t; wz(t) quantifies the capacity violation of the z-
th feeder at the time slot 1 under the collective scheduled
charging profile x(t) (in particular, note that 0 < wz(t) ≤ 1,
for all z ∈ F); and vi(t) is a scaling factor to scale
down the value xi1(t) for the i-th PEV according to the
relevant feeder capacity violations. Under such a mapping,
it follows that ui(t) ≥ 0 whenever xi1(t) ≥ 0, for all i ∈ V;∑
i∈V1 ψ

z,iui(t) ≤ cz1, for all z ∈ F ; ui(t) ≤ di, for all
i ∈ V; and ui(t) ≤ xi1(t) with ui(t) = xi1(t) whenever
x(t) ∈ X , for all i ∈ V . Hence, under the control law in (5),
the power capacity constraints of the system are satisfied
for the present time slot k = 1 (c.f., (1b) and (1d)), and,
whenever x(t) is feasible it holds that ui(t) = xi1(t), for all
i ∈ V . Moreover, note that wz(t) in (5a) is a distribution
network-level variable, and thus can be sent to the PEVs by
the aggregator (c.f., Standing Assumption 3). Consequently,
the scaling factor vi(t) in (5b) and the control law ui(t) in
(5c) can be computed locally at the i-th PEV.

Considering the aforementioned control law, we thus need
to design some continuous-time optimization dynamics to
update xik(t), for all k ∈ T ie and all i ∈ V , that

(C1) satisfy the decentralized structure of the system;
(C2) satisfy the constraints in (1a) and (1c) for all t ≥ 0;
(C3) converge to the solution of (2).

Notice that Condition C2 is important to exclude negative
ui(t) values and to avoid overcharging the batteries of
the PEVs. In what follows, we proceed to design some
continuous-time optimization dynamics that satisfy all three
conditions.

A. Continuous-Time Optimization Dynamics

In this section we proceed to design a continuous-time
dynamical system to update the optimization variables xik(t),



for all k ∈ T ie , all i ∈ V , and all t ≥ 0. To formulate such a
dynamical system, we rely on the ideas of population games
[18] and payoff dynamics models [20].

The field of population games regards a continuum of
players that interact with each other in a strategic scenario.
The seminal work of [18] has shown that, under certain mild
assumptions, the temporal evolution of the (mean) strategic
distribution of the population of players can be approximated
through some ordinary differential equations (ODEs). Hence,
the decision-making dynamics of the population of players
can be studied by analyzing the corresponding nonlinear
ODEs. Our interest on such population dynamics is that
the resulting ODEs have certain invariance properties that
can used to directly handle some of the constraints in
(1). More precisely, the constraints in (1a) and (1c). On
the other hand, the recent work of [20] has extended the
aforementioned ideas of population games to include payoff
dynamics models, where the payoff signals of the game
are governed by a continuous-time dynamical system. By
doing so, the framework of payoff dynamics models allows
the consideration of more elaborate strategic interaction
scenarios. In our recent publication [21], we have exploited
such ideas for generalized Nash equilibrium seeking in
population games under equality constraints. Following a
similar approach, in this paper we exploit the ideas of payoff
dynamics models to design a continuous-time dynamical
system to solve (2) satisfying the constraints in (1a) and (1c)
along the trajectories of the system, i.e., for all t ≥ 0 (recall
Condition C2). In contrast with [21], however, the model
proposed in this paper allows the consideration of inequality
constraints (in this case, (1b) and (1d)).

Based on these ideas, we design a novel form of
continuous-time primal-dual optimization dynamics that sat-
isfy Conditions C1, C2, and C3. The proposed dynamics
are as follows. On one hand, every PEV i ∈ V updates its
variables xik, for all k ∈ T ie , as well as the variables yid,k,
for all k ∈ T i, according to the dynamics

ẋik(t) =
∑
l∈T i

e

xil(t)ρ
i
lk(t)− xik(t)

∑
l∈T i

e

ρikl(t), (6a)

ẏid,k(t) =
[
gid,k

(
xik(t)

)]
+
− yid,k(t)

[
−gid,k

(
xik(t)

)]
+
,

(6b)

with [·]+ , max{·, 0}, and

ρikl(t) =
[
pil(t)− pik(t)

]
+
, ∀k, l ∈ T ie ,

pik(t) = −∂J(x(t))

∂xik
− yid,k(t)−

∑
z∈F

yzc,k(t)ψz,i, ∀k ∈ T i,

pi0(t) = −∂J (x(t))

∂xi0
.

