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Vicenç Puig
Institut de Rob�otica i Inform�atica Industrial,

CSIC-UPC,
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Optimal Estimation of the
Roughness Coefficient and
Friction Factor of a Pipeline
This work addresses the estimation of two interrelated parameters of the fluid flow in 
pipes. First, a numerical and experimental evaluation of some proposed methods to com-
pute the friction factor in turbulent regime is presented. Special attention is given to an 
explicit solution obtained through the Lambert W-function. Subsequently, a method to 
estimate the roughness coefficient using nonlinear optimization techniques is proposed, 
which then allows determining the friction factor from it. Numerical tests were performed 
for a wide range of operating points of a pipeline. In order to validate the proposed 
approach, experimental analysis was carried out on a pipeline pilot-plant. The results 
show the applicability and effectiveness of the proposed method.

1 Introduction

Pipelines are the major fluid transportation systems, and their
proper management involves diagnosis, control, optimization,
among other tasks [1,2]. These tasks are based on algorithms
designed from physical laws that describe the behavior of the
flows and pressure along the pipes, which have proven to work
quite well. However, they have a significant disadvantage because
it is necessary to update the model’s parameters frequently. In par-
ticular, in pipes that have been in operation for a considerable

time, two physical settings change drastically compared with the
initial design: the roughness and the inner diameter. These
changes are caused principally by the corrosion and wear of the
internal walls, which vary due to the accumulation of mineral par-
ticles. The variation of these parameters affects the energy dissi-
pation in a pipeline, and consequently, the physical model is no
longer representative [3,4]. In pipelines, the energy dissipation
caused by the friction is called head loss, which can be divided
into major and minor losses. Major losses are associated with the
loss of energy by roughness and viscosity, and minor losses are
associated with elbows, flanges, or valves that change the flow
direction causing dissipation of energy. The most common equa-
tion for calculating major losses is the Darcy–Weisbach (DW)
equation [5], where the head loss is parameterized by the so-
called Darcy–Weisbach friction factor, which in this paper will be
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named only as “friction factor.” There are no sensors or trans-
ducers to directly measure the friction factor, so it must be calcu-
lated or estimated from other flow variables. The Blasius
correlation equation [6] provides a practical way to determine the
friction factor from the Reynolds number. However, this is only
valid for smooth pipes because it does not consider the pipeline
roughness [7]. When roughness is considered, the most accepted
method to calculate the friction factor is the Colebrook–White
(CW) equation, which unfortunately contains an implicit and tran-
scendent function with no analytical solution in terms of elemen-
tary functions. In the literature, there are many explicit
approximations to the CW equation, which computes the friction
factor with different accuracy levels, e.g., the equations proposed
by authors of Refs. [8–10]. The main drawback of these methods
is that, as the CW equation, they require accurate roughness and
inner diameters along the pipeline. Nevertheless, these parameters
cannot be estimated easily [11].

In the literature, some works evaluate different methods to
compute the friction factor from approximate solutions of the
Colebrook–White equation, e.g., Refs. [12–16]. Nonetheless, the
evaluations are usually focused only on the numerical analysis of
the approximation errors, without considering experimental data
of real pipelines and assuming known roughness coefficients.
Also, these comparative analyses do not usually include friction
calculation by the Lambert W-function [17,18] in the comparison,
possibly because this method is less known for its relatively recent
publication. In Refs. [19] and [20], an analysis of the approxima-
tion error when calculating friction by Lambert W-function is pre-
sented. However, the study focuses on some low-order
approximations of this function, detracting from its capabilities as
an exact solution of the CW equation, especially considering that
with the current high-performance computational systems (e.g.,
MATLAB) high order approximations can be obtained in a few nano-
seconds. From this background, a new comparative analysis of the
most used methods for estimating friction is needed, including the
computation with the Lambert W-function, and assessing with
measurements of a physical pipeline, not only from a theoretical
point of view. This paper proposes a method for optimal estima-
tion of the roughness coefficient and friction factor of pipelines.
First, the depth analysis of several methods (including the compu-
tation with Lambert W-function) illustrates the main advantages
and disadvantages of the CW approximations. Numerical evalua-
tions are done by computing the percentage error between the
results of the evaluated methods and those obtained by iterative
solution of the CW equation, which is used as the standard refer-
ence. Experimental evaluation is carried out by considering exper-
imental data of a laboratory pipeline. The percentage error for
each method is calculated from the results that each one produces.
The experimental friction obtained is computed from measure-
ments of pressure at the ends of the pipeline. Second, a methodol-
ogy to estimate the average roughness in a pipe by solving a
nonlinear optimization problem, using least squares, is proposed.
The estimated roughness is used to compute the friction by the
different methods that are evaluated in this paper. The main moti-
vation to systematize the friction computation procedure is that
the Instituto Tecnol�ogico de-Tuxtla Guti�errez (ITTG) is currently
working on the analysis and design of algorithms for leak diagnosis
in pressurized pipelines, which depend on precise estimates of the
friction. In previous work [4,21–23], the roughness coefficient used
is either the one declared by the pipe manufacturer or it has been
calculated from a single measurement of flow and pressures at the
ends of the pipeline. However, in practice, it has been found that
the roughness coefficient calculated this way is quite sensitive to
changes in the operating point. Therefore, in this paper, a technique
is proposed to estimate the roughness by nonlinear optimization
from multiple measurements of pressure and flow in the pipeline.

