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Abstract

In order to keep wind turbines connected and in operation at all times despite the occurrence of some faults, advanced

fault detection and accommodation schemes are required. To achieve this goal, this paper proposes to use the Linear

Parameter Varying approach to design an Active Fault Tolerant Control for wind turbines. This Active Fault Tolerant

Control is integrated with a Fault Detection and Isolation approach. Fault detection is based on a Linear Parameter

Varying interval predictor approach while fault isolation is based on analysing the residual fault signatures. To include

fault-tolerance in the control system (already available in the considered wind turbine case study based on the well

known SAFEPROCESS benchmark), the information of the Fault Detection and Isolation approach block is exploited and

it is used in the implementation of a virtual actuator and sensor scheme. The proposed Active Fault Tolerant Control is

evaluated using fault scenarios which are proposed in the wind turbine benchmark to assess its performance. Results

show the effectiveness of the proposed Active Fault Tolerant Control approach in faulty situation.
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Introduction

In the last years, wind turbines have become one of
the important renewable energy sources. However,
they can be affected by some fault scenarios which
can lead to unsatisfactory performance in many
works1–4 theses faults are proposed. To avoid these
consequences, fault tolerant control (FTC) strategies
should be applied to keep the wind turbine operation
and performance even under the case of faulty com-
ponents or instruments. The development of FTC
schemes for wind turbines has been already consid-
ered in the literature. The proposed approaches can
be divided in two groups: active and passive. The pas-
sive approach takes into account the faults during the
design of the control law5 by considering them as
uncertainties. This method is limited to small size
fault scenarios and generally the obtained perfor-
mance even in non-faulty scenarios is reduced.6 This
makes that the active fault tolerant control approach,
that overcomes such limitations, has been largely
developed. Active Fault Tolerant Control (AFTC)

accommodates the fault using the information pro-
vided by a Fault Detection and Isolation (FDI)
block.7–9 Most of research in AFTC of wind turbines
has focused on additive sensor and actuator faults
using some type of observer scheme in fault detec-
tion.10 In case of parametric faults, it is necessary to
use some parameter estimation scheme that allows to
obtain the new parameters after the fault and
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accommodate/reconfigure the control loop accord-
ingly (see e.g., Simani and Castaldi11)

Regarding the application of FTC to wind turbines,
there are many references considering the application
FTC in generator12,13 and drive train subsystems.14

There are less references regarding the application to
pitch subsystem despite it has an important role in
producing an optimal power. The occurrence of a
fault in this actuator causes a pitch position error
which can result in an insufficient torque.
Consequently, the power can not follow the reference
set-point. In this work, the proposed fault tolerant
method is applied to the pitch subsystem in the
faulty case. Most of the FTC schemes for wind tur-
bines have considered Linear Time Invariant (LTI)
models.15 However, wind turbines behave as nonlinear
systems with complex dynamics specially when con-
sidering the aerodynamic part. Thus, the use of LTI
models for designing FTC schemes for wind turbines
could be insufficient to obtain satisfactory results. To
overcome such limitations, recent FTC approaches
have been proposed to use directly a nonlinear
model11,16,17 or some multiple-model scheme.18,19

Recently, Linear Parameter Varying (LPV) theory
has become a standard formalism20 for addressing the
problem of control of nonlinear systems using
pseudo-linear like methods. Many works have been
developed using this approach and are applied to
wind turbine systems. Wind turbines can be repre-
sented by an LPV model that is scheduled with
some variables that define the operating point. For
example, in Sloth et al.,6 the LPV approach is used to
design a fault-tolerant gain-scheduling controller.

The contribution of this paper is to propose an inte-
grated FDI/FTC approach for wind turbines that
solves the problem of control accommodation in case
of actuator and sensor faults as the ones proposed in
Zhang,3 Odgaard and Stoustrup21 and Laouti and
Othman4 and EL Bakri and Boumhidi1 where the
actuator faults are again not handled as well as the
sensor faults. It seems to be a general trend of these
solutions, whichmight indicate that the sensor faults in
the benchmark model are easier to accommodate than
the actuator faults. This approach combines LPV
modeling and identification, robust FDI based on
interval-based subspace approaches and virtual actu-
ator/sensor FTC techniques (see Figure 1). This
approach is applied to a wind turbine case study pro-
posed as a FDI/FTC benchmark in Odgaard et al.22

This paper is organized as follows: In System
description Section, the wind turbine benchmark
system is detailed. In Fault detection and isolation
Section, the fault diagnosis approach is presented
and illustrated using the pitch system. In Fault toler-
ant control Section, the FTC method based on virtual
sensor and actuator is described. Application results
Section deals with simulation experiments that illus-
trate the implementation of the proposed approach
using the proposed wind turbine benchmark and the

comparison with existing results. Finally, Conclusion

Section gives some concluding remarks.