On the other hand, the aggregator updates the variables yzc,k,
for all k ∈ T and all z ∈ F , according to the dynamics

ẏzc,k(t) =
[
gzc,k (x(t))

]
+
− yzc,k(t)

[
−gzc,k (x(t))

]
+
. (7)

Notice that the variables yzc,k, for all k ∈ T and all z ∈ F ,
are distribution network-level variables, and, therefore, can

Aggregator

Computes  using (5b)-(5c) and applies it.
Updates  and  according to (6),

for all  and all .

Every PEV 

Continuous-time process for all 
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Computes  using (5a), for all .
Updates  according to (7), for all 

 and all .

Fig. 2. Considered real-time optimization and control scheme. Notice
that, depending on the objective J(x), the aggregator may also send other
distribution network-level variables to the PEVs (c.f., Example 2).

be broadcast by the aggregator to the fleet of PEVs. Hence,
under Standing Assumptions 2 and 3, the proposed dynamics
can indeed be computed in the considered decentralized
fashion, and thus satisfy Condition C1. Moreover, note that
the number of optimization variables that the aggregator must
update, i.e., yzc,k, for all k ∈ T and all z ∈ F , is independent
of the number of PEVs. Hence, the local computational
complexity (in terms of local computation resources) is inde-
pendent of the number of PEVs. Consequently, the proposed
framework is scalable to large PEV fleets. Furthermore, to
exploit the invariance properties the proposed dynamics, we
impose the following conditions on the initial state of the
dynamical system.

Standing Assumption 4: Let i) xik(0) ≥ 0, for all k ∈ T ie
and all i ∈ V; ii)

∑
k∈T i

e
xik(0) = ei(0)/(ηiδ), for all i ∈ V;

iii) yid,k(0) ≥ 0, for all k ∈ T i and all i ∈ V; and iv)
yzc,k(0) ≥ 0, for all k ∈ T and all z ∈ F . �

For the sake of clarity, the considered continuous-time
optimization and control scheme is summarized in Fig. 2.
We now proceed to analyze the proposed continuous-time
optimization dynamics.

IV. ANALYSIS OF THE PROPOSED CONTINUOUS-TIME
OPTIMIZATION DYNAMICS

In this section, we characterize the invariance properties
and the equilibria set of the dynamics in (6)-(7), and we
show that such dynamics solve the optimization problem in
(2). That is, the set of solutions of (2) is asymptotically stable
under (6)-(7). Throughout, let

yid =
[
yid,1, y

i
d,2, · · · , yid,nT i

]>
∈ RnT i ,

yzc =
[
yzc,1, y

z
c,2, · · · , yzc,nT

]> ∈ RnT ,

y =
[
y1
d, y2

d, · · · ,y
nV
d , y1

c , y2
c , · · · ,ynF

c

]> ∈ RnQ ,

where nT = maxi∈V nT i and nQ =
∑
i∈V nT i+nFnT , and

let ∆ =
{

x ∈ Rn≥0 :
∑
k∈T i

e
xik = ei(0)/(ηiδ), ∀i ∈ V

}
.

Namely, ∆ is the set of vectors x that satisfies the constraints
in (1a) and (1c).

A. Invariance Properties

In this subsection, we characterize some invariance prop-
erties of the proposed dynamics that allow the satisfaction of
the constraints in (1a) and (1c), as well as the ones regarding
the non-negativity of the Lagrange multipliers, for all t ≥ 0.



Proposition 1: Consider the dynamics in (6a). If x(0) ∈
∆, then x(t) ∈ ∆, for all t ≥ 0. That is, ∆ is positively
invariant under the considered dynamics. �

Proposition 2: Consider the dynamics in (6b) and (7). If
y(0) ∈ RnQ

≥0 , then y(t) ∈ RnQ
≥0 for all t ≥ 0. That is, RnQ

≥0
is positively invariant under the considered dynamics. �

Propositions 1 and 2, in conjunction with Standing As-
sumption 4, allow us to assert, without any additional loss
of generality, that x(t) ∈ ∆ and y(t) ∈ RnQ

≥0 , for all t ≥ 0.
Hence, the proposed dynamics indeed satisfy Condition C2.
Throughout, the reader should keep in mind that from now
on we implicitly assume that x(·) ∈ ∆ and y(·) ∈ RnQ

≥0 .

