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Abstract

This paper presents a methodology to detect and locate water leaks in

pipelines by using artificial neural networks (ANN) techniques and online mea-

surements of pressure and flow rate. Contrary to reported works in the liter-

ature, the proposed method estimates the friction factor of the pipe and uses

this information as an input to compute the leak position. A combination of

experimental and numerical data was used to enrich the data-training set for the

ANN. Various leak scenarios were considered to characterize pressure losses and

their differentials in different sections of the pipeline. Finally, the algorithm

was tested experimentally in a pilot plant, and the results demonstrate good

performance and the applicability of the proposed method.
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1. Introduction

Pipeline networks are used to transport different fluids like water, hydrocar-

bons, oil, natural gas, among others. Like any other liquid distribution system,

pipelines are subject to factors that may cause leaks, e.g. corrosion, aging,

installation failures, natural events, anthropogenic activities or environmental5

factors. The application of corrective plus preventive maintenance would allow

the reduction of leakage repair and costs assigned to repairs (Carnero & Gómez,

2018). However, other factors such as fluid theft, external blows to the pipeline,

hydraulic shocks, among others, cannot be prevented with maintenance, and

online monitoring systems are required to detect and locate leaks. Leaks cause10

damage in the infrastructure, economic losses, environmental contamination,

and in some cases (as in hydrocarbons leaks), it represents health risks and

may cause human losses (Olivera-Villaseñor & Rodŕıguez-Castellanos, 2012).

Therefore, the studies dedicated to leak detection justify their relevance from a

scientific, technological and social perspective.15

The aim of an automated leak detection system is to locate, as quickly as

possible, the presence and location of leaks with a minimum of instrumentation

and cost. The main idea in computer-based methods based on analytical redun-

dancy through the use of models to calculate mass balance, estimate parameters

of the pipeline, such as pressure, flow rates, roughness and friction factor, in or-20

der to recognize anomalies that indicate a fluid loss (Datta & Sarkar, 2016).

In general, computer-based methods for leak location in pipelines, assume

that the quasi-static friction is constant, however, this is not true (Rojas et al.,

2018) as this parameter changes with time. An accurate value of the friction

factor would improve the performance of leak detection methodologies. In this25

sense, some authors have proposed leak localization schemes based on the com-

plementary use of quasi-static friction along with other variables or the estima-

tion of parameters; or even explicitly based on the nearly static friction values

before and after the occurrence of the leak. For example, in Reddy et al. (2011),
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the methodology implemented uses an efficient state estimation technique based30

on a transfer function model, from which the friction factor is calculated recur-

sively. Another proposed solution is to use filters for the estimation of the state,

e.g. in Arifin et al. (2015) a particle filter was used, it considers that the fric-

tion factor changes with respect to the load loss profile after a leak appears.

In addition, an Extended Kalman Filter (EKF) was also used to detect and35

locate leaks, incorporating differential equations based on the dynamic model

of the pipeline. Here, the friction factor is a function of the flow rate and is

determined iteratively through the use of the Swamee-Jain equation (Delgado-

Aguiñaga et al., 2016; Verde & Rojas, 2017; Santos-Ruiz et al., 2018a; Rojas &

Verde, 2020).40

An aspect to be highlighted on the existing approaches, that take into ac-

count the quasi-static friction, is that they are effective. However, they require

the implementation of sophisticated methodologies for its estimation. Moreover,

they are often based on highly accurate analytical models and design, e.g. so-

phisticated observers which are useful only for a limited number of leak scenarios45

(Datta et al., 2018; Torres et al., 2020). Then, model-based methods require

precise adjustment in the estimation and measurement of the model parameters.

On the other hand, data-driven methods have proven to present higher accu-

racy and performance in detecting leaks due to the fact that these methods are

based on dynamic behavior instead of mathematical equations. In this sense,50

data-based approaches as artificial neural networks become attractive.

Artificial neural networks (ANNs) are data-driven techniques used for fault

diagnosis. ANNs have recently been used for modeling and prediction of ther-

mophysical properties in nanofluids such as viscosity using experimental data

(Hemmat Esfe & Sadati Tilebon, 2018a,b, 2020). Some authors have worked55

with ANNs for monitoring and diagnose pipes and hydraulic installations, e.g. a

time series neural network was presented by Mounce et al. (2002) for leak detec-

tion using sensor measurement data to build an empirical model. In Salvatore

et al. (2004), a leak detection system was proposed to determine the size and

position of the leaks of hazardous materials in approximately 100 seconds. A60
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combination of grouping and classification tools for leak detection was proposed

in da Silva et al. (2005) and Santos et al. (2013), where n neuro-fuzzy systems

were used in gas pipelines.

More recently, in Leu & Bui (2016), a Bayesian learning algorithm to maxi-

mize the accuracy of leak predictions was proposed, this method also indicates65

the most critical factors that affect water leaks. The authors in Zadkarami et al.

(2016) proposed a technique based on a multilayer perceptron neural network

classifier (MLPNN) which was improved in Zadkarami et al. (2017) by adding

a Dempster-Shafer fusion technique. In both cases, numerical simulations were

performed to test the algorithms to the first 20 [km] of the Golkhari pipeline in70

the south of Iran. A similar MLPNN was presented in Gómez-Camperos et al.