System description

As discussed in the introduction, the purpose of this

paper is to develop an integrated FDI/FTC scheme

based on the LPV approach for wind turbines and

illustrate it applied to the benchmark case study pro-

posed in Odgaard and Stoustrup.10 The parameters of

this case of wind turbine in nominal case are given in

the Table 1.23

The model of the considered wind turbine is com-

posed of four subsystems: Aerodynamics, Pitch,

Drive train and Generator which are described in

the following subsections.

Aerodynamics

The wind turbine aerodynamics is modeled as a

torque acting on the blades. This torque, Tr, is

given by:22

Figure 1. Principle of FTC scheme. (a) Pitch measurement
and estimation, (b) Pitch residual, (c) Fault indicator.

Table 1. Wind turbine parameters.

Parameter Notation Value Unit

Viscous friction Bg 47,6 MN:m:s
rad

Torsion damping Bdt 775.49 MN:m:s
rad

Friction coefficient Br 7.11 MN:m:s
rad

Gear ratio Ng 95

Torsion stiffness Kdt 2.7 e9 GN:m
rad

Efficiency of the

drive train gdt 0.97

Generator inertia Jg 390 kg:m2

Rotor inertia Jr 55 e6 kg:m2

Time constant agc 0.05 e-3

Efficiency of

the generator ggc 0.98

Radius of blades R 57.5 m2

Air density q 1.225 kg
m3

Damping ratio f 0.6 rad
s

Natural frequency xn 11.11 rad
s



TrðtÞ ¼
qpR3CqðkðtÞ; bjðtÞÞvwðtÞ2

6
(1)

where k is the tip speed ratio, q is the density of the

air, R is the radius of blades, vw is the wind speed, bj is
the angle of the pitch of the blade j and Cq is the

coefficient of the torque.

Drive train

The drive train is modeled with a flexible two mass

system and is used to increase the speed from rotor to

generator. The model of the drive train is given as:6
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where wr,wg,hD,Tr,Tg are respectively the rotor speed,

the generator speed, the torsion angle, the rotor

and generator torque.The system matrices in (2) are

given by
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Generator

The dynamics of the converter is modeled by a first

order transfer function22

TgðsÞ
TrgðsÞ ¼

agc
sþ agc

(3)

The generator produces a power which is given by

PgðtÞ ¼ ggcwgðtÞTgðtÞ (4)

Pitch

The hydraulic pitch in this benchmark wind

turbine is a piston servo mechanism which can be

modeled by a second order transfer function as

follows:22

bðsÞ
brðsÞ

¼ x2
n

s2 þ 2fxnsþ x2
n

(5)

where br corresponds to the reference values of pitch

angles, wn and n are respectively the natural frequen-

cy and the damping ratio. These parameters are var-

iable with hydraulic pressure P.22 Then, the

representation of the pitch system can be represented

by means of the following LPV model which com-

bine the normal and the faulty operation mode

according to Sloth et al.6 using P as the scheduling

variable l:

xðkþ 1Þ ¼ AðlÞxðkÞ þ BðlÞuðkÞ (6)

yðkÞ ¼ CxðkÞ (7)

with

AðlÞ ¼ 1 Te

�Tew
2
nðlÞ �2TenðlÞwnðlÞ þ 1

" #
and

BðlÞ ¼ 0

Tew
2
nðlÞ

" #

with Te¼ 0.001, The state vector includes the pitch

angular speed and the position and the output mea-

surement is the angle.