B. Equilibria Set of the Proposed Dynamics

In this subsection, we show that the equilibria set of the
dynamics (6)-(7) coincides with the set of solutions of the
optimization problem in (2) and is asymptotically stable
under the proposed dynamics. To provide such results, we
introduce the following lemmas.

Lemma 1: Consider the dynamics in (6a) and let ẋi(t) =[
ẋi0(t), ẋi1(t), ẋi2(t), · · · , ẋinT i

(t)
]
∈ R(nT i+1). Then,

ẋi(t) = 0, if and only if it holds that

xik(t) > 0⇒ pik(t) = max
l∈T i

e

pil(t), ∀k ∈ T ie . (8)

Here, 0 denotes the zero vector of appropriate dimension. �
Lemma 2: Consider the dynamics in (6b) and let ẏid(t) =[
ẏid,1(t), ẏid,2(t), · · · , ẏid,nT i

(t)
]>
∈ RnT i . Then, ẏid(t) = 0,

if and only if it holds that

xik(t) ≤ di and yid,k(t)
(
xik(t)− di

)
= 0, ∀k ∈ T i. (9)

�
Lemma 3: Consider the dynamics in (7) and let ẏzc (t) =[
ẏic,1(t), ẏic,2(t), · · · , ẏzc,nT

(t)
]> ∈ RnT . Then, ẏzc (t) = 0, if

and only if it holds that∑
i∈Vk

ψz,ixik(t) ≤ czk and yzc,k(t)

(∑
i∈Vk

ψz,ixik(t)− czk

)
= 0,

(10)
for all k ∈ T . �

Using Lemmas 1, 2, and 3, we now proceed to formally
characterize the equilibria set of the dynamics in (6)-(7).

Theorem 1: Consider the dynamics in (6)-(7), and let

E =

{
(x,y) ∈ ∆× RnQ

≥0 :
(8)-(9) hold for all i ∈ V,
(10) holds for all z ∈ F .

}
.

(11)
Then, (x∗,y∗) ∈ ∆ × RnQ

≥0 is an equilibrium point of the
dynamics in (6)-(7) if and only if (x∗,y∗) ∈ E . �

Having characterized the equilibria set of the dynamics in
(6)-(7), we now state the main results of this subsection.

Theorem 2: Consider the set E in (11) and the optimiza-
tion problem in (2). The set E is nonempty, compact, and ev-
ery point (x∗,y∗) ∈ E implies that x∗ ∈ arg minx∈X J(x).
�

Theorem 3: Consider the dynamics in (6)-(7) and the
equilibria set E in (11). The set E is asymptotically stable
under the considered dynamics. �

Observe that Theorems 2 and 3 guarantee that the equilib-
ria set of the dynamics in (6)-(7) is not only asymptotically
stable, but also coincides with the set of solutions of the
optimization problem in (2). In consequence, the proposed
continuous-time optimization dynamics indeed satisfy Con-
dition C3.

Remark 2: Note that in contrast with other related works,
e.g., [12], the optimality and asymptotic stability results
provided by Theorems 2 and 3 hold for arbitrary sizes of PEV
fleets, and not only for the limiting case where the number
of PEVs is assumed to be infinite (quite large). Hence, our
proposed framework allows the consideration of a broader
scope of applications.

V. NUMERICAL SIMULATIONS

In this section, we apply our proposed method to a
charging coordination scenario considering the distribution
network of Fig. 1 and the optimization problem in (4).
As illustration, we compare the dynamics in (6)-(7) against
the continuous-time primal-dual gradient dynamics of [17]
(with unitary time constants). Note that the continuous-time
primal-dual gradient dynamics in [17] not only have expo-
nential stability guarantees, but have been also considered
in related network optimization and power-grid applications,
e.g., [22], [23], [24]. Moreover, the dynamics in (6)-(7)
can be computed using the same elementary linear algebra
operations as the dynamics in [17]. For these reasons, we
regard such dynamics as a relevant benchmark to compare
our approach.