This work is organized as follows: In Sec. 2, the theoretical
basis of the head loss and friction is presented, including the DW
equation and the CW equation. In Sec. 3, some known approaches
to calculate the friction factor are presented; both exact and

approximate methods are considered. In Sec. 4, a method for esti-
mating roughness in a pipeline using nonlinear optimization is
proposed. In Sec. 5, the numerical evaluation of the friction com-
putation methods are presented; in this section, the result of the
roughness estimation for a laboratory pipeline using the proposed
method and the assessment of the approaches to computing the
friction from the roughness estimated in the laboratory pipeline
are also presented. Finally, in Sec. 6, some conclusions are pre-
sented, as well as the direction that the research that motivated the
presentation of this paper will take.

2 Theoretical Foundation

A general assumption is that the head loss (hf) due to friction
depends on the inner diameter (D) of the pipe, the length (L) in
which the head loss is measured, the average flow speed (V), the
absolute roughness of the pipe wall (ks), the density (q), and the
viscosity of the fluid. By considering force balance and dimen-
sional analysis, it is possible to determine the head loss (Pa) due
to friction as [24,25]

hf ¼
L

D

qV2

2
F e;Reð Þ (1)

where Re is the Reynolds number, which depends on viscosity
and e ¼ ks=D is the so-called relative roughness coefficient
(dimensionless). The expression Fðe;ReÞ is the friction factor,
which is represented by f in this paper. In general, Eq. (1) is repre-
sented in the following simplified form called the DW equation
[5,24]:

hf ¼ f
L

D

qV2

2
¼ f

8Lq
p2D5

Q2 (2)

where Q is the volumetric flow rate in the pipeline. Equation (2)
only predicts significant losses due to fluid friction on the pipe
wall and due to the effects of fluid viscosity and does not include
minor losses on inputs, elbows, and other fittings. Concerning dif-
ferent formulas for calculating friction losses, Eq. (2) has the
advantage of being a dimensionally homogeneous equation, so
that the friction factor f is a dimensionless number consistent with
any system of units [24]. Equation (1) is the most general equation
for fluid resistance along the pipe. Therefore, any other formula-
tion used to calculate friction losses is necessarily a particular
case of Eq. (1).

If pressure sensors are available at the pipeline ends, then the
head loss hf of Eq. (2) can be calculated by hf ¼ Hin � Hout, where
Hin and Hout denote the upstream and the downstream pressure
head measurements, respectively. If the flow rate of Q is meas-
ured, then the friction factor can be computed by solving Eq. (2).
The only requirement for computing the friction in this way is that
the flow and pressures must be in a steady-state because other fac-
tors affect the energy dissipation in the transitory. In that case, it
is necessary to know the function Fðe;ReÞ that represents the fric-
tion factor f in Eq. (1).

The search for a function Fðe;ReÞ that allows calculating the
friction factor as a function of roughness has generated different
empirical equations. Thereby, von K�arm�an and Prandtl [26] found
that when the flow is hydraulically smooth (e! 0), the friction
depends only on the Reynolds number and can be calculated using

1ffiffiffi
f
p ¼ 2 log10 Re

ffiffiffi
f

p� �
� 0:8 (3)

whereas for the hydraulically rough flow, which corresponds to
high turbulence, the following von K�arm�an’s equation [27] can be
used:

1ffiffiffi
f
p ¼ �2 log10 eð Þ þ 1:14 (4)



According to Ref. [26], the flow is completely rough if
eRe

ffiffiffi
f
p

> 200, and the hydraulically smooth flow condition corre-
sponds to eRe

ffiffiffi
f
p
� 10. For the transitional region between the

smooth and rugged regimes, Eqs. (3) and (4) are not valid,
because f has a more complicated dependency of e and Re. Cole-
brook combined both Eqs. (3) and (4) into one [28,29] and also
considers the friction in the transitional region. In the Colebrook
approach, the simple sum of the right sides of these equations
allows to cover both flow conditions, and smoothly interpolate
between these extreme conditions. The resulting expression,
known as the CW equation is given by

1ffiffiffi
f
p ¼ �2 log10

e
3:7
þ 2:51

Re
ffiffiffi
f
p

� �
(5)

In Ref. [18], it has been pointed out that, strictly, the way used
by Colebrook to combine Eqs. (3) and (4) is mathematically incor-
rect, since logðxþ yÞ 6¼ logðxÞ þ logðyÞ. However, Eq. (5) has
been widely accepted for its empirical validity, since it has been
experimentally verified. Figure 1 shows how the CW equation
generalizes the equations of von K�arm�an and Prandtl, including
the transitional region. In general, the CW equation is used in
the domain defined by ðe;ReÞ 2 f4 000 � Re � 108 and
0 � e � 0:05g.