Fault detection and isolation

In the proposed AFTC presented in Figure 1, the

FDI module is based on passive robust approach

that combines the LPV subspace estimation

approach proposed in Van Willem and Verhagen24

and the interval predictor approach introduced in

Puig.25

Interval predictor approach

This approach is used to consider the modelling

uncertainty and allow to introduce robustness in the

fault detection block. The uncertainty in the model is

assumed to be concentrated in the parameters that are

assumed unknown but bounded by a set H that is

described by a zonotope:

H ¼ h0�HBn ¼ fh0 þHz : z 2 Bng (8)



where h0 is the nominal model, H is matrix uncer-

tainty shape, Bn is a unitary box composed of n uni-

tary interval vectors ðB ¼ �1; 1½ �Þ and � is the

Minkowski sum. In this paper, a particular parame-

ter set H which is bounded by an interval box is used:

H ¼ ½h1 ; h1 � � . . . ½hi; hi� � . . . ½hnh ; hnh � (9)

where hi ¼ h0i � ki and hi ¼ h0i þ ki with ki � 0 and

i ¼ 1; . . . ; nh. The interval box can be represented by

means of a zonotope with center h0 and H equal to an

nh � nh diagonal matrix:

h0 ¼ h1 þ h1
2

;
h2 þ h2

2
; . . . ;

hnh þ hnh
2

� �
(10)

H ¼ diagðk1; k2; . . . ; knhÞ (11)

The model can be described by the following

regressor form:

yðkÞ ¼ /ðkÞhðkÞ þ eðkÞ (12)

where /ðkÞ is the regressor vector that is function of

inputs u(k) and outputs y(k), hðkÞ 2 H is the param-

eter vector, H is the set of parameters and e(k) is the

noise term assumed unknown but bounded jeðkÞj � r.
Using this approach, the measured data in fault-

free case are covered by the interval predicted output.

yðkÞ 2 ½ŷðkÞ � r; ŷðkÞ þ r� (13)

where

ŷðkÞ ¼ ŷ0ðkÞ � jj/ðkÞHjj1 (14)

ŷðkÞ ¼ ŷ0ðkÞ þ jj/ðkÞHjj1 (15)

and ŷ0ðkÞ is the prediction with nominal parameters

with h0 ¼½h1; h2; . . . ; hnh �T obtained using the param-

eter estimation method presented here after

ŷ0ðkÞ ¼ /ðkÞh0 (16)

Estimation approach

Problem formulation. to estimate the nominal LPV

parameters in (8) using the subspace method pro-

posed in Van Willem and Verhagen24 this model is

expressed as follows:

xðkþ 1Þ ¼
Xm
i¼1

lðiÞðkÞðAðiÞxðkÞ þ BðiÞuðkÞ þ KðiÞeðkÞÞ

(17)

yðkÞ ¼ CxðkÞ þDuðkÞ þ eðkÞ (18)

where uðkÞ 2 Rr; xðkÞ 2 Rn; yðkÞ 2 Rl are the input,
state and output vectors over time k ¼ f1; . . . ;Ng
and the noise process eðkÞ is a zero-mean white
sequence and m is the number of scheduling parame-

ters (or local models) that are supposed to be measur-
able in real time. The vector of scheduling parameters
is defined as follows:

lðkÞ ¼ 1; lð2ÞðkÞ; . . . ; lmðkÞ
h iT

Then, equations (17) and (18) can be rewritten in
the predictor form as:

xðkþ 1Þ ¼
Xm
i¼1

lðiÞðkÞð ~AðiÞxðkÞ þ ~B
ðiÞ
uðkÞ þ KðiÞyðkÞÞ

(19)

with

~A
ðiÞ ¼ AðiÞ � KðiÞC

~B
ðiÞ ¼ BðiÞ � KðiÞD

Problem solution. Defining zðkÞ ¼ uðkÞT; yðkÞT�T;
h

X ¼
xðpþ 1Þ; . . . ; xðNÞ½ � and

zpðkÞ ¼

zðkÞ
zðkþ 1Þ

:

:

:

zðkþ p� 1Þ

2
6666666664

3
7777777775

where p is a past window length. By introducing the

matrix

Pp=k ¼ lðkþ p� 1Þ � . . .� lðkÞ � Irþl

we can define

N
p
k ¼

Pp=k : : : 0

: Pp�1=kþ1
: :

: :