(2019), the authors ran experiments in a pipeline for the detection of leaks,

however, leak location was not performed. In Jia et al. (2018) advanced self-

developed pressure-drop sensors in combination with a backpropagation ANN

were developed for leak location. However, this method requires the installa-75

tion of a minimum number of sensors along the pipe (not only at the ends). In

Pulido et al. (2019) a state-space neural network and model-decomposition was

presented, it was capable to detect small leaks, even the ones that were unde-

tected by the plant operators; the main drawback is that the proposed method

demonstrated to be very sensitive causing false alarms. More complex ANNs80

approaches can be found in the literature for leak diagnosis using convolutional

neural networks in combination with a support vector machine (Kang et al.,

2018), spline-local mean decomposition (Zhou et al., 2019), or Bayesian reason-

ing (Javadiha et al., 2019) but they are intended for pipe networks rather than

pipelines.85

The methods discussed here are concentrated in Table 1. Detection efficiency

presented in terms of higher accuracy and lesser error is calculated with the

root mean square, while the efficiency of classification methods are calculated

by correct classification rate (CCR).
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Table 1: Recent studies on leak diagnosis using neural networks

.

Reference Data System ANN approach Efficiency

Leu & Bui

(2016)

Pressure Water network

model

Bayesian network learning 84% accuracy

Zadkarami

et al. (2016)

Pressure

and flow

Oil pipeline

(simulated)

Multi-layer perceptron neural network CCR 92%

Zadkarami

et al. (2017)

Pressure

and flow

Oil pipeline

(simulated)

Multi-layer perceptron neural network

classifiers fused by Dempster–Shafer

CCR 95%

Gómez-

Camperos

et al. (2019)

Flow Water pipeline

(experimental)

Multi-layer perceptron neural network Leak detection

alert

Jia et al.

(2018)

Pressure Water pipeline

(experimental)

Backpropagation neural network 1.01% error

Pulido et al.

(2019)

Pressure Steam plant

(experimental)

State-space neural networks and model-

decomposition

CCR 85.7 %

Kang et al.

(2018)

Pressure Water network

(experimental)

Convolutional neural network and a

support vector machine

99.3% accuracy

Zhou et al.

(2019)

Pressure Water network

(simulated)

Convolutional neural network and

spline-local mean decomposition

92.5% accuracy

Javadiha

et al. (2019)

Pressure Water network

(simulated)

Convolutional neural network and

Bayesian reasoning

87.8% accuracy

Concerning all of these proposals, one can find that most of the implemen-90

tations are evaluated in numerical simulation scenarios; and when applied to

physical pipelines, the evaluation scenarios to test an ANN are limited. One of

the drawbacks about ANNs for fault diagnosis purposes is the lack of enough

data for its adequate training. For example, in order to train an ANN for leak

location in pipelines it is desirable to have enough data for every possible sce-95

nario: many leak locations, several input-output pressure conditions, among

others. Nevertheless, in a physical pipeline, this may not be possible to obtain

due to the impact in damages and costs associated with all those experiments.

Then, it is desirable to account with a numerical simulator, which allows the

generation of as many as possible scenarios to get the required data for training100

the ANN used for leak location. Nevertheless, a set of experimental data are

also desirable in order to validate the performance of this ANN; without this

stage, a non-convincing conclusion can be given with regard to any leak local-
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ization scheme based on ANNs. Zaman et al. (2020) highlights that combined

methods are more efficient in terms of higher accuracy and lesser error.105

This work proposes the use of an ANN for leak localization (ANN-4LL) in

pipelines. Given that the ANN-4LL makes use of friction factors, these must be

continuously calculated. It is known that the friction factor is defined implicitly

employing the well-known Colebrook equation, whose solution is often based

on iterative techniques which utilize an essential amount of time and compu-110

tational burden. But in the context of this work, a highly precise, fast, and

straightforward solution method is needed. Then, the proposal made by Brkić

& Ćojbašić (2016) was used entirely, where the authors design a feed-forward

back-propagation network allowing the estimation of this important parameter

quickly and efficiently, avoiding its recalculation. Then, a combination of ANNs115

is used: two for the friction factor estimation (ANN-4FFE), one for the inlet

friction factor estimation and one for outlet; and one ANN for leak location

(ANN-4LL). As a result, a robust diagnosis method was obtained capable to

detect leaks at the time of appearance and estimate the leak locations with an

average percentage error of 0.629 %. The method’s performance was evaluated120

experimentally in a pipeline pilot-plant instrumented with industrial pressure

and flow sensors. The main contributions can be summarized as follows:

• An approach for leak location using a combination of ANNs with a cascade-

forward back-propagation structure; where the first ANNs allows for es-

timating the friction factor fast and efficiently, and then, in combination125

with the second ANN, the leak can be located accurately using measures

of pressures and flows at the ends of the pipe.