Consider a fleet with nV = 40 PEVs distributed as
follows: 13 PEVs are connected at node B; 13 PEVs are
connected at node D; and 14 PEVs are connected at node
E. We consider the charging coordination over the time
period from 19:00 to 7:00, we let δ = 1, and we sample
the charging horizons according to the (truncated) normal
distribution nT i ∼ N (5:00, 4δ2), for all i ∈ V . Namely, for
our simulations we have nT = 12. Besides, the PEVs are
assumed to be heterogeneous, and, without loss of generality,
the corresponding parameters are uniformly sampled for all
i ∈ V as follows: di ∼ U(2, 4); ei(0) ∼ U(5, 20); ηi ∼
U(0.8, 0.9); αi ∼ U(0.003, 0.005); βi ∼ U(0.06, 0.09); and
γi ∼ U(0.002, 0.004). In particular, notice that the battery
degradation cost parameters are consistent with the values
reported in the literature [9]. Furthermore, regarding the
capacities of the feeder lines, we set c1k = 12, c2k = c4k =
c5k = 3.6, and c3k = 6, for all k ∈ {1, 2, 3}; and we set
c1k = 40, c2k = c4k = c5k = 12, and c3k = 20, for all
k ∈ {4, 5, · · · , 12}. Finally, for the reference demand profile,
we consider the one depicted in Fig. 3.

In Fig. 3, we provide the optimal collective scheduled
charging profile for the aforementioned scenario, whilst in
Figs. 4 and 5, we present the first 100s of the continuous-
time behavior of the dynamics in (6)-(7) and [17] when
applied to the considered scenario. Clearly, both continuous-
time primal-dual gradient dynamics converge to the solution
of the considered optimization problem with comparable per-
formance. However, notice that while our proposed dynamics
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Fig. 3. Reference demand profile and optimal aggregated power profile of
the fleet for the considered charging coordination problem.

(6)-(7) satisfy the constraints in (1a) and (1c) for all times,
the dynamics in [17] do not satisfy such constraints over the
trajectories of the optimization process. This property of our
dynamics has the following advantage. Notice that since the
constraints in (1a) and (1c) are handled by the invariance
properties of the dynamics in (6a), to solve the considered
optimization problem using (6)-(7) it is not necessary to
compute or update any dual Lagrange multipliers associated
to such constraints. Hence, the total number of optimization
variables that are considered with the dynamics in (6)-(7) is
given by n+nQ. In contrast, the total number of optimization
variables that are considered with the dynamics of [17] is
2n+nQ+nV (which requires for each PEV to compute and
update nT i +2 additional optimization variables). Therefore,
when compared to the dynamics of [17], our proposed
dynamics reduce the computational load on the i-th PEV
by computing nT i + 2 less variables. This is of especial
importance in charging coordination scenarios with small δ
and large nT values, i.e., under shorter time slots and larger
horizons.

Now, to illustrate the performance of the proposed
real-time control method under uncertain departures of the
PEVs, consider the aforementioned scenario, but assume that
10 randomly selected vehicles depart from their charging
stations at time t = 100s. As shown in Figs. 6 and 7, the
proposed real-time control strategy allows for the remaining
PEVs to readjust their charging profiles in real time without
violating the capacity constraints of the feeder lines. Hence,
the fleet of PEVs effectively responds in real time to the
corresponding disturbance.

VI. CONCLUDING REMARKS AND FUTURE WORK

This paper has proposed a novel method for the decen-
tralized real-time charging coordination of PEVs, which is
a crucial technology for future smart-city networks. Relying
on recent ideas in the fields of population games and payoff
dynamics models, we have developed a novel form of
continuous-time primal-dual gradient dynamics, and we have
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Fig. 4. Optimization cost J (x(t)) over the first 100s of the continuous-
time optimization process. All values are scaled over the optimal value.
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Fig. 5. Constraints violations over the first 100s of the continuous-
time optimization process. CV-(1a) is computed as maxk∈T i

e , i∈V −xik(t);
CV-(1b) is computed as maxk∈T i, i∈V g

i
d,k

(
xik(t)

)
; CV-(1c) is com-

puted as maxi∈V
∣∣1>xi(t)− ei(0)/ηiδ

∣∣, where 1 is the vector of
ones with appropriate dimension; and, finally, CV-(1d) is computed as
maxk∈T , z∈F gzc,k (x(t)). Hence, positive values of the CV terms coincide
with constraints violations. All values are scaled to [−1, 1].
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i∈V1
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proposed a real-time control method to compute the charging
powers of the PEVs in a decentralized fashion and under
(hard) feeder capacity constraints. The optimality and asymp-
totic stability of the proposed dynamics has been formally
proven through nonlinear analyses, and the advantages of
the proposed method have been illustrated through numerical
simulations.

Future work should focus on the consideration of some
practical implementation details as time delays in the com-
munications with the aggregator, as well as on the character-
ization of the convergence rate of the proposed optimization
dynamics.