Nevertheless, a drawback of Eq. (5) to compute f is that its
dependence on Re and e is implicit and nonlinear. Therefore, its
solution requires iterative numerical methods (fixed point, bisec-
tion, among others), which reduces its applicability in real-time
because the iterations require a considerable computational effort.
One way to overcome this issue is through explicit approxima-
tions of f obtained from Eq. (5). Among the most used approxima-
tions, there are those of Refs. [8–10]. In Sec. 3, these
approximations are described, then in Sec. 5 an assessment of
each of these approximations is presented, considering the times
needed for its calculation and its error concerning the exact value
determined by the implicit formula (5). The iterative solutions of
the Colebrook–White equation are graphically represented in the
so-called Moody chart [30], which allows to visually estimate the
friction factor from the Reynolds number and the pipeline rough-
ness. However, it is inaccurate and impractical when calculations
must be automated within an algorithm. Nowadays, that graphical
approach is only useful for educational purposes and a rough first
estimation. Recently, analytical (closed-form) solutions of nonlin-
ear equations similar to Eq. (5) have been found in terms of the
Lambert W-function [18,31]. The main advantage of this approach
is that it makes it possible to calculate the friction factor accu-
rately by means of noniterative expressions. In Sec. 3, a formula-
tion that explicitly determines f based on this method is
considered.

3 Friction Factor Computation

This section describes different approaches used to estimate the
friction factor in the turbulent regime, from the Reynolds number
and the pipeline roughness, which are assumed known.

3.1 Iterative Solution of the Colebrook–White Equation.
The fast way to compute f from the Colebrook–White equation is
to use an iterative numerical method. For this, the nonlinear
Eq. (5) is rewritten as

/ fð Þ :¼ 1ffiffiffi
f
p þ 2 log10

e
3:7
þ 2:51

Re
ffiffiffi
f
p

� �
¼ 0 (6)

Then, the problem is reduced to find the zero of /ðf Þ or, equiv-
alently, the minimum of /2ðf Þ. A simple iterative approach to find
the zero of /ðf Þ is through a fixed point iteration

f ð0Þ ¼ 1 (7)

f ðiþ1Þ ¼ 0:25= log10ðe=3:7þ 2:51=ðRe

ffiffiffiffiffiffi
f ðiÞ

q
ÞÞ2 (8)

Nevertheless, if the initial condition is not chosen properly, iter-
ative procedures can converge toward “false solutions” due to the
nonlinearity of Eq. (6), e.g., by considering open iterative methods
as the Newton–Raphson [32]. For this reason, it is more conven-
ient to use closed iterative methods that bound the solution on a
delimited interval, for example, as in the bisection and linear
interpolation methods. A convenient interval to search a solution
of Eq. (6) could be ½0þ; 1�. A strategy that in some cases shortens
the convergence of open iterative methods is taking an initial esti-
mation of f ð0Þ the “false solution” of the CW equation by consid-
ering Re!1, which also corresponds to the value of f provided
by the von K�arm�an Eq. (4) for completely rough flow, such as

f ð0Þ ¼ 0:25= log10ðe=3:7Þ2 (9)

As reported in Ref. [33], the initial approximation (9) has a
maximum relative error of 80% over the application domain of
the CW equation. Therefore, the number of iterations is consider-
ably reduced with respect to the unitary initial estimation given in
Eq. (8). Nevertheless, when there is an estimate or expected value
of the friction in the operating conditions, such as f̂ ¼ 0:02 or
similar (depending on the pipe material and the typical flow rate),
this can be used as f ð0Þ. An implementation of the iterative fixed-
point solution of the CW equation using a spreadsheet is described
in Ref. [34]. Regarding the iterative solutions of Eq. (6) based on
the Newton–Raphson method, a Cþþ implementation is
described in Ref. [35].

3.2 Friction Estimation Using Explicit Approximations.
Several formulas have been proposed in order to find an approxi-
mate value of f replacing the CW equation by simplified versions
where the dependence of f on e and Re is already explicit. These
simplifications allow direct computations of f in a single step
without requiring any iteration. For instance, the Swamee–Jain
(10) and Haaland (11) approximations [8,9] are the most popular

f � 0:25=ð log10ðe=3:7þ 5:74=Re0:9ÞÞ2 (10)

f � 1=ð�1:8 log10ððe=3:7Þ1:11 þ 6:9=ReÞÞ2 (11)

Typical errors of Eqs. (10) and (11) are less than 1%, which is
sufficient for many applications. However, in such cases, when
greater accuracy is required, these estimations can be used as an
initial approximation in iterative solutions of the CW equation to
accelerate the convergence of iterative methods. In Ref. [36], a
multistep approximation of f was proposed by considering the
Steffensen method. By considering this approach, the formula of
Ref. [10] is considered to estimate f more accurately than
Eqs. (10) and (11). The following sequence of operations
describes this method:

A ¼ �2 log10ð�=3:7þ 12=ReÞ (12a)
Fig. 1 Relationship between the Colebrook–White equation
and the equations of von K�arm�an and Prandtl



B ¼ �2 log10ð�=3:7þ 2:51A=ReÞ (12b)

C ¼ �2 log10ð�=3:7þ 2:51B=ReÞ (12c)

f � 1=ðA� ðB� AÞ2=ðC� 2Bþ AÞÞ2 (12d)

A characteristic of this method is that it requires a fixed number
of auxiliary values (three) before evaluating the final approxima-
tion. Consequently, the computational cost is also fixed. In addi-
tion, due to the fact that fractional powers are not involved, the
computational time is quite close to the approximations given in
Eqs. (10) and (11). Based on the Serghides equations (12a)–(12d),
Ćojba�sić and Brkić [37] proposed an improved version by adjusting
the model coefficients using genetic algorithm techniques. As a result,
the coefficient 12 was changed to 12.585, and 3.7 was changed to
3.71. Thus, the maximal relative error in estimated f decreased 53.26
times compared to coefficients proposed by Serghides. The optimiza-
tion of different explicit approximations of the CW equation using
genetic algorithms is described in detail in Ref. [38].