• The ANN was completely trained with data generated from an exhaus-

tive set of numerical experiments carried out in a previously validated

simulator of the pipeline case of study.130

• The proposed method was evaluated on the real pipeline pilot plant, using

data generated from experiments for different leak locations and operating

conditions, outperforming the methods presented in Table 1.
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This paper is organized as follows: Section 2 presents the pipeline pilot-

plant and its mathematical model; Section 3 describes the methodology for leak135

detection and location and the design of the ANN for leak location; Section 4

presents the validation of the ANN with experimental data. Finally, Section 5

presents the conclusions.

2. Pipeline pilot-plant

Experimental set-up140

The experimental pipeline considered to evaluate the proposed algorithm

is located at the Hydroinformatic Laboratory of the Technological Institute

of Tuxtla Gutierrez. The pilot-plant and its schematic diagram are shown in

Figure 1. In summary, the experimental pipeline is serpentine-shaped, the water

is supplied from a tank of 5000 [l], the pressurized flow is driven by a centrifugal145

pump of 5 [HP] controlled by a Micromaster 420 frequency inverter.

The water flow runs through a 2 inches PVC pipe with an equivalent length of

64.5 [m]. It has four manual gate valves distributed along the pipe to simulate

different leak scenarios. These valves are distributed at positions: z1 = 0.91

[m], z2 = 12.91 [m], z3 = 26.84 [m], z4 = 45.71 [m]. At the ends of the150

pipeline, industrial pressure and flow-rate transmitters have been mounted as

shown in Figure 1. These are sensors typically used in industrial water and

wastewater monitoring systems and will provide the online measurements for the

leak detection and localization algorithm. Flow and pressure measurements are

transmitted in current signals to a data acquisition board with USB interface.155

Details of the instrumentation installed in the pipeline can be found in Table 2.
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Inlet 
sensors

Containers of 115 liters 
connected with PVC

Pump 5 HP

Pump 
1/2 HP

Limit line of filling 
by gravity

water return

Outlet 
sensors

Valves
z1= 0.91m z2= 12.91m z3= 26.84m z4= 45.71m 

Reservoir
2500 l

Reservoir
450 l

Figure 1: Experimental pilot-plant (top) and its schematic diagram (bottom).

Table 2: Instrumentation installed in the pipeline

Quantity Instrument Description

1 NI 9203 C Series DAQ module with 8 analog current input channels. Input ranges of 0

mA to 20 mA; 16-bit ADC resolution

2 EJA530E Yokogawa Pressure Transmitter. 4 to 20 mA DC signal; 200 kPa maximum

pressure limit. ±0.055% Accuracy. 90 msec response time.

2 GF 2551 Signet Magmeter Flow Transmitter: 4 to 20 mA output. Bi-directional flow,

PVDF material. Recommended for water and wastewater monitoring.

Mathematical model and pilot-plant simulator

The ANN-4LL require a rich training dataset to improve their performance

and efficiency. Particularly, for the leak detection algorithm, this dataset must

contain information about leaks in as many points of the pipe as possible. Nev-160

ertheless, in practice, this is not possible. For example, in the experimental

pilot-plant presented earlier, only four independent leaks and their combination

can be created through the opening of the manual valves. In this case, it is nec-

essary to generate this dataset using a validated model-based simulator, that
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will complement the experimental dataset by considering different leak scenarios165

that are not possible to create in the real set-up.

The simulator employed in this work, was designed in OpenModelica by the

TURIX Diagnosis and Control Group (Santos-Ruiz et al., 2018b). Internally,

the simulator contains the dynamic mathemathical model of the pilot-plant

proposed by Chaudhry (1979). This model was obtained from physical principles170

of momentum and mass conservation (continuity equation), in terms of time t

and a spatial variable z defined conveniently in the axial direction of the pipeline.

Therefore the mathematical model adopted is:

∂H(z, t)

∂t
+

b2

gAr

∂Q(z, t)

∂z
= 0, (1)

1

Ar

∂Q(z, t)

∂t
+ g

∂H(z, t)

∂z
− f(Q(z, t))|Q(z, t)|

2DA2

r

= 0. (2)

where H refers to the pressure load [mwc], Q indicates the flow [m3/s], b is the

speed of the pressure wave [m/s], g is the gravitational acceleration constant175

[m/s2], Ar represents the cross sectional area of the pipeline [m2] and D is

the internal diameter of the pipeline [m]. The dynamic model was validated in

Santos-Ruiz et al. (2018a).

In order to compute the flow rates and pressure values at the ends of the

pipeline, the numerical simulator, requires the physical parameters of the pipe180

as given in Table 3, the running time, the leak position (z in meters) and the

activation function for the leak. The operation of the numerical simulator is

depicted in Figure 2, where the obtained results are stored in a CSV (comma-

separated values) file for logging purposes.
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Table 3: Pipeline pilot-plant parameters.