0 P1=kþp�1

2
66666664

3
77777775

Then, the matrices U, Y and Z are defined as
follows

U ¼ uðpþ 1Þ; . . . ; uðNÞ½ � (20)



Y ¼ yðpþ 1Þ; . . . ; yðNÞ½ � (21)

Z ¼ Np
1z

pð1Þ; . . . ;Np
N�pþ1z

pðN� pþ 1Þ
h i

(22)

The controllability matrix can be expressed as:

jp ¼ lp; . . . ; l1½ �

with

l1 ¼ B
ð1Þ
; . . . ;B

ðmÞ
h i

and

lj ¼ ~A
ð1Þ
lj�1; . . . ; ~A

ðmÞ
lj�1

h i

with B
ðiÞ ¼ ½ ~BðiÞ;KðiÞ�

If the matrix ZT;UT
� �

has full row rank, we can
estimate the matrices Cjp and D by solving the next
linear regression problem26

min
Cjp;D

jjY� CjpZ�DUjj2F (23)

where jj � jjF is the Frobenius norm.As in the case of
LTI system identification, this problem can be solved
for the considered type of LPV systems by using tra-
ditional least square methods.27

According to literature,28,29 if the matrix

ZT UT
� �

has full row rank, the equation (23) has
a unique solution and is given by

^Cjp D̂
� � ¼ Y ZT UT

� � Z

U

" #
ZT UT
� � !�1

(24)

When p is large, the solution is computed by using
the SVD of the matrix:

Z

U

" #
¼ t t?
� � X

m

0

0 0

2
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3
5 VT

VT
?

" #
(25)

The solution obtained when minimizing the norm
is given by:

^Cjp D̂
� � ¼ YV

X�1
m

tT (26)

To evaluate the performance of the identified
system, we use the Variance-Accounted-For (VAF)
value which is defined as:

VAFðyðkÞ; ŷðkÞÞ
¼ max 1� varðyðkÞ � ŷðkÞÞ

varðyðkÞÞ ; 0

� �
� 100%

(27)

where varðÞ denotes the variance, ŷðkÞ and yðkÞ are
respectively the estimated and real system outputs.

Parameter uncertainty estimation

Once the nominal LPV parameters in (8) have been

obtained using the subspace method recalled in pre-

vious section, to characterize the parameter set H,

defined in (9) consistent with the data collected in a

fault-free scenario, the bounds (11) should be

obtained. The uncertain parameter estimation algo-

rithm proceeds by solving the following optimization

problem:

min
Xnh
i¼1

k2i

subject to :

yiðkÞ 2 ŷ
i
ðkÞ � ri; ŷiðkÞ þ ri

h i
ŷðkÞ ¼ ŷ0ðkÞ þ jj/ðkÞHjj1
ŷðkÞ ¼ ŷ0ðkÞ � jj/ðkÞHjj1
ŷ0ðkÞ ¼ /ðkÞh0
H ¼ diagðk1; k2; . . . ; knhÞ
For all i ¼ 1; . . . ; ny and k ¼ 1; . . . ;N

(28)

To summarize, the proposed uncertain LPV sub-

space identification approach is described in

Algorithm 1.

Algorithm 1 LPV uncertain parameter estimation

1: Create the matrices U and Z using (20).
2: Obtain the SVD decomposition (25) of U and Z.
3: Solve the linear problem in (23) using (26) and

obtain nominal parameters h0

4: Estimate the parameter uncertain bounds solving
the optimization problem (28)

Fault isolation scheme

The fault isolation will be designed considering the set

of faults proposed in the wind turbine benchmark

case study30 that are described in the following

taking into account their type:

• Sensor faults. The first sensor fault scenario con-

sidered affects the pitch position measurements,

which is denoted as Dbm. The second fault scenario

corresponds to the rotor speed measurement and is

denoted as Dwg;m and Dwr;m. These faults are either

electrical or mechanical faults, and can be

classified as a fixed value or a gain factor on the

measurements. These sensor faults cause a false

measurement that affects the performance of the

control law.
• Actuator faults. Actuator faults may occur in the

pitch actuator or in the converter. In the first sub-

system, faults results in a change of dynamics

either due to dropped pressure or high air content



in the oil. These faults are denoted as Db. In the

second subsystem, faults manifests through an
additive offset. The cause of this fault is an offset
in the internal converter control loop. These faults

are denoted as DTg. Faults in actuator of the wind
turbine caused slow control actions.