Other approximate noniterative solutions of the CW equation
have been proposed by the authors of Refs. [20,39–41], and [42],
among others. An exhaustive list of noniterative approximations
is not presented here, Eqs. (10), (11), and (12d) are cited for later
comparison because they are often used. The common factor in
noniterative methods is that they only approximate the value of f
with different degrees of accuracy. Section 3.3 describes a tech-
nique for calculating f exactly.

3.3 Friction Computation Using the Lambert W-Function.
In Ref. [43], it is proved that it is possible to express an explicit solu-
tion of Eq. (5) by the Lambert W-function. To the best of our knowl-
edge, this is the only explicit solution of the CW equation as reported
in Ref. [33]. The Lambert W-function is defined as the root of

WðzÞ eWðzÞ ¼ z (13)

for every complex number z [44]. The mapping z 7!W is a nonin-
jective function (multivalued, except in z¼ 0), which is frequently
used to solve equations that contain exponentials or logarithms, as
is the case with the CW equation. If real numbers are considered
only, with constraints fz � �1=e; WðzÞ � �1g, then one-valued
function W0ðzÞ is obtained that it is also called as the “principal
branch” of W(z). In order to compute the friction factor from the
CW equation, only the part Wþ0 located in the first quadrant of the
plane is considered (see Fig. 2).

The Lambert W-function can be formally expressed in an end-
less form, such as [19,45]

WðzÞ ¼ lnðz=lnðz=lnðz=lnð� � �ÞÞÞÞ; if jWðzÞj > 1 (14)

WðzÞ ¼ z= expðz= expðz= expð� � �ÞÞÞ; if jWðzÞj < 1 (15)

However, from a practical point of view, methods based on
truncated series are often used [44–47]. For instance, by consider-
ing the series expansion at z¼ 0, the principal branch W0 can be
expressed by [19,48]

W0 zð Þ ¼ z� z2 þ 3

2
z3 � 8

3
z4 þ 125

24
z5 � 54

5
z6 þ O z7ð Þ

¼
X1
n¼1

�nð Þn�1

n!
zn (16)

Although the series (16) is useful for small values of z, it is use-
less in the context of the CW equation because, as will be dis-
cussed later, the argument of W0ðzÞ when calculating the friction
factor is quite large (z� 1). In this case, the following asymptotic
behavior is most helpful

W0ðzÞ 	 lnðzÞ � lnðlnðzÞÞ; as z!1 (17)

Approximation (17) gives good results when z is quite large,
but its accuracy decreases rapidly as z, so it is not suitable to use it
to compute the friction factor over wide operating ranges. There-
fore, to ensure accuracy in the calculated value of W0ðzÞ through-
out the range of interest, and implementation of the Lambert
W-function based on Halley’s method [49] is considered. Apply-
ing this method, the value w ¼ W0ðzÞ can be obtained by iterating
through the following formula [50]:

fi ¼ wi expðwiÞ � z (18)

wiþ1 ¼ wi �
fi

wi þ 1ð Þexp wið Þ �
wi þ 2ð Þ fi

2wi þ 2

(19)

Because Halley’s method is cubically convergent, the accuracy
in successive values of wi from Eq. (19) increases rapidly. In an
exhaustive test, using Eq. (19) it was possible to calculate W0ðzÞ
in the whole interval z 2 ð0;1Þ with a maximum of four itera-
tions, starting from the coarse initial estimate w0 ¼ 1. Based on
the performance of Halley’s method reported in Ref. [50], Eqs.
(18) and (19) with an improved initial approximation w0 ¼
lnðzÞ � lnðlnðzÞÞ from Eq. (17) was used to implement the Lam-
bert W-function in this work.

Based on the Lambert W-function, in More [17] an explicit
solution of the CW equation was proposed, which could predict
the pressure drop in the flow of ideal gases through pipelines.
Later, in Refs. [31] and [18] were reported the application
of W0ðzÞ in hydraulic problems involving the calculation of the
friction factor by considering algebraic manipulations and some
variable changes in Eq. (5) together with the W0 function, a
closed-form solution for f was obtained, such that

f ¼ F e;Reð Þ

¼ 1

2=ln 10ð Þ
� �

W0 ln 10ð Þ=2a
� �

10b=2a
� �

� b=a
� �2

(20)

with a ¼ 2:51=Re and b ¼ e=3:7. The expression (20) is the only
one explicit solution known for the CW equation.

Even though Eq. (20) provides a direct way to obtain the exact
value of f, its use in diagnosis and control applications requires
that the programming language used have native subroutines to
evaluate the Lambert W-function numerically. In recent versions
of MATLAB, Maple and Cþþ compilers, these calculations can be
programed directly.2 However, some drawbacks are computing f
when the product eRe is large. This issue arises due to limitations

Fig. 2 Lambert W-function. The graph shows the neighbor-
hood of the origin where W(z) is divided into two branches. For
larger z values, W0(z) shows a logarithmic monotonous
tendency.