Parameter Description Value Units

L Equivalent length 64.48 [m]

D Internal diameter of the pipe 0.0486 [m]

Ar Cross section area of the pipe 0.0023 [m2]

ε Relative roughness 4.84× 10−4 –

v Kinematic viscosity 8.03× 10−7 [m2/s]

b Wave speed 422.754 [m/s]

g Gravitational acceleration 9.782757 [m/s2]

Dynamic Model 

PIPELINE

.FMU

Pipeline 
parameters

Pressure
values
(Hin ,Hout)

Inputs Processing

Inlet flow rate 
(Qin)

Outlet flow rate 
(Qout)

time (t)

Running time

Model results

Leak 
activation 
function

Leak position 
(z)

Figure 2: Inputs and outputs of the numerical simulator.
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3. Leak detection and localization185

This section provides a detailed design procedure for localizing leaks, which

can be used for the diagnosis of pipelines. The proposed procedure is depicted

in Figure 3, and it comprises different stages. First, measurements of input

and output pressures (Hin, Hout) and flow rates (Qin, Qout) are taken from

the pipeline test bench. Then, the inlet (Rein) and outlet (Reout) Reynolds190

numbers are computed using Qin, Qout. Note that, the Reynolds numbers have a

higher magnitude than the relative roughness, which is also needed in the ANN-

4FFE blocks. Therefore, logarithmic values of the Reynolds numbers and the

relative roughness are considered in order to normalize them. Subsequently, two

independent ANN-4FEE blocks compute the friction factors for the input (fin)195

and output (fout), respectively. Finally, using fin, fout, Hin, Hout, the ANN-

4ALL block, yields the leak location (z) estimate. In the following sections, a

detailed description of each one of these stages will be provided.

11



Pipeline
pilot-plant

Hin Qin Hout Qout

Reynolds 
numbers 

calculation

Data 
conditioning

log (.)
e/D

ANN-4FFE ANN-4FFE

Qin  Qout

-log( e/D)

log(Rein) log(Reout)

ANN-4LL

fin

Rein  Reout

Hin  Hout

fout

z, Leak position

Figure 3: General methodology schema.

3.1. Estimation of the friction factor

In a leakage scenario, the flow rate changes drastically. This causes that

the Reynolds number upstream and downstream the leak are different. As

a consequence, the quasi-static friction is also different before and after the

leak (Verde et al., 2014). In that sense, it is important to have a mechanism

for calculating these friction factors. The common approach in the hydraulic

community is to calculate the quasi-static friction in turbulent regime using the

Colebrook equation (Colebrook & White, 1937), defined as:

1√
f

= −2 · log10
(

2.51

Re ·
√
f

+
ε

3.7 ·D

)
, (3)

where Re is the Reynolds number, ε/D is the relative roughness and f is the200

friction factor. Note that the Colebrook equation has to be solved implicitly,
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i.e. in order to find a solution for f , it is necessary to employ an iterative

numerical method e.g. Newton-Raphson algorithm (Yildirim, 2009). However,

the use of a numerical method increases the computational complexity of the

leak diagnosis algorithm. To avoid the computational complexity of the nu-205

merical methods, different explicit approximations of the Colebrook equation

have been also proposed in the literature. For example, to mention some of the

most important we have: the Moody equation (Haaland, 1983), the Churchill

approximation (Churchill, 1973), the Swamee-Jain equation (Swanee & Jain,

1976), the Serghides equation (Serghides, 1984) and the Brkic equation (Brkić,210

2011). Nevertheless, they present an error in the calculation of the friction fac-

tor because these equations are approximations. For instance, in Brkić (2011),

a comparison of the numerical errors of several methods was made and it was

shown that the approximation with the minimum error was of 0.14% and the

one with the highest relative error was close to 8.0%. Recently, the use of artifi-215

cial neural networks (ANN) has been proposed as an alternative to reduce this

approximation error. Particularly, the authors in Brkić & Ćojbašić (2016) pro-

posed an ANN architecture that computes the friction with a maximum error

of 0.07%.

The leak localization procedure proposed here requires an estimation mecha-220

nism for fin and fout that should be fast, simple, and with high precision. Then,

the artificial neuronal network (ANN-4FFE) used to estimate the friction factor

is a feed-forward back-propagation network whose architecture to compute the

friction was proposed in Brkić & Ćojbašić (2016) and its scheme is displayed in

Figure 4.225
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-log(e/D)

Input layer
(2 neurons)

Hidden layer 
(50 neurons)

f

Output 
layer

log(Re)

Figure 4: Structure of the proposed ANN-4FFE (Brkić & Ćojbašić, 2016).

3.2. Proposed ANN for Leak Localization (ANN-4LL)

The proposed architecture of the ANN-4LL to estimate the leak position is

a cascade forward backpropagation network (CFBPN) (Lashkarbolooki et al.,

2013a). During training, calculations are carried out from the input to the

output layer, and the error values returned to the previous layer. This network230

uses continuously valued functions and supervised learning (Jain et al., 1996).

Thus, supervised learning proceeds as a closed-loop feedback system where error

is the feedback signal. The CFBPN model includes a weight connection from

the input layer to each hidden layer and from each hidden layer to the successive

layers as shown in Figure 5. By including more layers, the CFBPN may learn235

multifarious relationships and additional connections can improve the speed

at which the network learns the desired co-relationship (Lashkarbolooki et al.,

2013b). The main particularity of the CFBPN is that each layer of neurons is

related to all previous layers of neurons (Hedayat et al., 2009). A connection

multiplies its value by a connection weight, as a synaptic connection does. Each240

input xi is weighted by a factor wi. The neuron has a bias (b) and the overall

sum of the inputs is calculated as
∑

wixi + b = netj . Then, an activation

function (ϕ) is applied to the result netj and the neural output is taken as

ϕ(netj).

