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Abstract

In order to keep wind turbines connected and in operation at all times despite the occurrence of some faults, advanced
fault detection and accommodation schemes are required. To achieve this goal, this paper proposes to use the Linear
Parameter Varying approach to design an Active Fault Tolerant Control for wind turbines. This Active Fault Tolerant
Control is integrated with a Fault Detection and Isolation approach. Fault detection is based on a Linear Parameter
Varying interval predictor approach while fault isolation is based on analysing the residual fault signatures. To include
fault-tolerance in the control system (already available in the considered wind turbine case study based on the well
known SAFEPROCESS benchmark), the information of the Fault Detection and Isolation approach block is exploited and
it is used in the implementation of a virtual actuator and sensor scheme. The proposed Active Fault Tolerant Control is
evaluated using fault scenarios which are proposed in the wind turbine benchmark to assess its performance. Results

show the effectiveness of the proposed Active Fault Tolerant Control approach in faulty situation.
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Introduction

In the last years, wind turbines have become one of
the important renewable energy sources. However,
they can be affected by some fault scenarios which
can lead to unsatisfactory performance in many
works' ™ theses faults are proposed. To avoid these
consequences, fault tolerant control (FTC) strategies
should be applied to keep the wind turbine operation
and performance even under the case of faulty com-
ponents or instruments. The development of FTC
schemes for wind turbines has been already consid-
ered in the literature. The proposed approaches can
be divided in two groups: active and passive. The pas-
sive approach takes into account the faults during the
design of the control law’ by considering them as
uncertainties. This method is limited to small size
fault scenarios and generally the obtained perfor-
mance even in non-faulty scenarios is reduced.® This
makes that the active fault tolerant control approach,
that overcomes such limitations, has been largely
developed. Active Fault Tolerant Control (AFTC)

accommodates the fault using the information pro-
vided by a Fault Detection and Isolation (FDI)
block.”” Most of research in AFTC of wind turbines
has focused on additive sensor and actuator faults
using some type of observer scheme in fault detec-
tion.'” In case of parametric faults, it is necessary to
use some parameter estimation scheme that allows to
obtain the new parameters after the fault and
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accommodate/reconfigure the control loop accord-
ingly (see e.g., Simani and Castaldi'")

Regarding the application of FTC to wind turbines,
there are many references considering the application
FTC in generator'>'? and drive train subsystems.'*
There are less references regarding the application to
pitch subsystem despite it has an important role in
producing an optimal power. The occurrence of a
fault in this actuator causes a pitch position error
which can result in an insufficient torque.
Consequently, the power can not follow the reference
set-point. In this work, the proposed fault tolerant
method is applied to the pitch subsystem in the
faulty case. Most of the FTC schemes for wind tur-
bines have considered Linear Time Invariant (LTI)
models.!> However, wind turbines behave as nonlinear
systems with complex dynamics specially when con-
sidering the aerodynamic part. Thus, the use of LTI
models for designing FTC schemes for wind turbines
could be insufficient to obtain satisfactory results. To
overcome such limitations, recent FTC approaches
have been proposed to use directly a nonlinear
model'""'®!7 or some multiple-model scheme.':"?

Recently, Linear Parameter Varying (LPV) theory
has become a standard formalism?° for addressing the
problem of control of nonlinear systems using
pseudo-linear like methods. Many works have been
developed using this approach and are applied to
wind turbine systems. Wind turbines can be repre-
sented by an LPV model that is scheduled with
some variables that define the operating point. For
example, in Sloth et al.,® the LPV approach is used to
design a fault-tolerant gain-scheduling controller.

