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ABSTRACT
This paper introduces an approach for the design of a state-feedback controller for
LPV systems that achieves pole clustering in a union of DR-regions. The design con-
ditions, obtained using a partial pole placement theorem, are eventually expressed
in terms of linear matrix inequalities, which can be solved efficiently using available
solvers. In addition, it is shown that the approach can be modified in a shifting
sense, which means that the controller gain is computed such that different values
of the varying parameters imply different regions of the complex plane where the
closed-loop poles are situated, thus enabling online modification of the closed-loop
performance. The effectiveness of the proposed method is demonstrated by means
of simulations.
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1. Introduction

Linear parameter varying (LPV) systems have received a lot of attention from the
control community in the last decades. They were first introduced in Shamma (1988),
in order to distinguish such systems from linear time invariant (LTI) and linear time
varying (LTV) (Shamma, 2012). The LPV paradigm has proved to be suitable for
controlling nonlinear systems by embedding the nonlinearities in the varying param-
eters, and it has become a standard formalism in systems and control, for analysis,
synthesis of controllers and even system identification. In this case, since the varying
parameters depend on some endogenous signals, such as states and/or inputs, the sys-
tem is commonly referred to as quasi-LPV (Rugh & Shamma, 2000). LPV systems
are closely related to the Takagi-Sugeno (TS) approach (Takagi & Sugeno, 1985), and
some recent works have discussed the existing similarities between the two approaches
(López-Estrada, Rotondo, & Valencia-Palomo, 2019; Rotondo, Puig, & Nejjari, 2016;
Rotondo, Puig, Nejjari, & Witczak, 2015), stating that the main remarkable differ-



ence lies in the use of fuzzy logic by the latter, whereas the former relies on traditional
mathematics. More recently, there has been a growing interest in extending these
techniques to nonlinear parameter varying systems (NLPV), see e.g. Larimore (2013),
Blesa, Jiménez, Rotondo, Nejjari, and Puig (2014), Rotondo and Johansen (2018),
R. Yang, Rotondo, and Puig (2019), since in many practical applications there are
time-varying nonlinearities that can be dealt with using ad hoc approaches.

In recent years, there has been an important progress in the development of analy-
sis and design techniques for LPV system, and this concept has been further investi-
gated by several researchers, who brought different innovations (Hoffmann & Werner,
2014; Rotondo, 2017). LPV techniques have found application in many fields, such
as bicycle (Brizuela Mendoza, Sorcia Vázquez, Guzmán Valdivia, Osorio Sánchez,
& Mart́ınez Garćıa, 2018), robotics (San Miguel, Puig, & Alenyà, 2019), aerospace
(D. Yang, Zong, & Karimi, 2019), ground vehicles (Zhang, Zhang, & Wang, 2016),
wind turbines (Pérez-Estrada, Osorio-Gordillo, Alma, Darouach, & Olivares-Peregrino,
2018) and power system (El-Guindy, Schaab, Schürmann, Stursberg, & Althoff, 2017).
Remarkable applications can be mentioned as machine learning (Rizvi, Velni, Abbasi,
Tóth, & Meskin, 2018), and model predictive control (MPC) (Ding, Dong, & Hu, 2019),
and the research is currently undergoing theoretical development (Morato, Normey-
Rico, & Sename, 2020).

Among the considered specifications for the design, pole clustering in linear matrix
inequality (LMI) regions, also known as D-stability, has received a lot of interest. Ini-
tially characterized by Chilali and Gahinet (1996) using a quadratic Lyapunov function
with constant matrix, this idea was further developed by Peaucelle, Arzelier, Bache-
lier, and Bernussou (2000), who considered uncertain systems by means of a parameter
dependent Lyapunov function, and is still investigated nowadays, see e.g. the recent
improvements in Nguyen, Márquez, Guerra, and Dequidt (2017) and Chesi (2017).
However, LMI regions have some limitations, such that they are not able of describing
non-convex regions or the union of different regions. For this reason, Peaucelle et al.
(2000) proposed a new characterization of LMI regions referred to as DR-regions and
considered uncertain systems by means of a parameter-dependent Lyapunov function.
In Peaucelle et al. (2000), DR-regions were shown to be able to describe non-convex
regions but only represented symmetrically, which motivated Bosche, Bachelier, and
Mehdi (2005) to extend the concept further to consider non-symmetrical regions. On
the other hand, Bachelier and Pradin (1999) developed an approach that allows speci-
fying not only a simple convex region, but also a non-convex region, defined as a union
of convex subregions. Then, Maamri, Bachelier, and Mehdi (2006) proposed a tech-
nique in order to achieve partial pole placement via aggregation in such regions. This
method can influence strongly the performance, in terms of settling time and damping
ratio. In Tornil-Sin, Theilliol, Ponsart, and Puig (2010), this method was applied to
fault-tolerant control.