The ANN-4LL used was fully trained and validated in an off-line supervised245

manner prior to the application of the network. There are no strict rules for

selecting the transfer function. The sigmoid (logsig) and hyperbolic tangent
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(tansig) functions are the most used in the hidden layer (Hemmat Esfe & Afrand,

2020). In this work, the best performance was obtained using tansig, while the

linear function (purelin) was used for the output layer (Samanta, 2004). The250

complete structure can be seen in Figure 5.

z

fin
w

b
+ w

b

+

w

w

b

+

w

w

w

w

+

w

w

b

fout

Hin
Hout

Input 
Layer

Hidden Layer  
(100 neurons)

Output 
Layer 

Hidden Layer 
(50 neurons)

Hidden Layer 
(25 neurons)

Figure 5: Schematics of the proposed cascade forward backpropagation neural network (ANN-

4LL).

The architecture for ANN-4LL (layers, neurons, activation functions) was se-

lected heuristically on a trial and error basis by testing different configurations.

Regarding the selection of number of layers and their sizes, it is well known that

there are not given rules. Then, for every specific problem or application, the255

optimal number of hidden layers and neurons is determined through experimen-

tation. In the case of the ANN-4LL, it consists of five layers. The input layer

has four neurons considering the friction factors (fin, fout) and pressures (Hin,

Hout), the next three hidden layers contain, one hundred, fifty and twenty-five

neurons, respectively. Finally, a neuron in the output layer is considered the260

target value of the network, i.e. the leak position z.

3.3. Preparation of the dataset for ANN-4LL training

For ANN-4LL, two datasets were considered: (i) a numerical dataset gen-

erated by the simulator, exclusively for training purposes, and (ii) a dataset

generated from experiments, exclusively for the final evaluation. R1-5For both data265
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sets, the input data for the neural network was obtained from flow and pressure

sensors installed at the ends of the pipeline as these measures are the most used

for leak detection and location (Wong et al., 2018; Van der Walt et al., 2018;

Raei et al., 2019). Furthermore, to guarantee the data quality of the experi-

mental set-up, the location of the sensors was done carefully according to the270

hydraulic handbook (Livelli, 2010). To capture the dynamic effect of the leaks,

these were induced by the opening four leak-valves located along the pipeline.

Nonetheless, as explained earlier, the number of leaks that can be induced ex-

perimentally is limited only to these four valves. Then, in order to enrich the

data-set, an experimental-validated pipeline simulator designed in OpenModel-275

ica (Santos-Ruiz et al., 2018b) was used. Furthermore, the data generated by

the simulator considers noise as in the real pipeline, which is important to guar-

antee the quality of the data-set. Different operating conditions are considered,

so that the neural network learns to locate leaks when they appear.

3.3.1. Numerical dataset280

The numerical experiments were carried-out by considering different pres-

sures at the ends of the pipeline. The input pressure (Hin) was changed from 21

[mwc] to 2 [mwc] and the output pressure (Hout) from 20 [mwc] to 1 [mwc] with

respect to each leak. A leak was simulated each 0.5 [m] along the 64 [m] of the

pipeline. As a result, 26,040 leaks were generated. The procedure to simulate285

leaks by considering the pipeline simulator is shown in Figure 6.

An example of a real leak and a simulated leak is shown in Figure 7. It is

important to note that simulated leaks contain noise, which was characterized

according to the real measurements given by the physical sensors with respect to

the real experiments. As expected, at the time the leak appears (at t = 150 [s]),290

the flow rate changes drastically. This information, together with the pressure

drops, is collected in the dataset and is used for the ANN-4LL training.

Finally, the Reynolds number and its logarithm (−log(ε/D)) were computed

for the 26,040 values of pressure and flow drops that are contained in the dataset

as shown in Figure 8. These values will be used to compute the friction factor.295
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20 [mwc]
n-1

1 [mwc]
0.5 [m]

n +0.5

64 [m]

Pressure (Hout)

21 [mwc]

19 [mwc]
n-1

1 [mwc]
20 [mwc]

Pressure (Hin)

1 [mwc]2 [mwc]

Pipeline parameters
Python library FMU 

Leak position (z)

26,040 Numerical experiments

Figure 6: Diagram of the procedure to carry out the numerical simulations

Figure 7: Inlet (blue) and outlet (red) flow rate when a leak occurrence. a) experimental

data; b) numerical simulation
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Extraction

Numerical experiments
26,040

Dataset

Numerical experiments 
dataset

Instances Qin Qout

1 0.00156 0.00157

to to to

26,040 0.00557 0.00687

Dataset

fin fout Hin Hout Pos (z)