The contribution of this paper is to propose an inte-
grated FDI/FTC approach for wind turbines that
solves the problem of control accommodation in case
of actuator and sensor faults as the ones proposed in
Zhang,® Odgaard and Stoustrup®' and Laouti and
Othman* and EL Bakri and Boumhidi' where the
actuator faults are again not handled as well as the
sensor faults. It seems to be a general trend of these
solutions, which might indicate that the sensor faults in
the benchmark model are easier to accommodate than
the actuator faults. This approach combines LPV
modeling and identification, robust FDI based on
interval-based subspace approaches and virtual actu-
ator/sensor FTC techniques (see Figure 1). This
approach is applied to a wind turbine case study pro-
posed as a FDI/FTC benchmark in Odgaard et al.>

This paper is organized as follows: In System
description Section, the wind turbine benchmark
system is detailed. In Fault detection and isolation
Section, the fault diagnosis approach is presented
and illustrated using the pitch system. In Fault toler-
ant control Section, the FTC method based on virtual
sensor and actuator is described. Application results
Section deals with simulation experiments that illus-
trate the implementation of the proposed approach
using the proposed wind turbine benchmark and the
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Figure |. Principle of FTC scheme. (a) Pitch measurement
and estimation, (b) Pitch residual, (c) Fault indicator.

Table I. Wind turbine parameters.

Parameter Notation Value Unit
Viscous friction Bg 47,6 %
Torsion damping By 775.49 %
Friction coefficient B, 7.11 M';tg‘ $
Gear ratio N, 95
Torsion stiffness Ky 2.7 9 %
Efficiency of the

drive train Nt 0.97
Generator inertia Je 390 kg.m?
Rotor inertia Jr 55 e6 kg.m?
Time constant Olge 0.05 e-3
Efficiency of

the generator Ngc 0.98
Radius of blades R 57.5 m?
Air density 0 1.225 X
Damping ratio ¢ 0.6 =d
Natural frequency N .11 rd

comparison with existing results. Finally, Conclusion
Section gives some concluding remarks.

System description

As discussed in the introduction, the purpose of this
paper is to develop an integrated FDI/FTC scheme
based on the LPV approach for wind turbines and
illustrate it applied to the benchmark case study pro-
posed in Odgaard and Stoustrup.'® The parameters of
this case of wind turbine in nominal case are given in
the Table 1.7

The model of the considered wind turbine is com-
posed of four subsystems: Aerodynamics, Pitch,
Drive train and Generator which are described in
the following subsections.

Aerodynamics

The wind turbine aerodynamics is modeled as a
torque acting on the blades. This torque, T,, is
given by:*?



_ pmRIC,(00), (1) (1)
6
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where A is the tip speed ratio, p is the density of the
air, R is the radius of blades, v, is the wind speed, f; is
the angle of the pitch of the blade j and C, is the
coefficient of the torque.

Drive train

The drive train is modeled with a flexible two mass
system and is used to increase the speed from rotor to
generator. The model of the drive train is given as:°

W, (1) w, (1)
We(t) | = Aa| we(t) | + By ;:’ <(Zl)) (2)
0(1) 0a(1) ¢

where w,,w,,04,T,, T, are respectively the rotor speed,
the generator speed, the torsion angle, the rotor
and generator torque.The system matrices in (2) are

given by

[ Bu+B Bu R
J, NgJ, J,
nd[ + Bdl B
T an Ps
Ag= N4 Bar Ng’ N4 Kar and
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— 0
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Generator

The dynamics of the converter is modeled by a first
order transfer function®?

Tg(S) _ Otgc (3)
Tro(s) s+ o

The generator produces a power which is given by

Pg(l) = ”gcwg(t) Tg(t) “4)

Pitch

The hydraulic pitch in this benchmark wind
turbine is a piston servo mechanism which can be
modeled by a second order transfer function as
follows:*>

Bls) _ ,
B.(s) s+ 2lwys + »?