• System faults. The considered system faults occur
in the drive train, where the friction changes with
time. These faults are denoted as Dwr and Dwg.

This type of fault is not that severe, but it is an
indication of the wear of the drive train, which

finally results in its total breakdown. This system
fault increases the level of drive train vibrations.

All these faults are summarized and listed in

Table 2. Since the control system can be sensitive to
different type of faults, a fault isolation is needed to
localize the type of fault occurring in the wind

turbine.
Using the sensors available in the wind turbine

benchmark and the model presented in Section 2,
the following residuals can be obtained applying
structural analysis and the perfect matching

algorithm8

r1ðkÞ ¼ wrm1ðkÞ � wrm2ðkÞ
r2ðkÞ ¼ wrm2ðkÞ � w

_

rm2ðkÞ
r3ðkÞ ¼ wgm1ðkÞ � wgm2ðkÞ
r4ðkÞ ¼ wgm2ðkÞ � w

_

gm2ðkÞ
r5ðkÞ ¼ b1m1ðkÞ � b1m2ðkÞ
r6ðkÞ ¼ b1m2ðkÞ � b

_

1m2ðkÞ
r7ðkÞ ¼ b2m1ðkÞ � b2m2ðkÞ
r8ðkÞ ¼ b2m2ðkÞ � b

_

2m2ðkÞ
r9ðkÞ ¼ b3m1ðkÞ � b3m2ðkÞ
r10ðkÞ ¼ b3m2ðkÞ � b

_

3m2ðkÞ
r11ðkÞ ¼ sgmðkÞ � s_ gðkÞ
r12ðkÞ ¼ PgmðkÞ � ggwgm2ðkÞsgmðkÞ

(29)

Then, fault detection will be based on checking if

(13) is satisfied. In case that, it is not satisfied a fault

can be indicated. Otherwise, nothing can be said. It is

carried out on the basis of fault signatures, generated

by the detection module, and their relation with all

the considered faults, fðkÞ ¼ ffaðkÞ; fyðkÞg. The result

of the fault detection test (13) allows obtaining a set

of fault signatures wðkÞ ¼ ½w1ðkÞ;w2ðkÞ; . . . ;wnyðkÞ�,
where each fault indicator is given by:

wiðkÞ ¼
0 if yðkÞ 2 ½ŷðkÞ � r; ŷðkÞ þ r�
1 if yðkÞ 62 ½ŷðkÞ � r; ŷðkÞ þ r�

8<
:

(30)

Then, the binarized residuals are matched against

the fault signature denoted as M and presented in

Table 3. An element mi;j of M is equal to 1 if the

fault fj affects the computation of the residual ri; oth-

erwise mi;j ¼ 0. A column of M is known as a theo-

retical fault signature and indicates which residuals

are affected by a given fault.
The procedure accepted as standard by the FDI

community involves finding a matching between the

observed fault signature and one of the theoretical

fault signatures. However, this reasoning is not

appropriate for variables varying in the time but

bounded. Due to the uncertainty, when a fault is pre-

sent in the system, an undefined number of the resid-

uals affected by the fault can be found inconsistent,

mainly depending on the sensitivity of each residual

with respect to the fault and on the fault magnitude.

In other words, the observed fault signature will not

exactly match the theoretical signature of the present

fault. In this case, if the column-matching procedure

is used, then the particular fault will not be identified.

An appropriate reasoning should only consider the

residuals that are inconsistent when searching for

the fault (inconsistency is relevant, consistency is

not). A residual that is found inconsistent indicates

that one of the faults that affect the residual is acting

on the system. But the contrary is not true, if a

Table 2. Faults affecting benchmark system.