0.0184 0.0184 21 20 1

to to to to to

0.02213 0.02261 2 1 64

ANN-4LL dataset

26,040 data for training, validation and 
testing

Input data Output

log(Re(in))

-log(e/D)

ANN-4FFE  fin

Reynolds number 
calculation

Dataset

Re(out) =          Qout
D

Arv

Re(in) =          Qin
D

Arv

 fout

log(Re(out))

-log(e/D)

ANN-4FFE

Average

Figure 8: Diagram of the process to obtain the dataset

3.3.2. Training of ANN-4LL

The network is trained with the backpropagation algorithm Scaled Conju-

gate Gradient (Møller, 1993) that updates the values of weight and bias, being

reliable and effective in the training of complex datasets (Offor & Alabi, 2016;

Meireles et al., 2003). The numerical dataset was stored in a CVS file and it300

was divided in three subsets:

- A subset of 18,228 data quintuples (70 %) designed to train the ANN-4LL

through an iterative procedure that updates the value of synaptic weights

and minimizes an error function (Charalambous, 1992).

- A subset of 3,906 data quintuples (15 %) used in a procedure called cross-305

validation (Zhang et al., 1999) to prevent the occurrence of overfitting
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(Lawrence & Giles, 2000).

- A subset of 3,906 quintuples (15 %) for testing purposes, it has no effect

on training and therefore provides an independent measure of ANN-4LL

performance during and after training.310

The learning of the ANN-4LL stopped when training was stopped, i.e. when

the performance on the validation set dropped in relation to that of the training

set (Jack & Nandi, 2002). The mean squared error (MSE) was used as a measure

of performance for the training phase, i.e. the square of the difference between

the network output and the data output is the main criterion for estimating the

learning level in supervised mode (Hemmat Esfe & Sadati Tilebon, 2020). The

MSE is computed by

MSE =
1

Y

Y∑
k=1

e2k =
1

Y

Y∑
k=1

(tk − yk)2 (4)

where Y indicates the number of samples in the training dataset, ek is the neural

network error, tk are the target values, and yk are network output values. The

MSE is determined after each epoch and the learning process is finished when

MSE is minimized (Beale et al., 1992). The validation process takes place during

training to determine whether to continue iterating in the search for a better315

model. The learning process was repeated until the mean squared error between

the actual output and the desired output was 10−4 or less. In this process,

different ANN architectures were evaluated, opting for the one with the best

performance according to the MSE. The test process is post-training, it is used

to measure the prediction capacity of the model obtained. This last process was320

carried out exclusively with experimental data from the pilot pipeline.

3.4. Training result

The ANN-4LL was developed in Matlab 2017b, however, given the complex-

ity of the ANN-4LL model and the dataset size, it was decided to use GPU

with the CUDA platform developed by NVIDIA (Lindholm et al., 2008), which325

allows the parallel processing of the numerical calculations. The used hardware
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was a NVIDIA GeForce GTX-750Ti 2048 MB GDDR5 card with 640 CUDA

cores. Table 4 describes the attributes of ANN-4LL training.

Table 4: Attributes of ANN-4LL

Attribute Description

Dataset 26,040

Network type CFBPN

Input variables fin, fout, Hin, Hout

Output variable leak position (z)

Training algorithm Gradient Conjugate Scaled

Act. function (hidden layers) tansig

Act. function (output layer) purelin

Performance function MSE (default)

Iterations 13,340

The performance of training, testing and validation of ANN-4LL, based on

their corresponding MSE is shown in Figure 9. The set destined for validation330

is used to measure the degree of generalization of the network, stopping the

training when it no longer improves. This prevents overfitting that implies a

poor performance of the model to predict new values.
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Figure 9: The mean squared error (MSE) during the process of training of the ANN-4LL

The training of the ANN-4LL was made up to 13,340 epochs. The MSE of

ANN-4LL was calculated at 10−4 (close to zero), after which there was no further335

tendency to decrease as it can be seen in Figure 9. This means that ANN-4LL

with the proposed structure has a great precision capacity for generalization. As

mentioned earlier, the architecture selection was made empirically, by testing

a different number of layers, neurons, and activation functions. Other config-

urations involving more than 100 neurons in one hidden layer and two layers340

with 50 neurons in each of them, achieved similar accuracy results. In contrast,

ANN-4LL structures tested with fewer than 100 neurons in a hidden layer re-

sulted in lower precision compared to the proposed structure, even after 15,000

training epochs.
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4. Experimental results345