)

where f5, corresponds to the reference values of pitch
angles, w, and & are respectively the natural frequen-
cy and the damping ratio. These parameters are var-
iable with hydraulic pressure P.**> Then, the
representation of the pitch system can be represented
by means of the following LPV model which com-
bine the normal and the faulty operation mode
according to Sloth et al.® using P as the scheduling
variable u:

x(k +1) = A(w)x(k) + B(uu(k) (6)
y(k) = Cx(k) (7)
with
aw=| o and
—Tewn(p)  —2T.L()wn(p) + 1

B(p) =

0
Tewy (1)

with 7,=0.001, The state vector includes the pitch
angular speed and the position and the output mea-
surement is the angle.

Fault detection and isolation

In the proposed AFTC presented in Figure 1, the
FDI module is based on passive robust approach
that combines the LPV subspace estimation
approach proposed in Van Willem and Verhagen®*
and the interval predictor approach introduced in
Puig.”’

Interval predictor approach

This approach is used to consider the modelling
uncertainty and allow to introduce robustness in the
fault detection block. The uncertainty in the model is
assumed to be concentrated in the parameters that are
assumed unknown but bounded by a set ® that is
described by a zonotope:

O =0"®HB" = {0° + Hz: z € B"} )



where 0° is the nominal model, H is matrix uncer-
tainty shape, B” is a unitary box composed of n uni-
tary interval vectors (B=[—1,1]) and @ is the
Minkowski sum. In this paper, a particular parame-
ter set ® which is bounded by an interval box is used:

© = [01,01] x ... [0,,0:] x ... [0,,,, On,] ©)

where 0, = 0? —J; and 0; = 0? + A; with 4; > 0 and
i=1,...,n9. The interval box can be represented by
means of a zonotope with center 0° and H equal to an
ng X ng diagonal matrix:

0, +01 0,+02 0 +9n>
0 1 1% 2T Y g 270
H= diag(il,;u27~ .. 7)“71()) (11)

The model can be described by the following
regressor form:

y(k) = ¢(k)0(k) + e(k) (12)

where ¢(k) is the regressor vector that is function of
inputs u(k) and outputs y(k), (k) € © is the param-
eter vector, ® is the set of parameters and e(k) is the
noise term assumed unknown but bounded |e(k)| < 0.

Using this approach, the measured data in fault-
free case are covered by the interval predicted output.

v(k) € [p(k) — 0, 5(k) + o] (13)
where

(k) = 7°(k) — || (k) H]| (14)

(k) = 50 (k) + || p k) HIJ, (15)

and 7°(k) is the prediction with nominal parameters
with 0° =[0,,0,,. .., 9,10]T obtained using the param-
eter estimation method presented here after

(k) = p(k)6" (16)

Estimation approach

Problem formulation. to estimate the nominal LPV
parameters in (8) using the subspace method pro-
posed in Van Willem and Verhagen®* this model is
expressed as follows:

x4 1) = S WO (AD (k) + BOuk) + Ke(k))

(17)

(k) = Cx(k) + Du(k) + e(k) (18)

where u(k) € R", x(k) € R",y(k) € R' are the input,
state and output vectors over time k= {l,..., N}
and the noise process e(k) is a zero-mean white
sequence and m is the number of scheduling parame-
ters (or local models) that are supposed to be measur-
able in real time. The vector of scheduling parameters
is defined as follows:

T
u(k) = [1LaO ), " (k)

Then, equations (17) and (18) can be rewritten in
the predictor form as:

m

x(k+ 1) =31 () (A" x(k) + B ulk) + KO y(k)

i=1

(19)

Problem solution. Defining z(k) = |u(k)”, y(k)T]T, X =
x(p+1),...,x(N)] and

2 (k) =

_z(k—i—lp— 1) |

where p is a past window length. By introducing the
matrix

Ppje=plk+p—1)®...@ uk) @ Il

we can define

N

Py 1kt

0 P jicsp-1

Then, the matrices U, Y and Z are defined as
follows

U=[ulp+1),...,u(N) (20)



Y=[pp+1),...,»(N)] (21)

Z = [ME”(I),...,N’I’V7P+IE”(N—1J+ 1)] (22)

The controllability matrix can be expressed as:

K =, 0]
with

h=[8".. 5"
and

b=[a" 0, A"
with BY = (B, k)]

If the matrix [Z7, U”] has full row rank, we can
estimate the matrices Cx” and D by solving the next
linear regression problem?®

g{lpllll)HY Cx'Z — DU||% (23)
where || - || is the Frobenius norm.As in the case of

LTI system identification, this problem can be solved
for the considered type of LPV systems by using tra-
ditional least square methods.?’