No Fault type Symbol Type

f1 Sensor Db1;m1 Fixed values

f2 Sensor Db2;m1 Gain factor

f3 Sensor Dwr;m1 Fixed values

f4 Sensor Dwr;m2 Gain factor

f5 Sensor Dwg;m1 Fixed values

f6 Sensor Dwg;m2 Gain factor

f7 Actuator DTg Offset

f8 Actuator Db(hydraulic) Dynamic change

f9 Actuator Db(Air in oil) Dynamic change

f10 System Dwg;Dwr Dynamic change

Table 3. Fault signature matrix.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

R1 � �
R2 � � � � � �
R3 � �
R4 � � � � � �
r5 �
r6 � �
r7 �
r8 � �
r9
r10
r11 �
r12 � �



residual is satisfied, it does not assure that none of the

associated faults is present. According to the estab-

lished terminology, the used algorithm must avoid

single-fault exoneration (which is implicit in the

column matching reasoning). Under single-fault

assumption, this can be easily achieved by taking

into account that the fault that is actually present in

the system has to affect all the residuals that have

been found inconsistent according to the observed

fault signature (if not, the single fault hypothesis

can not explain the observed behavior). Algorithm 2

summarizes an isolation procedure based on this idea.

Algorithm 2 fault detection and isolation

1: fault FALSE
2: k 0
3: while fault 6¼ TRUE do
4: k kþ 1
5: Obtain input-output data fuðkÞ; yðkÞg at time

instant k
6: Compute ŷðkÞ using (17)-(18) for each submodel

in residual expressions (29) with the parameters
adjusted with the parameter estimation algorithm
in Section 3.2

7: for i¼ 1 to ny do
8: if yiðkÞ 2 ½ŷiðkÞ � r; ŷiðkÞ þ r� then
9: wik ¼ 1
10: fault TRUE
11: else
12: wik ¼ 0
13: end if
14: end for
15: FC  ff 1; f 2; . . . ; f nf g
16: for i¼ 1 to ny do
17: if wik ¼ 1 then
18: for j¼ 1 to nf do
19: if mi;j ¼ 0 then
20: FC  FC � f j

21: end if
22: end for
23: end if
24: end for
25: end while
26: Fault candidate set FC

Fault tolerant control

Introduction

In terms of control, the wind turbine works in two

regions: At low wind speeds, in the partial load

region, the turbine is controlled to maximize the

power output that is achieved by adjusting the gener-

ator torque to obtain an optimum ratio between the

wind speed and the tip speed of the blades which is

considered in Kamal and Aitouche.31 At higher wind

speeds, in the full load region, the wind turbine is

controlled to reduce loads by producing a rated

power output at a constant rotor speed, which is

obtained by pitching the blades to adjust the efficien-

cy of the rotor.11 In this paper, the problem of control

by pitching the blade will be treated applying a con-

stant generator torque where the speed or a power PI

controller can be used depending on the operating

region. The LPV theory has already been proposed

for designing controller in non faulty case. But,

recently, it has also been used for FTC design.32–35

In this work, fault tolerance has been included in

the wind turbine control system by designing virtual

sensors and actuators using the LPV model of the

wind turbine. The goal of the FTC strategy, based

on virtual sensors/actuactors, is to hide the fault to

the controller to obtain the nominal property. When a

fault occurs, this approach is based on inserting a

block between the faulty plant and the nominal con-

troller to allow the controller to see the plant like is in

the non faulty case. This block can be a virtual actu-

ator or virtual sensor according to the fault type.

Using this method with virtual components, the nom-

inal controller is kept and only the faulty plant will be

reconfigured. In actuator faulty case, the new signal

control is obtained from the output of the nominal

controller considering the fault scenario. In case of

virtual sensors, the reconfiguration block uses the

faulty plant output as input and compute the fault

free one. This hiding approach have many

advantages:36

• Whatever the nominal regulator, this method can

be used.
• In the case of partial fault effect, using this design,

it is not necessary to redesign the controller.
• In the case of a human operator, this design

reduces its efforts and stress.

LPV virtual sensor/actuator

In the following, a simplified explanation of virtual

sensor and actuator is provided (for a more detailed

description, see Blanke et al.8)

Virtual actuator. From the conceptual point of view,

the idea is that by means of the virtual actuator

block, the transfer function of the faulty plant

behaves as in non-faulty situation:

GaðsÞGfðsÞ ¼ GnðsÞ (31)

where Ga, Gf, Gn are respectively the transfer function

of virtual actuator, faulty and nominal plant.
In case of considering the LPV model of the wind

turbine, the implementation should be done using the

state-space representation

_xðtÞ ¼ AðlÞxðtÞ þ BfðlÞuðtÞ (32)



(a)

(b)

(c)

Figure 2. Fault detection results. (a) Pitch measurement and estimation, (b) Error between real and desired signal.



where Bf ¼ BðlÞdiagðw1 . . .wnuÞ, wi is the effective-

ness of the ith actuator, wi 2 0; 1½ �.
If rank ðBfÞ¼ rank (B), the new control signal is

obtained by

uFTCðtÞ ¼ NðlÞunðtÞ (33)

where un is the output of the controller, NðlÞ ¼ Bþf B
with Bþf is the pseudo inverse of Bf.