2To compute the Lambert W-function, some Cþþ compilers may require the
installation of the GNU Scientific Library.



of the floating-point numerical system typically used in calcula-
tions. A strong limitation is that on IEEE-compliant computers
the largest double-precision floating-point value [51] according to
the IEEE 754 standard [52] is

DOUBLE MAX ¼ 1:797693134862316
 10308: (21)

Due to this limitation, some combinations of Re and e prevent
the numerical evaluation of the friction factor by Eq. (20), as
already warned by Sonnad and Goudar [53], whereas the argu-
ment of W0 in Eq. (20) should not exceed the maximum floating-
point value (21). Nevertheless, it can be shown that to calculate f
by using the Lambert W-function in a double-precision IEEE
machine, it must be satisfied that

lnðReÞ þ 0:1239681863 eRe < 710:5621104: (22)

Since the constraint (22) is equivalent to the one published by
Ref. [53], this condition will be cited later as “Sonnad–Goudar
condition.” The feasible region of Eq. (20) can be calculated as
displayed in Fig. 3. Note that due to the fact that the feasible
region (dashed line) is a logarithmic curve, logarithmic scales are
used in the graph axes. In practice, Eq. (22) and Fig. 3 are useful
because they can provide a simple method to determine the
applicability of the Lambert W-function in explicit calculations of
the friction factor. Some transformations of Eq. (20) that partially
solve the problems in the computation of f due to limitations in
the floating point system (shaded region in Fig. 3) are described in
Ref. [54]. To avoid the limitations in the direct evaluation of Eq.
(20), strategies have also been proposed to compute the Lambert
W-function based on truncated series that achieve good accuracy
when approximating the power series with three or more terms, as
proposed in Ref. [47].

Recently, a transformation of the CW equation in terms of --
function (a shifted logarithmic version of W-function) has been
proposed by Clamond [31]

1ffiffiffi
f
p ¼ 2

‘
-

‘ �Re

18:574
jln ‘Re

5:02

� �� �
(23)

where j is a shift operator such that -ðajbÞ ¼ Wðexpðaþ bÞ � aÞ,
and ‘ ¼ lnð10Þ. Using the Clamond’s transformation (23) of the
CW equation, the convergence problems when applying the Lam-
bert W-function are solved. In Ref. [31], a fourth-order iteration is
proposed to compute the friction factor from Eq. (23) in only two
iterations. As will be shown later (in Sec. 5), the friction computa-
tion using Eq. (23) is fast and absolutely convergent throughout
the region of interest for the turbulent flow.

All the methods discussed in this section, approximate and
exact, can be computed by the MATLAB routines given in Ref. [55],
including the one based on the Lambert W-function (Halley’s
method) and Clamond’s transformation.

4 Estimation of the Roughness Coefficient

In the preceding section, it has been assumed that the computa-
tion of f is carried out from known values of Re and e. Nonethe-
less, even though the Reynolds number can be calculated in terms
of the measured flow rate, the value of e cannot be calculated
straightforwardly because e indicates how rough or smooth the
internal walls of the pipeline are, which depends on the materials
and the techniques used to manufacture the pipe. Furthermore,
this parameter is only determined when the pipeline is installed,
but under continuous operation, the walls of the pipe can be
eroded or coated with particles carried by the flow. Therefore, a
periodic “recalibration” of e is convenient [56]. This work pro-
poses a method to estimate the relative roughness coefficient of e.
Initially, a set of pressure and flow measurements ðHin;Hout;QÞ
for different operating points in a steady-state is obtained. In the
experimental pipeline, the operating point is changed, employing
a frequency inverter that regulates the power of a centrifugal
pump that drives the flow through the pipeline. Then, for each
operating point, the pressure loss is determined by hf ¼
Hin � Hout together with the flow Q, which are substituted in the
Darcy–Weisbach Eq. (2) to compute the friction factor

f ¼ p2D5hf

8LqQ2
(24)

The value of Re is also calculated for each operating point, as

Re ¼ DQ

A�
(25)

where � is the kinematic viscosity of the fluid, and A is the cross-
sectional area of the pipe. Afterward, with the values of f and Re
obtained from the measurements in N different operating points,
the data array shown in Table 1 is constructed. Finally, the dataset
ðRek; fkÞ is fitted to the explicit formula f ¼ Fðe;ReÞ of Eq. (20)
solving the following nonlinear optimization problem:

ê ¼ argmine

XN

k¼1

ðFðe;RekÞ � fkÞ2 (26)

Nevertheless, instead of Fðe;ReÞ in Eq. (20), it is also possible
to define the objective function of Eq. (26) by considering the
explicit approximations of f defined in Eqs. (10), (11), and (12d).
Trust-region methods [57,58] and Levenberg–Marquardt algo-
rithms [59,60] are applicable to solve the least squares problem
(26). Despite that theoretically it is possible to use a single pair
ðRe; f Þ to estimate e by solving Eq. (26), this results in biased esti-
mates. Therefore, samples from several operating points (k> 1)
must be used. Also, the pressure and flow measurements used to
compute Rek and fk at each operating point must be obtained by
averaging the sensor signals over a time interval (about 100 sam-
ples), in order to minimize the effect of the measurement noise.