According to literature,”®* if the matrix
[ZT U] has full row rank, the equation (23) has
a unique solution and is given by

Z

[cw D] =Y[Z" UT]< .

7 UT])I

24)

When p is large, the solution is computed by using
the SVD of the matrix:

> o
:[U UL] m
0 0

VT
Vi

Z

I (25)

The solution obtained when minimizing the norm
is given by:

[ce D] =vVy "WT (26)

To evaluate the performance of the identified
system, we use the Variance-Accounted-For (VAF)
value which is defined as:

VAF(y(k), 7(k))

_ var(y(k) — y(k)) 0
_max{l _Var(y(k))’o} x 100%

27)

where var() denotes the variance, y(k) and y(k) are
respectively the estimated and real system outputs.

Parameter uncertainty estimation

Once the nominal LPV parameters in (8) have been
obtained using the subspace method recalled in pre-
vious section, to characterize the parameter set O,
defined in (9) consistent with the data collected in a
fault-free scenario, the bounds (11) should be
obtained. The uncertain parameter estimation algo-
rithm proceeds by solving the following optimization
problem:

subjegt to :
¥ilk) € [7,06) = 01,3,(K) +
3(k) = 3°(k) + [|p(R)HI|, (28)
3 (k) = 3°(k) — [l (k) H]l,

To summarize, the proposed uncertain LPV sub-
space identification approach is described in
Algorithm 1.

Algorithm 1 LPV uncertain parameter estimation

1: Create the matrices U and Z using (20).

2: Obtain the SVD decomposition (25) of U and Z.

3: Solve the linear problem in (23) using (26) and
obtain nominal parameters 6

4: Estimate the parameter uncertain bounds solving
the optimization problem (28)

Fault isolation scheme

The fault isolation will be designed considering the set
of faults proposed in the wind turbine benchmark
case study’® that are described in the following
taking into account their type:

e Sensor faults. The first sensor fault scenario con-
sidered affects the pitch position measurements,
which is denoted as Af3,,. The second fault scenario
corresponds to the rotor speed measurement and is
denoted as Aw, ,, and Aw, ,,. These faults are either
electrical or mechanical faults, and can be
classified as a fixed value or a gain factor on the
measurements. These sensor faults cause a false
measurement that affects the performance of the
control law.

e Actuator faults. Actuator faults may occur in the
pitch actuator or in the converter. In the first sub-
system, faults results in a change of dynamics
either due to dropped pressure or high air content



Table 2. Faults affecting benchmark system.

No Fault type Symbol Type

fi Sensor ABy i Fixed values

f2 Sensor ABy i Gain factor

f3 Sensor AWy mi Fixed values

fa Sensor AWy my Gain factor

fs Sensor Awg mi Fixed values

fe Sensor AWy mn Gain factor

f7 Actuator AT, Offset

fs Actuator Ap(hydraulic) Dynamic change
fo Actuator AB(Air in oil) Dynamic change
fio System Awg, Aw, Dynamic change

in the oil. These faults are denoted as Af. In the
second subsystem, faults manifests through an
additive offset. The cause of this fault is an offset
in the internal converter control loop. These faults
are denoted as AT,. Faults in actuator of the wind
turbine caused slow control actions.

e System faults. The considered system faults occur
in the drive train, where the friction changes with
time. These faults are denoted as Aw, and Aw,.
This type of fault is not that severe, but it is an
indication of the wear of the drive train, which
finally results in its total breakdown. This system
fault increases the level of drive train vibrations.