Virtual sensor. Considering the output equation in

sensor fault case

_xfðtÞ ¼ AðlÞxfðtÞ þ BuðtÞ (34)

yfðtÞ ¼ CfðcÞxfðtÞ þ fyðtÞ (35)

yFTCðtÞ ¼ PðÞðyfðtÞ � fyðtÞÞ (36)

where Cf¼ diagðc1 . . . cnyÞC, ci is the effectiveness of

the ith sensor, ci 2 0; 1½ �.
If rank(CfðcÞ)¼ rank

C
Cf

� �
, the new signal is

obtained as follows.

yFTCðtÞ ¼ PðcÞðyfðtÞ � fyðtÞÞ (37)

where P ¼ CCþf with Cþf is the pseudo inverse of Cf.

Application to the wind turbine benchmark

To illustrate the use of the virtual actuator and sensor

FTC schemes, the case of the two fault scenarios pro-

posed in the wind turbine benchmark22 are used.

Actuator fault. In case of the pitch actuator fault sce-

nario proposed in the wind turbine benchmark,22 a

change in the parameters n and wn of (5) occurs.

(a)

(b)

Figure 3. System response in case of fault without FTC.



Then, the virtual actuator can be conceptually
designed according to (31) as follows

GaðsÞ ¼ Gf�1ðsÞGnðsÞ
¼ wn

2ðs2 þ 2n̂ðlÞŵnðlÞsþ ŵnðlÞ2Þ
ŵnðlÞ2ðs2 þ 2nwnsþ wn

2Þ
(38)

although the design using the LPV model will be done
using the state space representation of (5). Then, in
case of fault the control signal will be generated as
follows:

bFTCref ¼
wn

2ðs2 þ 2n̂ðlÞŵnðlÞsþ ŵnðlÞ2Þ
ŵnðlÞ2ðs2 þ 2nwnsþ wn

2Þ bref (39)

Figure 4. Residual in faulty case.



where n̂ðlÞ and ŵnðlÞ are respectively the estimated
damping ratio and natural frequency obtained by the
application of subspace identification method pre-
sented in Section 3.2 using the pressure as
scheduling variable and in this case two local
models are used.

Sensor fault. In the case of a sensor fault scenario pro-
posed in the wind turbine benchmark,22 the pitch
system input is modified as follows:

b1c ¼ b1ref þ b1f (40)

where

b1f ¼ b1 � 0:5ðb1m1 þ b1m2Þ (41)

b1ref is the output of the controller, b1 is the real
pitch angle, b1m1 and b1m2 are the measured pitch
angle with two different sensors.

In the case of the complete loss of the sensor, the
measurement issued from the faulty sensor is
neglected and it is replaced by the measurement
issued from the redundant sensor. In the case of par-
tial sensor fault, the virtual sensor, which compensates
the fault, generates a new control signal given by:

b1FTC ¼ b1ref þ b1f þ Db1 ¼ b1ref þ b1 � b1m2 (42)

then

Db1 ¼ 0:5ðb1m1 � b1m2Þ (43)

Integration with the FDI scheme. Algorithm 3 summa-
rizes the integration of the FDI and the FTC schemes.

Algorithm 3 FTC algorithm using virtual sensor/
actuator

1: Run the system with nominal controller.
2: If an actuator fault is detected and isolated using

Algorithm 2, activate the virtual actuator based
on (33) after estimating faulty parameters using
subspace identification method presented in
Section 3.2

3: If a sensor fault is detected and isolated using
Algorithm 2, activate the virtual sensor based
on (37) after estimating faulty parameters using
subspace identification method presented in
Section 3.2

3: Run the accommodated system.