Experimental dataset

Similar to the training stage of the ANN-4LL, in the experimental validation,

quintuples of values of Qin, Qout, Hin, Hout, z are generated. The quintuples

of experimental values were obtained from the pilot-plant in experiments for

each leak position (4 possible positions), which were repeated 4 times, i.e. 16350

experiments were generated. It is emphasized that the running time of each

experiment was 360 [s] (180 [s] before and 180 [s] after the leak occurrence),

with a sample frequency of 1kHz. The nominal condition of the pressure before

the leak occurrence was Hin = 5.7087 [mwc] and Hout = 1.9998 [mwc]; and for

the flow, it was Qin = 3.04−3[m3/s] and Qout = 3.04−3[m3/s].355

4.1. Validation of ANN-4LL with experimental data

The leaks are located in the following positions: the first leak is at z1 = 0.91

[m], the second at z2 = 12.91 [m], the third at z3 = 26.84 [m] and the fourth leak

is located at z4 = 45.71 [m]. So, the main challenge of ANN-4LL is to locate

the leak with the minimum position error. The results are shown in Tables 5360

to 8. Table 5 shows the estimation of first leak position (z1), where the average

percentage error between the four test was of 2.198%. The estimate was good,

considering that the leak was very close to the pump, so it generates a lot of

turbulence. The leak location (z1) with the ANN-4LL, presents the maximum

approximation error with respect to the other experiments.365

The results of the evaluation of ANN-4LL with the second leak (z2) can be

seen in Table 6. An improvement in the location error can be appreciated, given

that average percentage error between the four tests was of 0.155%, which is

much better than estimation obtained for z1.

The results of the evaluation of ANN-4LL with the third leak (z3) can be370

seen in Table 7, where the resulting average percentage error between the four

tests was of 0.075%. The performance achieved in this test was the best because

this leak is located in a zone of the pipeline where the turbulence is lower, i.e.

far from the pump.
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Table 5: Validation of the ANN-4LL with experimental data for leak in z1

Test fin fout
Estimated Percentage

position [m] error

1 0.0200052 0.0202999 0.9310 2.308 %

2 0.0200053 0.0203000 0.9304 2.242 %

3 0.0200067 0.0202997 0.9289 2.077 %

4 0.0200048 0.0202996 0.9297 2.165 %

avg 0.0200055 0.0202995 0.93 2.198 %

Table 6: Validation of the ANN-4LL with experimental data for leak in z2

Test fin fout
Estimated Percentage

position [m] error

1 0.0200755 0.0203425 12.8952 0.115 %

2 0.0200753 0.0203486 12.8935 0.128 %

3 0.0200739 0.0203501 12.9011 0.069 %

4 0.0200689 0.0203644 12.8702 0.308 %

avg 0.0200734 0.0203514 12.89 0.155 %

Table 7: Validation of the ANN-4LL with experimental data forleak in z3

Test fin fout
Estimated Percentage

position [m] error

1 0.0201468 0.0204002 26.8198 0.075 %

2 0.0201451 0.0204118 26.8206 0.072 %

3 0.0201478 0.0204017 26.8213 0.070 %

4 0.0201311 0.0204122 26.8183 0.081 %

avg 0.0201427 0.0204065 26.82 0.075 %
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Table 8: Validation of the ANN-4LL with experimental data for leak in z4

Test fin fout
Estimated Percentage

position [m] error

1 0.0202211 0.0205099 45.7461 0.079 %

2 0.0202165 0.0205161 45.7578 0.105 %

3 0.0202155 0.0204899 45.7615 0.113 %

4 0.0202309 0.0205121 45.7347 0.054 %

avg 0.0202210 0.0205070 45.75 0.088 %

Finally, in Table 8 the results of the ANN-4LL with the fourth leak (z4) are375

shown, where the resulting average percentage error between the four tests was

of 0.088%. Note here that the performance error increases with respect to the

leak position z3. Nevertheless, this estimation is good, considering that z4 is in

the final part of the pipeline and the outlet flow rate is lower.

According to the results shown in previous tables for the experimental tests,380

it is verified that ANN-4LL performs very well for leak location in the pipeline

case of study. In this regard, the global average percentage error between the

four leaks is of 0.629%. It is clear that the proposed method has a higher preci-

sion than most of those presented in Table 1, achieving a 99.3% of effectiveness

(0.629% error), similar to the one presented in Kang et al. (2018) but with a far385

simpler architecture. The results are good taking into account that experimen-

tal data was taken from noisy measurements; much more important is the fact

that ANN-4LL was trained with data from the numerical simulator of the pilot

plant. This means that such results also validate the good performance of the

simulator and implicitly, the good architecture selection for ANN-4LL and its390

corresponding training. As a final comment, the ANN architecture presented in

this paper can be applied to similar pipes provided that measures of pressure

and flow at the ends of the pipe are available and the ANN has been adequately

trained.
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5. Conclusions395

In this work, encouraging results were obtained, giving a new perspective

of leak location in pipelines when using ANNs. Parameters in deterministic

mathematical models are considered ideal, however, in real applications, there

is parametric uncertainty and some of the parameters vary with time as in the

case of the friction factor. Moreover, data obtained via experimental measure-400

ments contains noise. An important contribution of this work was the design of

a two-stage neural network that detects and estimates the position of a leak in

a pipe, where the first stage calculates the friction factor using inlet and outlet

flows. Then, in a second stage, it uses this information together with the inlet

and outlet pressures to locate the leak position. The training of the proposed405

neural network was performed using data generated from a validated numeri-

cal simulator of the pilot-plant. Finally, the proposed approach was validated

experimentally in a pilot-plant with leaks in the near, mid, and far range with

respect to the sensors. The designed neural network results in a robust predictor

for leak localization with an average percentage error of 0.629%. It is important410

to mention that the applicability of the proposed method could be limited due to

the requirement of pressurized flow. Nonetheless, this is a common assumption

in the leak diagnosis literature (Zhou et al., 2018; Li et al., 2019; Zaman et al.,