All these faults are summarized and listed in
Table 2. Since the control system can be sensitive to
different type of faults, a fault isolation is needed to
localize the type of fault occurring in the wind
turbine.

Using the sensors available in the wind turbine
benchmark and the model presented in Section 2,
the following residuals can be obtained applying
structural analysis and the perfect matching
algorithm®

ri(k) = Wi (k) = wema (k)

ra(k) = W (k) = w o (K)

r3(k) = wemi (k) — wema (k)

ra(k) = W (k) — w g (k)

rs(k) = Brm (k) = Bim (k)

ro(k) = Bina (k) = B 1o (k) -
r7(k) = Bopm (k) = Bapa (k)

rs(k) = Bana (k) = B 2o (K)

ro(k) = By (k) — B3 (k)

I"](](k) = ﬁ3m2(k) - B 31172(k)
I (k) - Tgm (k) - % g(k)
r12(k) = Pou(k) — nywama (k) Tgm (k)

Table 3. Fault signature matrix.

i o 6 fa £ fo fr fo o fio

R, X X

R X X

X

I's
re X X
rz X

rs

o

ry X

ra X X

Then, fault detection will be based on checking if
(13) is satisfied. In case that, it is not satisfied a fault
can be indicated. Otherwise, nothing can be said. It is
carried out on the basis of fault signatures, generated
by the detection module, and their relation with all
the considered faults, f(k) = {f,(k),f,(k)}. The result
of the fault detection test (13) allows obtaining a set

of fault signatures (k) = [, (k), k), ... . (k)],
where each fault indicator is given by: V
(k) = 0 if y(k)epk)—a,p(k)+d]
T i (k) 20K — 0 3K + o]
(30)

Then, the binarized residuals are matched against
the fault signature denoted as M and presented in
Table 3. An element m;; of M is equal to 1 if the
fault / affects the computation of the residual r; oth-
erwise m;; = 0. A column of M is known as a theo-
retical fault signature and indicates which residuals
are affected by a given fault.

The procedure accepted as standard by the FDI
community involves finding a matching between the
observed fault signature and one of the theoretical
fault signatures. However, this reasoning is not
appropriate for variables varying in the time but
bounded. Due to the uncertainty, when a fault is pre-
sent in the system, an undefined number of the resid-
uals affected by the fault can be found inconsistent,
mainly depending on the sensitivity of each residual
with respect to the fault and on the fault magnitude.
In other words, the observed fault signature will not
exactly match the theoretical signature of the present
fault. In this case, if the column-matching procedure
is used, then the particular fault will not be identified.
An appropriate reasoning should only consider the
residuals that are inconsistent when searching for
the fault (inconsistency is relevant, consistency is
not). A residual that is found inconsistent indicates
that one of the faults that affect the residual is acting
on the system. But the contrary is not true, if a



residual is satisfied, it does not assure that none of the
associated faults is present. According to the estab-
lished terminology, the used algorithm must avoid
single-fault exoneration (which is implicit in the
column matching reasoning). Under single-fault
assumption, this can be easily achieved by taking
into account that the fault that is actually present in
the system has to affect all the residuals that have
been found inconsistent according to the observed
fault signature (if not, the single fault hypothesis
can not explain the observed behavior). Algorithm 2
summarizes an isolation procedure based on this idea.