During the iterative process to minimize the cost function

CðeÞ :¼
XN

k¼1

ðFðe;RekÞ � fkÞ2 (27)

Fig. 3 Feasible region where it is possible to compute f
directly using the Lambert W-function

Table 1 Data required to estimate e

Hin
a Hout

a Qa Reb fc

Hin1 Hout1 Q1 Re1 f1
Hin2 Hout2 Q2 Re2 f2
� � � � �
HinN HoutN QN ReN fN

aMeasured data.
bCalculated from Eq. (25).
cCalculated from Eq. (2).



it is quantified a first-order optimality measure (FOOM) to deter-
mine how close each new estimate �ðiÞ is to the optimal value ê.
The infinity norm of the gradient of CðeÞ is used as FOOM

FOOM ¼ max
k
jðrCðeÞÞkj ¼ krCðeÞk1 (28)

As an optimality measure, the FOOM is based on the idea that
for a smooth function to reach a minimum, its gradient must be
zero. Therefore, it is expected that the FOOM will continually
decrease during the iterative optimization process until reaching a
maximum permitted value (tolerance) FOOMtol previously estab-
lished. Other tolerance values that are also considered in the crite-
rion to complete the iterative process are etol and Ctol, which
represent the maximum changes allowed in e and CðeÞ during the
iterations. Then, the iterations are completed if any of the follow-
ing conditions are achieved:

jeðiÞ � eði�1Þj < etol (29)

jCðeðiÞÞ � Cðeði�1ÞÞj < Ctol (30)

In the ROUGHNESS MATLAB-routine given in Ref. [55], the
tolerances have the following predefined values:
FOOMtol ¼ 1
 10�12; etol ¼ 1
 10�9, and Ctol ¼ 1
 10�9. The
Levenberg–Marquardt algorithm is used to solve Eq. (26) in these
routines.

5 Results and Discussion

In this section, a numerical and experimental evaluation of the
friction calculation methods described in section “Friction factor
computation” is presented. The roughness estimation for a labora-
tory pipeline is also presented. This estimate is used for the exper-
imental assessment of the methods described in Sec. 3.

5.1 Numerical Evaluation. To determine the accuracy of the
explicit approximations (10), (11), and (12d), these were eval-
uated on a regular grid of 1000
 1000 points in the region defined
by

4
 103 � Re � 1
 108; 1
 10�6 � e � 5
 10�2 (31)

The grid defined by Eq. (31) corresponds to the region men-
tioned in Sec. 2 where the CW equation is usually used. However,
the limit case e ¼ 0 was not used in the region discretization,
because only rough pipes were considered. The results were con-
trasted with the exact values of f obtained by the iterative solution
of the Colebrook–White equation. The percentage errors of the
different approximations are shown graphically in Figs. 4–6. In
general, the explicit approximations of f show a tendency to pres-
ent some error for small roughness coefficients and Reynolds
numbers close to laminar flow. As it can be seen, comparing the
three approximations, the Serghides has a less percentage error

than the Swamee–Jain and the Haaland approximations, with
three orders of magnitude of difference.

A summary of the results is presented in Table 2, where in addi-
tion to the approximation error for each method, the computa-
tional time required to complete one million evaluations of f over
the grid described above is also shown. Active calculation times
were measured using the profiler tool of MATLAB. The
Swamee–Jain and Haaland approximations have a simpler struc-
ture than the Serghides approximation, so they should be com-
puted in less time. However, it is important to note that the
Swamee–Jain and Haaland equations contain fractional powers,
unlike the Serghides equations which include only integer powers,
which means that the time needed to compute the three approxi-
mations is quite close since the computational cost to calculate
fractional powers is high because it is implemented using the
relationship

xa ¼ expða lnðxÞÞ; x; a 2 R; a 62 Z (32)

Considering Eq. (32), to compute the approximations of
Swamee–Jain, Haaland, and Serghides, it is necessary to evaluate
three transcendental functions (and other basic operations) in each
case, hence the closeness in their computation time.

The results in Figs. 4–6, as well as in Table 2, show that the
Serghides method presents the best global performance since its
computation time is comparable to the Swamee–Jain and the Haa-
land methods, but with a considerably smaller error. On the other
hand, Eq. (20) based on the Lambert W-function give results as
accurate as the iterative solution, but in MATLAB presents some
convergence problems for highly turbulent flows for simultane-
ously using large roughness coefficients. Although this condition
(large Re and large e) rarely occurs in practice, it is important to
consider this weakness for MATLAB implementations. The conver-
gence region where it was possible to compute the friction factor
using the MATLAB floating-point arithmetic is shown in Fig. 7. In
the tests, the convergence region coincided punctually with the
feasible region delimited by the Sonnad–Goudar condition (22).
The estimation of f given by Eq. (20) evaluates to zero in the non-
convergence region marked by a red cross (
). A logarithmic grid
of 20
 20 points was used to discretize the space ðe;ReÞ. AsFig. 4 Error in the Swamee–Jain approximation

Fig. 6 Error in the Serghides approximation

Fig. 5 Error in the Haaland approximation



shown in Fig. 7, the main advantage of the friction computation
using the Lambert W-function is due to the fact that converges
exactly in the region where other methods present larger errors
(for small Re and small e).