APPENDIX

A. Proof of Proposition 1

Note that∑
k∈T i

e

ẋik(t) =
∑
k∈T i

e

∑
l∈T i

e

xil(t)ρ
i
lk(t)−

∑
k∈T i

e

∑
l∈T i

e

xik(t)ρikl(t)

= 0.

Hence,
∑
k∈T i

e
xik(0) = mi ⇒

∑
k∈T i

e
xik(t) = mi,∀t ≥ 0,

where mi = ei(0)/(ηiδ). Additionally, if xik(t) = 0, then
ẋik(t) ≥ 0. Thus, xik(0) ≥ 0 implies that xik(t) ≥ 0, for all
t ≥ 0. Since this holds for every k ∈ T ie and i ∈ V , ∆ is
indeed positively invariant under the considered dynamics.
�

B. Proof of Proposition 2

Consider (6b) first. Notice that if yid,k(t) = 0, then
ẏid,k(t) ≥ 0. Hence, yid,k(0) ≥ 0 implies that yid,k(t) ≥ 0,
for all t ≥ 0. Considering (7), note that if yzc,k(t) = 0, then
ẏzc,k(t) ≥ 0. Thus, yzc,k(0) ≥ 0 implies yzc,k(t) ≥ 0, for all
t ≥ 0. Since these results hold for arbitrary k, i, and z, it
holds that y(0) ∈ RnQ

≥0 implies y(t) ∈ RnQ
≥0 , for all t ≥ 0. �

C. Proof of Lemma 1

(Sufficiency) Let (8) hold. Then, for all a, b ∈ T ie it holds
that xia(t)

[
pib(t)− pia(t)

]
+

= 0. Thus, ẋi(t) = 0.
(Necessity) Let ẋi(t) = 0, but suppose that (8) does not

hold. Also, let a ∈ T ie be such that pia(t) = maxl∈T i
e
pil(t).

Hence, xia(t)
[
pib(t)− pia(t)

]
+

= 0, for all b ∈ T ie , and,
therefore, ẋia(t) =

∑
b∈T i

e
xib(t)

[
pia(t)− pib(t)

]
+
≥ 0.

Now, since (8) does not hold, there is some b ∈ T ie
such that xib(t) > 0 and pib(t) < pia(t). Consequently,
xib(t)

[
pia(t)− pib(t)

]
+
> 0, ẋia(t) > 0, and ẋi(t) 6= 0,

leading to a contradiction. �

D. Proof of Lemma 2

(Sufficiency) Let (9) hold. Since xik(t) − di =
gid,k

(
xik(t)

)
≤ 0, it holds that ẏid,k(t) =

yid,k(t)
(
xik(t)− di

)
, and, thus, yid,k(t)

(
xik(t)− di

)
= 0

implies that ẏid,k(t) = 0.
(Necessity) Let ẏid(t) = 0, but suppose that (9) does not

hold. Then, there is some l ∈ T i such that either xil(t) > di,
or yid,l(t)

(
xil(t)− di

)
6= 0. If xil(t) − di = gid,l(x

i
l(t)) > 0,

then ẏid,l(t) = xil(t) − di > 0 and thus ẏid(t) 6= 0. On the
other hand, if xil(t) ≤ di but yid,l(t)

(
xil(t)− di

)
6= 0, then

ẏid,l(t) = yid,l(t)
(
xil(t)− di

)
6= 0 (in fact > 0), and, again,

ẏid(t) 6= 0. This completes the proof by contradiction. �

E. Proof of Lemma 3

The proof is analogous to the one of Lemma 2, but
considers (7) instead of (6b), yzc,k(t) instead of yid,k(t), and
gzc,k (x(t)) instead of gid,k(xik(t)). Hence, it is omitted. �

F. Proof of Theorem 1

The result follows from Lemmas 1, 2, and 3. �

G. Proof of Theorem 2

Let λik ∈ R≥0 denote the Lagrange multiplier associated
to the constraint xik ≥ 0, for all k ∈ T ie and all i ∈ V ,
and let νi ∈ R be the Lagrange multiplier associated to the
constraint xi0 +

∑
k∈T i xik = ei(0)/

(
ηiδ
)
, for all i ∈ V .

Also, let λ ∈ Rn≥0 and ν ∈ RnV
≥0 be the vectors containing

such Lagrange multipliers, respectively. Moreover, consider
the set

K =

{
(x,y) ∈ X × RnQ

≥0 :
(x,y,λ,ν) satisfies (12) for

some λ ∈ Rn≥0, ν ∈ RnV .