Algorithm 2 fault detection and isolation

1: fault  FALSE

2:k 0

3: while fault # TRUE do

4: k k+1

5:  Obtain input-output data {u(k),y(k)} at time
instant k

6: Compute y(k) using (17)-(18) for each submodel
in residual expressions (29) with the parameters
adjusted with the parameter estimation algorithm
in Section 3.2

7. for i=1 to n, do

8: if yi(k) € [yi(k) — a,yi(k) 4+ o] then

9: Yik =1

10: fault  TRUE
11: else

12: Yk =0

13: end if

14: end for

15: }"CH{f‘,f{...,f”f}
16: fori=1 to n, do
17: if Y« = 1 then

18: for j=1 to nydo
19: if m;; = 0 then
20: FC—FC—f
21: end if

22: end for

23: end if

24: end for

25: end while
26: Fault candidate set FC

Fault tolerant control

Introduction

In terms of control, the wind turbine works in two
regions: At low wind speeds, in the partial load
region, the turbine is controlled to maximize the
power output that is achieved by adjusting the gener-
ator torque to obtain an optimum ratio between the
wind speed and the tip speed of the blades which is
considered in Kamal and Aitouche.®' At higher wind
speeds, in the full load region, the wind turbine is
controlled to reduce loads by producing a rated

power output at a constant rotor speed, which is
obtained by pitching the blades to adjust the efficien-
cy of the rotor."" In this paper, the problem of control
by pitching the blade will be treated applying a con-
stant generator torque where the speed or a power PI
controller can be used depending on the operating
region. The LPV theory has already been proposed
for designing controller in non faulty case. But,
recently, it has also been used for FTC design.*3°

In this work, fault tolerance has been included in
the wind turbine control system by designing virtual
sensors and actuators using the LPV model of the
wind turbine. The goal of the FTC strategy, based
on virtual sensors/actuactors, is to hide the fault to
the controller to obtain the nominal property. When a
fault occurs, this approach is based on inserting a
block between the faulty plant and the nominal con-
troller to allow the controller to see the plant like is in
the non faulty case. This block can be a virtual actu-
ator or virtual sensor according to the fault type.
Using this method with virtual components, the nom-
inal controller is kept and only the faulty plant will be
reconfigured. In actuator faulty case, the new signal
control is obtained from the output of the nominal
controller considering the fault scenario. In case of
virtual sensors, the reconfiguration block uses the
faulty plant output as input and compute the fault
free one. This hiding approach have many
advantages:*°

e Whatever the nominal regulator, this method can
be used.

e In the case of partial fault effect, using this design,
it is not necessary to redesign the controller.

e In the case of a human operator, this design
reduces its efforts and stress.

LPV virtual sensor/actuator

In the following, a simplified explanation of virtual
sensor and actuator is provided (for a more detailed
description, see Blanke et al.®)

Virtual actuator. From the conceptual point of view,
the idea is that by means of the virtual actuator
block, the transfer function of the faulty plant
behaves as in non-faulty situation:

Gu(s5)Gy(s) = Gu(s) (3D

where G,, G, G, are respectively the transfer function
of virtual actuator, faulty and nominal plant.

In case of considering the LPV model of the wind
turbine, the implementation should be done using the
state-space representation

(1) = A(0)x(1) + Biwu() (32)
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Figure 2. Fault detection results. (a) Pitch measurement and estimation, (b) Error between real and desired signal.




@ : . ~

Pitch angle(deg)

T T T T 1

------- Real
— Desired| |

2700 2720 2740 2760

(b) 6 T T T T

2780 2800 2820 2840 2860
Time(s)

Error(deg)

1< .
I
A

f |

T T T T 1

-3l i i i
2700 2720 2740 2760

2780 2800 2820 2840 2860
Time(s)
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where By = B(u)diag(y, ... ¥,,), ¥; is the effective-
ness of the i actuator, y, € [0, 1].

If rank (By) =rank (B), the new control signal is
obtained by

urrc (1) = N(p)un(1) (33)

where u, is the output of the controller, N(u) = B}’B
with B} is the pseudo inverse of By.

Virtual sensor. Considering the output equation in
sensor fault case

Xp(1) = A(w)xp(1) + Bu(?) (34)
(1) = Cr(y)xp(t) +£,(1) (35)
yrre(t) = PO (1) — f3(1)) (36)

where Cy=diag(y; ...7,,)C, 7; is the effectiveness of
the i sensor, y; € [0,1]. c

If rank(C(y))= rank( C-)’ the new signal is
obtained as follows. s

yrre(t) = P(y)(ve(t) — £,(1)) (37)

where P = CC/ with C; is the pseudo inverse of Cy.