Friction calculations using the Lambert W-function were also
performed in Maple without convergence problems throughout
the test region. Since Maple implements variable precision arith-
metic, the convergence problems when applying Eq. (20) in MAT-

LAB are attributed to the 64-bit fixed precision arithmetic that
MATLAB uses. In fact, by installing the Symbolic Math Toolbox in
MATLAB, which implements variable precision arithmetic, it was
possible to compute precisely the friction values throughout the
test region using Eq. (20). On the other hand, it was found that
Clamond’s implementation also effectively solves convergence
problems by calculating friction using the Lambert W-function
even with fixed precision arithmetic.

5.2 Roughness Estimation From Experimental Data. As
described before, an instrumented experimental pipeline was con-
sidered to test the proposed method as shown in Fig. 8. Because
this pipeline is not straight, but has a serpentine shape, minor
losses in elbows have been measured experimentally at each oper-
ating point. In the calculations, these losses have been subtracted

from the input pressure Hin, so that only the major losses are used
to calculate the roughness. In the experimental setup, the relative
roughness coefficient was determined according to the procedure
described in Sec. 4 from the measurements at four different oper-
ating points obtained with a centrifugal pump of 5 hp working at
frequencies of 25 Hz, 35 Hz, 45 Hz, and 55 Hz. Table 3 shows the
data obtained from the pressure and flow sensors, as well as the
values derived that were used for the estimation of e by consider-
ing the least squares method. Other parameters of the experimen-
tal pipeline used in the calculations are L ¼ 64:48 m;
D ¼ 0:0486 m; � ¼ 8:03
 10�7 m2=s, and g ¼ 9:79 m=s2. The
kinematic viscosity of water, �, was estimated from temperature
measurements using the MATLAB code given in Ref. [61].

The solution to the optimization problem (26) using the
Levenberg–Marquardt algorithm computes a relative roughness
coefficient ê ¼ 4:8093
 10�4. Table 4 shows partial results of
the iterative process, where the third to fifth columns include val-
ues related to the stop criterion defined by the tolerances consid-
ered on Eqs. (28)–(30). In Fig. 9, the exact solution of the
Colebrook–White equation is contrasted for the estimated value
of ê against the experimental values of f obtained directly from
the Darcy–Weisbach equation; the graphs cover only the interval
45; 000 � Re � 125; 000 corresponding to the operating region in
the pipeline. The root-mean-square error in the estimation of f for
the four operating points was RMSEf ¼ 4:4669
 10�5. Figure 9
also includes the curve of f for the computed values of ê calculated
from a single operating point. In this case, the error increased to
RMSEf ¼ 1:1164
 10�4 (almost three times greater), so there is
evidence of the need to estimate e considering several operating
points of pipeline, to avoid biased estimates. Table 5 numerically
shows the decrease in RMSE when the number of pressure and
flow measurements used to estimate ê increases from one to four.
Nevertheless, in case of errors due to biased measurements, the
use of multiple operating points does not necessarily reduce the
error; this requires a recalibration of the measuring instruments.

5.3 Assessment of Estimated Friction Using Experimental
Data. Figure 10 shows a different estimation of f that incorporate
the estimated roughness ê for the operating region of the labora-
tory pipeline, and also compares them against the experimental
value of f computed directly from the Darcy–Weisbach equation.
The graphs locally confirm that the Serghides approximation coin-
cides almost precisely with the exact solution of the
Colebrook–White equation and with the experimental values of f,

Table 2 Performance of different methods to estimate the friction factor

Method Average error (%) Maximum error (%) Timea (ms) Convergence

Iterativeb 0 0 707 Entire region (31)
Swamee–Jain 0.0148 3.3583 94 Entire region (31)
Haaland 0.1997 1.4203 100 Entire region (31)
Serghides 5:26
 10�7 0.0031 87 Entire region (31)
Lambert W-functionc 8:05
 10�13 	 0 7:36
 10�12 	 0 131 Only in region (22)
Clamond 5:96
 10�14 	 0 2:85
 10�13 	 0 73 Entire region (31)

aUsing an Intel Core i5 computer with 8 GB of RAM.
bUsing fixed-point method. Initial value according to Eq. (8) and tolerance e ¼ 2:2204
 10�16.
cHalley’s implementation, using 64-bit fixed precision arithmetic.

Fig. 7 Region of convergence when calculating the friction
factor by Lambert W-function, using MATLAB with 64-bit fixed pre-
cision arithmetic

Fig. 8 Experimental pipeline in ITTG (Mexico)

Table 3 Experimental data used to estimate the relative rough-
ness in the laboratory pipeline

Hin (m) Hout (m) Q (m3/s) Re f

2.1826 1.2299 0.0014567 47,525 0.022786
3.7503 1.5707 0.0022904 74,725 0.021086
5.7087 1.9998 0.0030494 99,490 0.020241
8.0448 2.5267 0.0037705 123,013 0.019698



thus outperforming the approximations of Swamee–Jain and Haa-
land that are frequently used in pipeline monitoring and leakage
diagnosis algorithms. In fact, within the operating region of the
experimental pipeline, the accuracy of the Serghides approxima-
tion is comparable to that obtained with the Lambert W-function.
As a result, it can be concluded that Lambert W-function has bet-
ter performance, except for the convergence problems described
previously, and also because it is a “nonelementary” function, it
could not be available in some programming languages.