}
,

where

λikx
i
k = 0, ∀k ∈ T ie , ∀i ∈ V, (12a)

yid,kg
i
d,k

(
xik
)

= 0, ∀k ∈ T i, ∀i ∈ V, (12b)

yzc,kg
z
c,k (x) = 0, ∀k ∈ T , ∀z ∈ F , (12c)

−∂J(x)

∂xik
− φik = νi − λik, ∀k ∈ T ie , ∀i ∈ V, (12d)

with φi0 = 0, and φik = yid,k +
∑
z∈F y

z
c,kψ

z,i if k ∈ T i,
for all i ∈ V . Namely, K is the set of vectors x and y that
satisfy the KKT optimality conditions for the optimization
problem in (2). We now prove that (x∗,y∗) ∈ E if and only
if (x∗,y∗) ∈ K.

(Sufficiency) Let (x∗,y∗) ∈ K. Note that (x∗,y∗) ∈
X × RnQ

≥0 implies that x∗ ∈ ∆ and y∗ ∈ RnQ
≥0 . Then, (12b)

implies that (9) holds for all i ∈ V , and (12c) implies that
(10) holds for all z ∈ F . Also, pi∗k = −∂J(x∗)/∂xi∗k − φi∗k ,
for all k ∈ T ie and all i ∈ V . Consequently, (12a) and



(12d) imply that pi∗k = νi∗, for all k ∈ supp (x∗) and all
i ∈ V . Similarly, since λ∗ ∈ Rn≥0, condition (12d) implies
that pi∗l = νi∗ − λi∗l ≤ νi∗, for all l ∈ T ie and all i ∈ V .
Therefore, for all k ∈ supp (x∗) and all i ∈ V , it holds that
pi∗k = maxl∈T i

e
pi∗l , and so (8) holds for all i ∈ V . Hence,

(x∗,y∗) ∈ E .
(Necessity) Let (x∗,y∗) ∈ E . Clearly, (x∗,y∗) ∈ E

implies that x∗ ∈ X , that y∗ ∈ RnQ
≥0 , and that (12b) and (12c)

hold. Now, pick νi∗ = maxl∈T i
e
pi∗l and λi∗k = νi∗−pi∗k , for

all k ∈ T ie and all i ∈ V . Under such a selection, and due to
the fact that (8) holds, it follows that (12a) and (12d) hold
and that λ∗ ∈ Rn≥0. Consequently, (x∗,y∗) ∈ K.

Therefore, since E = K and K is the set of KKT points of
the convex optimization problem in (2) (which has nonempty
and compact feasible set X , satisfies the Slater’s condition,
and has continuous objective function J(·)), it follows that E
is nonempty, compact3, and every point (x∗,y∗) ∈ E satisfies
that x∗ ∈ arg minx∈X J(x). �

H. Proof of Theorem 3

To present the proof more compactly, let x , x(t), y ,
y(t), pik , pik(t) for all k ∈ T ie and all i ∈ V , gid,k ,
gid,k

(
xik
)

for all k ∈ T i and all i ∈ V , gzc,k , gzc,k(x) for
all k ∈ T and all z ∈ F , and J , J(x). Moreover, let

gid ,
[
gid,1, g

i
d,2, · · · , gid,nT i

]>
∈ RnT i , ∀i ∈ V

gzc ,
[
gzc,1, g

z
c,2, · · · , gzc,nT

]> ∈ RnT , ∀z ∈ F

g ,
[
g1
d,g

2
d, · · · ,g

nV
d ,g1

c ,g
2
c · · · ,gnF

c

]> ∈ RnQ .

Notice that the elements of g preserve the same ordering
as the ones of y. Thus, let Q = {1, 2, . . . , nQ} be the set
of indices pointing to the elements of y and g, and, for all
q ∈ Q, let y[q] ∈ R and g[q] ∈ R denote the q-th element
of y and g, respectively. In consequence, from (6b) and (7),
we have that

ẏ[q] =
[
g[q]
]
+
− y[q]

[
−g[q]

]
+
, ∀q ∈ Q. (13)

Also, under such a notation, it follows that

pik = − ∂J

∂xik
−
∑
q∈Q

y[q]
∂g[q]

∂xik
, ∀k ∈ T ie , ∀i ∈ V. (14)

Now, consider the function

V (x,y) =
∑
i∈V

∑
l∈T i

e

∑
k∈T i

e

xikP
i
kl(x,y)

︸ ︷︷ ︸
Vx(x,y)

+
∑
q∈Q

Gq(x,y)︸ ︷︷ ︸
Vy(x,y)

,

where

P ikl(x,y) =

∫ pil−p
i
k

0

[σ]+ dσ, ∀k, l ∈ T ie , ∀i ∈ V,

Gq(x,y) =

∫ g[q]

0

[σ]+ dσ + y[q]

∫ −g[q]
0

[σ]+ dσ, ∀q ∈ Q.