Application to the wind turbine benchmark

To illustrate the use of the virtual actuator and sensor
FTC schemes, the case of the two fault scenarios pro-
posed in the wind turbine benchmark® are used.

Actuator fault. In case of the pitch actuator fault sce-
nario proposed in the wind turbine benchmark,” a
change in the parameters ¢ and w, of (5) occurs.
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Figure 4. Residual in faulty case.

Then, the virtual actuator can be conceptually
designed according to (31) as follows

Gu(s) = G (As)G,, (s)
w2 (87 4 28 () ()5 + 0 (1)°)

(1) (52 + 28w + w,?)

(38)

although the design using the LPV model will be done
using the state space representation of (5). Then, in
case of fault the control signal will be generated as
follows:

grre _ (s £ 28 (R in(p)s + a(w)”)
ref Wn(,u)z(s2 + 28wps + wy?)

ﬂref (39)
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Figure 4. Continued

where &(u) and W, (u) are respectively the estimated
damping ratio and natural frequency obtained by the
application of subspace identification method pre-
sented in Section 3.2 wusing the pressure as
scheduling variable and in this case two local
models are used.

Sensor fault. In the case of a sensor fault scenario pro-
posed in the wind turbine benchmark,?” the pitch
system input is modified as follows:

Bic = Birer + Biy (40)
where
Bir= B = 0-5(Brpm + Bimz) 41)

Birer 1s the output of the controller, 8 is the real
pitch angle, f,,; and p,,, are the measured pitch
angle with two different sensors.

In the case of the complete loss of the sensor, the
measurement issued from the faulty sensor is
neglected and it is replaced by the measurement
issued from the redundant sensor. In the case of par-
tial sensor fault, the virtual sensor, which compensates
the fault, generates a new control signal given by:

Birre = Birer + Bip+ AB1 = Bryer + B — Bimz~ (42)
then

Aﬁl = 0'5(:81»11 - ﬁlmZ) (43)

Integration with the FDI scheme. Algorithm 3 summa-
rizes the integration of the FDI and the FTC schemes.

Algorithm 3 FTC algorithm using virtual sensor/
actuator

1: Run the system with nominal controller.

2: If an actuator fault is detected and isolated using
Algorithm 2, activate the virtual actuator based
on (33) after estimating faulty parameters using
subspace identification method presented in
Section 3.2

3: If a sensor fault is detected and isolated using
Algorithm 2, activate the virtual sensor based
on (37) after estimating faulty parameters using
subspace identification method presented in
Section 3.2

3:  Run the accommodated system.

Application results

The two fault scenarios already considered for pre-
senting the design of the virtual actuator and sensor
are used to illustrate the performance of the proposed
AFTC approach:

1. Fault scenario 1: Actuator pitch fault between
2735s and 2780s (case of fault fg in Table 2).

2. Fault scenario 2: Sensor pitch fault between 2850s
and 2855s (case of fault f in Table 2).

The measured and the estimated pitch angle in these
fault scenarios, the residual calculated as difference
between the measured and the estimated pitch signal
and the fault indicator are presented in Figure 2.

In the faulty system case, using the nominal con-
troller already available in the wind turbine bench-
mark system, the desired and the real pitch angle



08 )
07r N

s2

04f ' : 1

20 2600 260 2700 270 2800 280 200
Time(s)

08 y
07 §

s4

04 ' : 1

20 2600 260 2700 270 2800 280 200
Time(s)

08f -
07 .
06 ' : -

04f ]

02r 1
0 L .

2700 2720 2740 2760 2780 2800 2820 2840 2860
Time(s)

Figure 5. Observed fault signature. (a) Actuator fault indicator (fg), (b) Sensor fault indicator (f}).