Table 6 shows the improvement when using the Lambert W-
function instead of the other methods, for the four operation points
sampled in the laboratory pipeline. It is emphasized that the
RMSE when using the Lambert W-function to calculate the fric-
tion is equal to the RMSE obtained by the iterative method, which
is considered as the most accurate. Nevertheless, the Lambert W-
function can be implemented online under the limitations
described before.

The RMSEf reported in Table 6 only quantifies the propagation
of the estimation error e� ê when applying the different calcula-
tion methods of f without considering the measurement error in
pressure and flow variables. The total error in f may increase due
to measurement uncertainty, which in the instruments of the pilot
pipeline is between 0.01% and 0.04%, so these values impose an
upper limit on the accuracy of the computed value of f. Regarding
the influence of measurement uncertainty on the error when com-
puting f, the sensitivity analysis for the operating range of the pilot
pipeline produces

Df

f
¼ 0:092

De
e

(33)

Df

f
¼ �0:156

DRe

Re
(34)

where ðDReÞ=Re can be taken equal to the flow rate measurement
error, ðDQÞ=Q, considering the relationship (25). These results
show that the friction calculation is considerably sensitive to flow
measurement errors.

Table 6 Performance of different methods to compute f using ê
obtained from experimental data

Method RMSEf

Iterative 4:4669
 10�5

Swamee–Jain 9:0406
 10�5

Haaland 2:8996
 10�4

Serghides 4:4713
 10�5

Lambert W-function 4:4669
 10�5

Table 4 Iterations to compute ê using Levenberg–Marquardt optimization algorithm

Iteration, i eðiÞ CðeðiÞÞ FOOMðiÞ jeðiÞ � eði�1Þj

0 2:22045
 10�16a 3:09689
 10�10 1:48
 10�6 N.A.
1 0.000086643 1:26440
 10�10 7:12
 10�7 8:66432
 10�5

2 0.000228718 1:82144
 10�11 1:53
 10�7 1:42074
 10�4

3 0.000338907 1:65797
 10�12 2:40
 10�8 1:10189
 10�4

4 0.000406107 1:24114
 10�13 3:30
 10�9 6:71999
 10�5

5 0.000443330 8:74448
 10�15 4:29
 10�10 3:72230
 10�5

6 0.000463627 6:73076
 10�16 5:40
 10�11 2:02973
 10�5

7 0.000476059 8:83817
 10�17 5:47
 10�12 1:24324
 10�5

8 0.000480145 6:43052
 10�17 7:52
 10�13 4:08537
 10�6

9 0.000480890 6:37056
 10�17 4:04
 10�14 7:45284
 10�7

10 0.000480931 6:37033
 10�17 2:04
 10�15 4:03611
 10�8

11 0.000480933 6:37032
 10�17 1:03
 10�16 2:04195
 10�9

12 0.000480934 6:37032
 10�17 8:78
 10�16 1:03346
 10�9

aMachine epsilon, used to avoid “division by zero” error.

Fig. 9 Friction estimation by Colebrook–White equation using
ê obtained from experimental data

Table 5 Estimated roughness using different number of oper-
ating points

N ê RMSEf

1 5:0763
 10�4 1:1164
 10�4

2 4:8977
 10�4 5:6119
 10�5

3 4:8378
 10�4 4:5988
 10�5

4 4:8093
 10�4 4:4669
 10�5

Fig. 10 Different estimates of f in the operating region of the
laboratory pipeline. The estimate with Lambert W-function and
the Serghides approximation are almost equal, in the operating
range of the prototype pipeline, so it is difficult to visualize
both.



6 Conclusions

The problem of determining the friction factor f for the turbu-
lent flow was addressed considering three approaches: the itera-
tive solution of the Colebrook–White equation, the use of explicit
approximations of f (Swamee–Jain, Haaland, and Serghides) and
the exact calculation of f using the Lambert W-function. In the
analysis, the latter was the best option, because it requires less
processing time and it is an exact solution of the CW equation.
However, its implementation is limited by the calculation of f for
programming languages where there is no subroutine to evaluate
W0, e.g., in some embedded systems, the Serghides approximation
is also a good option. In the analysis of the dependence of f on the
roughness coefficient e in the experimental pipeline, it was found
that the actual value of this one can differ considerably from the
value reported by the manufacturer (when it exists, in the best of
cases) or of the one assumed according to the tables or manuals of
hydraulics. Therefore, the roughness coefficient must be estimated
experimentally. The procedure that was proposed to adjust e in the
experimental pipeline produced good results, given that the value
of f derived from it coincides with the value obtained from the
measurements using the Darcy–Weisbach equation. However,
since the pipeline roughness can vary with time, the periodic
application of this procedure is recommended as a recalibration
action. As future work, it has been considered to experiment with
different pipe materials and perform an analysis of the effect that
the different approximations of the friction factor have on algo-
rithms for leak diagnosis. Also, research will be done to consider
their influence of the friction on the accuracy of the fault diagnosis
methods when estimating the flow rate and the leak position (anal-
ysis of the error propagation), as well as their computational
demands in terms of the total processing time to implement the
diagnostic algorithms in real-time. It is also contemplated to
extend the roughness estimation methodology for pipeline net-
works, which represents a challenging problem because few pres-
sure and flow measurements are available in a hydraulic system.
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