3The compactness of E can be proven using analogous arguments as in
[21, Proposition 3].

Clearly, Vx(x,y) ≥ 0 and Vy(x,y) ≥ 0 for all (x,y) ∈
∆ × RnQ

≥0 . Moreover, following a similar analysis as in
[18, Theorem 7.2.9], it is straightforward to check that
Vx(x,y) = 0 if and only if (8) holds. Furthermore, observe
that Vy(x,y) = 0 if and only if (9) and (10) hold. Con-
sequently, V (x,y) = 0 if and only if (x,y) ∈ E . Thus,
V (·, ·) serves as a valid Lyapunov function candidate to
investigate the stability properties of E (c.f., [29, Corollary
4.7]). Therefore, we proceed to analyze its derivatives. In
particular, we have that

∂V

∂xab
=
∑
l∈T a

e

Pabl +
∑
i∈V

∑
l∈T i

e

∑
k∈T i

e

xik
∂Pikl
∂xab

+
∑
q∈Q

∂Gq
∂xab

∂V

∂y[h]
=
∑
i∈V

∑
l∈T i

e

∑
k∈T i

e

xik
∂Pikl
∂y[h]

+

∫ −g[h]

0

[σ]+ dσ,

for all a ∈ V , all b ∈ T ae , and all h ∈ Q. Here, we have
defined V , V (x,y), P ikl , P

i
kl(x,y), and Gq , Gq(x,y).

Moreover,∑
i∈V

∑
l,k∈T i

e

xik
∂Pikl
∂xab

=
∑
i∈V

∑
l,k∈T i

e

xik
[
pil − pik

]
+

(
∂pil
∂xab
− ∂pik
∂xab

)

=
∑
i∈V

∑
l∈T i

e

ẋil
∂pil
∂xab

[using (6a)].

Similarly, observe that∑
q∈Q

∂Gq
∂xab

=
∑
q∈Q

([
g[q]
]
+

∂g[q]

∂xab
− y[q]

[
−g[q]

]
+

∂g[q]

∂xab

)
=
∑
q∈Q

ẏ[q]
∂g[q]

∂xab
, [using (13)].

Finally, note that∑
k∈T i

e

xik
∂Pikl
∂y[h]

=
∑
k∈T i

e

xik
[
pil − pik

]
+

(
∂pil
∂y[h]

− ∂pik
∂y[h]

)

= ẋil
∂pil
∂y[h]

[using (6a)]

= −ẋil
∂g[h]

∂xil
[using (14)],

and therefore,∑
i∈V

∑
l∈T i

e

∑
k∈T i

e

xik
∂Pikl
∂y[h]

= −
∑
i∈V

∑
l∈T i

e

ẋil
∂g[h]

∂xil
.

Now, let

ΓjP ,

∑
l∈T j

e

P j0l,
∑
l∈T j

e

P j1l, · · · ,
∑
l∈T j

e

P jnT j l

> ∈ R(nT j+1)

≥0 ,

for all j ∈ V , and

ΓP ,
[(

Γ1
P

)>
,
(
Γ2
P

)>
, · · · , (ΓnV

P )
>
]>
∈ Rn≥0.

Similarly, let

ΓG ,

[∫ −g[1]
0

[σ]+dσ, · · · ,
∫ −g[nQ]

0

[σ]+dσ

]>
∈ RnQ

≥0 .



Finally, let

pi ,
[
pi0, p

i
1, · · · , pinT i

]>
∈ RnT i , ∀i ∈ V,

p ,
[
p1,p2, · · · ,pnV

]> ∈ Rn.

Under these formulations, it follows that

∇xV (x,y) = ΓP + (Dp)
>

ẋ + (Dg)
>

ẏ

∇yV (x,y) = ΓG − Dgẋ.