08

07
06

s6

02F

20 2600 260 2700 270
Time(s)

2800

280

Figure 5. Continued

06

0 Il Il Il Il Il
2700 2720 2740 2760 2780 2800
Time(s)

2820

2840

2860

2700 2720 2740 2760 2780 2800
Time(s)

2820

2840

2860

Figure 6. Fault isolation. (a) Damping ratio, (b) Natural frequency




Table 4. Comparison of some fault detection results.

No Required TD ATD TDI TD2 TD3
Fi <I10Ts Ts 3Ts 44Ts 6Ts
Fe <I10Ts Ts 3Ts 22Ts 3Ts
F7 <3Ts Ts 3Ts 35Ts 3Ts
Fg <8Ts Ts 375Ts - 2Ts
Fio <50Ts Ts 3Ts NC 36Ts
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Figure 7. Parameters estimation. (a) Control angle, (b) Pitch angle, (c) Error with FTC.

and the error signal calculated between the two signal
are given in Figure 3.

Figure 3 shows that the real pitch angle is far away
from the desired one at the time when the fault
occurs. To solve this problem a control reconfigura-
tion is required. Using Algorithm 3, the reconfigura-
tion constitutes the activation of virtual sensor or
actuator according to the information provided by
the FDI module. This FDI procedure requires the

residual signal in this case of fault. The activated
residuals are presented in Figure 4.

A residual evaluation unit is used to compare the
residuals with the threshold to generate the observed
fault signature presented in Figure 5 that allows the
isolation of the fault using the fault signature matrix
corresponding to the previous set of residuals pre-
sented in Table 3. The residuals are in rows and
the previous fault scenarios in columns.
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The fault indicators are presented in Figure 6.

The fault tolerance in the actuator fault scenario
requires identifying the fault damping ratio and nat-
ural frequency. Using the identification approach
described in Section 3, these parameters are obtained
and presented in Figure 7.

The new FTC signal in this fault scenario, the real
and the desired pitch angle and the error between the
two pitch angle are presented in Figure 8.

Comparison with other works

The FDI/FTC wind turbine benchmark used in this
work is largely treated in the literature as e.g. in lit-
erature.’’ >’

e In Sanchez et al.*’ (ATDI), the majority of faults
are well detected except the actuator fault that is a
change in the pitch system dynamics (fg). However,
this fault is detected using the approach proposed
in this paper.

e In Sheibat-Othman et al.>® (ATD2), only fi, f¢
and f; are detected with a time larger than the
required one.

e In Zeng et al.”” (ATD3), all faults are detected but
for example f; and fjo are detected after a large
time period which it is improved using the
approach proposed in this paper. This comparison
is summarized in Table 4.

In this table NC denotes not considered, ATD
means the time detection with the approach proposed
in this work and 7T'D1,T7D2,TD3 indicate the time
detection with the fault detection methods ATDI,
ATD2 and ATD3 proposed respectively in litera-
ture.’”%°

Conclusion

In this paper, an integrated FDI/FTC approach for a
wind turbine benchmark has been proposed. FDI is
based on a robust fault detection approach combined
with a subspace LPV estimation algorithm. Fault iso-
lation is based on an algorithm that combines the
column/row matching of the observed fault signature
with the theoretical ones. FTC is addressed using vir-
tual sensors/actuators and subspace fault identifica-
tion. Satisfactory results have been obtained for both
FDI and the FTC in several fault scenarios proposed
in the considered wind turbine benchmark. In the case
of the pitch system, an actuator fault which corre-
sponds to dynamic change in the pitch parameters
and a sensor fault consisting of a fixed pitch angle
value. Future research is focused on the validating
of the fault tolerant control procedure of faults
using the second wind turbine benchmark that simu-
lates the wind turbine using a high fidelity simulator
(FAST).
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