Application results

The two fault scenarios already considered for pre-

senting the design of the virtual actuator and sensor

are used to illustrate the performance of the proposed

AFTC approach:

1. Fault scenario 1: Actuator pitch fault between

2735s and 2780s (case of fault f8 in Table 2).
2. Fault scenario 2: Sensor pitch fault between 2850s

and 2855s (case of fault f1 in Table 2).

The measured and the estimated pitch angle in these

fault scenarios, the residual calculated as difference

between the measured and the estimated pitch signal

and the fault indicator are presented in Figure 2.
In the faulty system case, using the nominal con-

troller already available in the wind turbine bench-

mark system, the desired and the real pitch angle

Figure 4. Continued



Figure 5. Observed fault signature. (a) Actuator fault indicator (f8), (b) Sensor fault indicator (f1).



Figure 5. Continued

(a)

(b)

Figure 6. Fault isolation. (a) Damping ratio, (b) Natural frequency



and the error signal calculated between the two signal
are given in Figure 3.

Figure 3 shows that the real pitch angle is far away
from the desired one at the time when the fault
occurs. To solve this problem a control reconfigura-
tion is required. Using Algorithm 3, the reconfigura-
tion constitutes the activation of virtual sensor or
actuator according to the information provided by
the FDI module. This FDI procedure requires the

residual signal in this case of fault. The activated
residuals are presented in Figure 4.

A residual evaluation unit is used to compare the
residuals with the threshold to generate the observed
fault signature presented in Figure 5 that allows the
isolation of the fault using the fault signature matrix
corresponding to the previous set of residuals pre-
sented in Table 3. The residuals are in rows and
the previous fault scenarios in columns.

Table 4. Comparison of some fault detection results.

No Required TD ATD TD1 TD2 TD3

F1 <10Ts Ts 3Ts 44Ts 6Ts

F6 <10Ts Ts 3Ts 22Ts 3Ts

F7 <3Ts Ts 3Ts 35Ts 3Ts

F8 <8Ts Ts 375Ts – 2Ts

F10 <50Ts Ts 3Ts NC 36Ts
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Figure 7. Parameters estimation. (a) Control angle, (b) Pitch angle, (c) Error with FTC.
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The fault indicators are presented in Figure 6.
The fault tolerance in the actuator fault scenario

requires identifying the fault damping ratio and nat-

ural frequency. Using the identification approach

described in Section 3, these parameters are obtained

and presented in Figure 7.
The new FTC signal in this fault scenario, the real

and the desired pitch angle and the error between the

two pitch angle are presented in Figure 8.

Comparison with other works

The FDI/FTC wind turbine benchmark used in this

work is largely treated in the literature as e.g. in lit-

erature.37–39

• In Sanchez et al.37 (ATD1), the majority of faults

are well detected except the actuator fault that is a

change in the pitch system dynamics (f8). However,

this fault is detected using the approach proposed

in this paper.
• In Sheibat-Othman et al.38 (ATD2), only f1, f6

and f7 are detected with a time larger than the

required one.
• In Zeng et al.39 (ATD3), all faults are detected but

for example f1 and f10 are detected after a large

time period which it is improved using the

approach proposed in this paper. This comparison

is summarized in Table 4.

In this table NC denotes not considered, ATD

means the time detection with the approach proposed

in this work and TD1,TD2,TD3 indicate the time

detection with the fault detection methods ATD1,

ATD2 and ATD3 proposed respectively in litera-

ture.37–39

Conclusion

In this paper, an integrated FDI/FTC approach for a

wind turbine benchmark has been proposed. FDI is

based on a robust fault detection approach combined

with a subspace LPV estimation algorithm. Fault iso-

lation is based on an algorithm that combines the

column/row matching of the observed fault signature

with the theoretical ones. FTC is addressed using vir-

tual sensors/actuators and subspace fault identifica-

tion. Satisfactory results have been obtained for both

FDI and the FTC in several fault scenarios proposed

in the considered wind turbine benchmark. In the case

of the pitch system, an actuator fault which corre-

sponds to dynamic change in the pitch parameters

and a sensor fault consisting of a fixed pitch angle

value. Future research is focused on the validating

of the fault tolerant control procedure of faults

using the second wind turbine benchmark that simu-

lates the wind turbine using a high fidelity simulator

(FAST).
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