Here, Dp , Dp(x,y) ∈ Rn×n is the Jacobian matrix p with
respect to x; and Dg , Dg(x) ∈ RnQ×n is the Jacobian
matrix of g with respect to x. Therefore,[

(∇xV (x,y))
>
, (∇yV (x,y))

>
] [

ẋ
ẏ

]
= Γ>P ẋ + ẋ>Dpẋ + ẏ>Dgẋ + Γ>Gẏ − ẋ> (Dg)

>
ẏ

= Γ>P ẋ + ẋ>Dpẋ + Γ>Gẏ.

Here, ẋ> (Dg)
>

ẏ =
(
ẋ> (Dg)

>
ẏ
)>

= ẏ>Dgẋ, since it
is a scalar. Now, from the Standing Assumption 1 and the
fact that g[q] is an affine function of x, for all q ∈ Q, it
follows that Dp is a positive semi-definite matrix for all x
and y. Therefore, ẋ>Dpẋ ≤ 0 for all times. Moreover, since
ẋ = 0 implies that ẋ>Dpẋ = 0, it follows from Theorem
1 that (x,y) ∈ E implies that ẋ>Dpẋ = 0. Furthermore,
following the same analysis as in the proofs of [18, Theorem
7.2.9] or [30, Theorem 7.1], it is straightforward to show
that Γ>P ẋ ≤ 0 for all times, and that Γ>P ẋ = 0 if and only
if (8) holds. Consequently, we have that Γ>P ẋ + ẋ>Dpẋ ≤
0 for all times and that Γ>P ẋ + ẋ>Dpẋ = 0 only when
(8) holds. Now, let us consider the term Γ>Gẏ. Observe that
Γ>Gẏ =

∑
q∈Q ẏ[q]

∫ −g[q]
0

[σ]+d σ. Clearly, if g[q] ≥ 0, then∫ −g[q]
0

[σ]+d σ = 0. On the other hand, if g[q] < 0, then∫ −g[q]
0

[σ]+d σ > 0 and ẏ[q] ≤ 0 (the latter follows from (13)
and the fact that y ∈ RnQ

≥0 for all times). Hence, Γ>Gẏ ≤ 0

for all times. In consequence, Γ>P ẋ+ẋ>Dpẋ+Γ>Gẏ ≤ 0 for
all times, and, therefore, E is stable in the sense of Lyapunov.

To prove the asymptotic stability of E , we rely on a
LaSalle’s Theorem [29, Theorem 3.3]. Namely, notice that
Γ>Gẏ = 0 if and only if it holds that

g[q] < 0⇒ y[q]g[q] = 0, ∀q ∈ Q. (15)

Hence, Γ>P ẋ+ẋ>Dpẋ+Γ>Gẏ = 0 if and only if (x,y) ∈ R,
with R = {(x,y) ∈ ∆× RnQ

≥0 : (8) and (15) hold}. Clearly,
E ⊆ R. In fact, E is the subset of R where g[q] ≤ 0 for all
q ∈ Q. Thus, if E is shown to be the largest invariant set
of the dynamics within R, then E is asymptotically stable
under the considered dynamics (i.e., Lyapunov stable and
attractive). We now proceed to prove such a property by
contradiction.

Let I ⊆ R be the largest invariant set of the dynamics
withinR. Clearly, as E ⊆ R is an invariant set (c.f., Theorem
1), it holds that E ⊆ I. Also, since I is an invariant set and
I ⊆ R, it follows from Lemma 1 that (x(τ),y(τ)) ∈ I ⇒
x(t) = x(τ), for all t ≥ τ . Now, suppose that E ⊂ I. That is,

there exists some non-empty set C ⊂ I such that C ∩ E = ∅
and C ∪ E = I. Consequently, for every (x(τ),y(τ)) ∈ C it
holds that: i) x(t) = x(τ) for all t ≥ τ (because C ⊂ I);
and ii) ‖y(t)‖ → ∞ as t → ∞, where ‖ · ‖ is any p-norm
(because there exists some q ∈ Q such that g[q](x(τ)) > 0,
and thus ẏ[q](τ) = ẏ[q](t) > 0, for all t ≥ τ ). Hence, any
(x(τ),y(τ)) ∈ C implies that the trajectories of the dynamics
are unbounded for t ≥ τ . Clearly, this is a contradiction
with the fact that E is stable in the sense of Lyapunov, and,
therefore, we conclude that there cannot exist a non-empty
set C such that C = I \ E . In consequence, I = E , and E is
asymptotically stable under the dynamics in (6)-(7). �
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