2020). Another important point is that industrial pipes could be considerably

longer, and sensors may be separated by a great distance; in this case, commu-415

nication problems would arise, e.g., long delays, data loss, data corruption, data

packages discarded or dropped out, among others. These communication issues

can be addressed by considering networked control algorithms. However, it must

be taken into account that the diagnosis and location of leaks is a monitoring

process and that in case of being affected by these communication problems,420

they do not represent a safety-critical issue. As future work, the use of ANN

will be extended to detect multiple leaks and to estimate frictions factors in

hydraulic networks (Bermúdez et al., 2018). Also, future work will be done to

consider optimal criteria for the selection of the best architecture (number of
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layers, neurons, etc.) for the ANN.425
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Carnero, M. C., & Gómez, A. (2018). Optimization of maintenance in produc-

tion and storage systems for domestic water. Water resources management ,440

32 , 359–380.

Charalambous, C. (1992). Conjugate gradient algorithm for efficient training of

artificial neural networks. IEE Proceedings G (Circuits, Devices and Systems),

139 , 301–310.

Chaudhry, M. H. (1979). Applied hydraulic transients. Springer.445

Churchill, S. W. (1973). Empirical expressions for the shear stress in turbulent

flow in commercial pipe. AIChE Journal , 19 , 375–376.

Colebrook, C., & White, C. (1937). Experiments with fluid friction in roughened

pipes. Proceedings of the Royal Society of London. Series A-Mathematical and

Physical Sciences, 161 , 367–381.450

26



Datta, S., Gautam, N. K., & Sarkar, S. (2018). Pipe network blockage detection

by frequency response and genetic algorithm technique. Journal of Water

Supply: Research and Technology-Aqua, 67 , 543–555.

Datta, S., & Sarkar, S. (2016). A review on different pipeline fault detection

methods. Journal of Loss Prevention in the Process Industries, 41 , 97 – 106.455
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(2020). Kalman filters for leak diagnosis in pipelines: brief history and future

research. Journal of Marine Science and Engineering , 8 , 173.575

Verde, C., Molina, L., & Torres, L. (2014). Parameterized transient model of a

pipeline for multiple leaks location. Journal of Loss Prevention in the Process

Industries, 29 , 177 – 185.

Verde, C., & Rojas, J. (2017). Recursive scheme for sequential leaks’ identifica-

tion. In Modeling and Monitoring of Pipelines and Networks (pp. 125–145).580

Springer.

Van der Walt, J., Heyns, P. S., & Wilke, D. N. (2018). Pipe network leak

detection: comparison between statistical and machine learning techniques.

Urban Water Journal , 15 , 953–960.

Wong, L., Deo, R., Rathnayaka, S., Shannon, B., Zhang, C., Chiu, W. K.,585

Kodikara, J., & Widyastuti, H. (2018). Leak detection in water pipes using

submersible optical optic-based pressure sensor. Sensors, 18 , 4192.

31

https://doi.org/10.5281/zenodo.2573811


Yildirim, G. (2009). Computer-based analysis of explicit approximations to the

implicit colebrook–white equation in turbulent flow friction factor calculation.

Advances in Engineering Software, 40 , 1183 – 1190.590

Zadkarami, M., Shahbazian, M., & Salahshoor, K. (2016). Pipeline leakage de-

tection and isolation: An integrated approach of statistical and wavelet fea-

ture extraction with multi-layer perceptron neural network (MLPNN). Jour-

nal of Loss Prevention in the Process Industries, 43 , 479–487.

Zadkarami, M., Shahbazian, M., & Salahshoor, K. (2017). Pipeline leak diagno-595

sis based on wavelet and statistical features using dempster–shafer classifier

fusion technique. Process Safety and Environmental Protection, 105 , 156 –

163.

Zaman, D., Tiwari, M. K., Gupta, A. K., & Sen, D. (2020). A review of leak-

age detection strategies for pressurised pipeline in steady-state. Engineering600

Failure Analysis, 109 , 104264.

Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D. C. (1999). Artificial neural

networks in bankruptcy prediction: General framework and cross-validation

analysis. European Journal of Operational Research, 116 , 16 – 32.

Zhou, M., Pan, Z., Liu, Y., Zhang, Q., Cai, Y., & Pan, H. (2019). Leak detection605

and location based on islmd and cnn in a pipeline. IEEE Access, 7 , 30457–

30464.

Zhou, S., O’Neill, Z., & O’Neill, C. (2018). A review of leakage detection meth-

ods for district heating networks. Applied Thermal Engineering , 137 , 567–

574.610

32


	Introduction
	Pipeline pilot-plant
	Leak detection and localization
	Estimation of the friction factor
	Proposed ANN for Leak Localization (ANN-4LL)
	Preparation of the dataset for ANN-4LL training
	Numerical dataset
	Training of ANN-4LL

	Training result

	Experimental results
	Validation of ANN-4LL with experimental data

	Conclusions