Although the concept of the pole is not formally defined for LPV systems, Ghersin
and Pena (2002) showed that by including pole clustering specification in LPV design,
the performance of the LPV control systems could be improved. Moreover, R. Yang
et al. (2019) showed the existence of a relationship between pole placement and the
Lyapunov function. In fact, pole placement for gain-scheduled systems has progressed
strongly in the last decades, with several results concerning the design of observers
(Nejjari, Puig, de Oca, & Sadeghzadeh, 2009), state-feedback controllers (Bouazizi,
Kochbati, & Ksouri, 2001; R. Yang et al., 2019), H∞ controllers (Rotondo, Nejjari, &
Puig, 2014; Yu, Chen, & Woo, 2002), and application in many fields, such as aerospace
vehicles (Ghersin & Pena, 2002), UAV (López-Estrada, Ponsart, Theilliol, Zhang, &
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Astorga-Zaragoza, 2016), missile (Shen, Yu, Luo, & Mei, 2017), power system (Jabali
& Kazemi, 2017a), fuel cells (Rotondo, Fernandez-Canti, Tornil-Sin, Blesa, & Puig,
2016) and robotics (Jabali & Kazemi, 2017b).

However, based on the literature review, it seems that the aforementioned partial
pole placement technique has not been applied yet to gain-scheduled systems, such
as LPV and TS. In fact, such an extension is not trivial, as the design of controller
gain through aggregation introduces nonlinearities that destroy the polytopic decom-
position usually exploited in the LPV controller design. Motivated by this fact, the
main goal of this paper is to consider the problem of designing an LPV state-feedback
controller for LPV systems that can guarantee some desired closed-loop poles cluster-
ing in a region defined as the union of disjoint and non-symmetric subregions. It is
shown that it is possible to exploit the aggregation technique initially proposed for LTI
systems in Maamri et al. (2006) to achieve partial pole placement in LPV systems,
so that disjoint regions can be assigned for the closed-loop distribution of the poles.
The proposed design conditions are formulated through an LMI approach. In order to
deal with the nonlinearities introduced by the eigendecomposition required to achieve
partial pole placement, new varying parameters are introduced so that a polytopic
representation can be recovered.

In addition to the classical pole clustering problem, in this paper, we consider also an
extension referred to as shifting pole placement (Rotondo, Nejjari, & Puig, 2013, 2015).
This approach allows designing the controller gain in such a way that different values of
the varying parameters imply different regions where the closed-loop poles are situated.
By means of the shifting paradigm, the online modification of the performance can
be achieved, as demonstrated for example by Ruiz, Rotondo, and Morcego (2019)
and Ruiz, Rotondo, and Morcego (2020), who have applied this concept to saturated
system showing that it is possible to schedule the closed-loop performance according
to changes in the saturation function.

The main contributions of this paper can be summarized as follows:

• The partial pole placement originally developed in Maamri et al. (2006) for LTI
systems is extended to work with LPV systems.
• A procedure for the design of a state-feedback controller which achieves pole

clustering in a union of DR-regions is proposed for LPV systems.
• It is shown that in spite of the nonlinearities introduced by the aggregation

technique, it is possible to introduce new sets of varying parameters in terms of
which polytopic representations suitable for reducing the number of design LMIs
from infinite to finite can be obtained.

The rest of the paper is organized as follows. In Section 2, partial pole placement
background information is introduced. Section 3 explains in detail the pole clustering
in a union of regions for LPV systems. Section 4 discusses how the approach can
be extended according to the shifting paradigm. Section 5 shows the application of
the developed technique to a numerical example. Finally, Section 6 summarizes the
conclusions and suggests possible future work.

Notation: Rn×m and Cn×m denote the set of real and complex matrices with n rows
and m columns; AT , A∗ and A+ denote the transpose, the conjugate and the pseudo-
inverse of A, respectively; AH is the Hermitian matrix defined as AH = A + A∗; the
Euclidean norm is indicated by ||A||; ⊗ represents the Kronecker product; in matrix
inequalities, negative (semi-)definiteness is indicated by ≺ 0 (� 0), whereas � 0 (� 0)
denotes positive (semi-)definiteness.
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2. Background

The idea of LMI regions was first introduced by Chilali and Gahinet (1996) in order
to provide a Lyapunov-based characterization of pole clustering in stable subregions
of the complex plane. Their formal definition is given as follows:

Definition 1:(LMI region) A subset D of the complex plane is called an LMI region
if there exist a matrix α = [αkl] ∈ Sm×m and a matrix β = [βkl] ∈ Rm×m such that:

D = {s ∈ C : fD ≺ 0} (1)

with the characteristic function given by:

fD(s) = α+ sβ + s∗βT = [αkl + βkls+ βlks
∗]1≤k,l≤m (2)

In other words, LMI regions are subsets of the complex plane that are represented
by an LMI in s and s∗. In addition, a new characterization of regions was proposed in
Peaucelle et al. (2000) called DR-regions.

Definition 2:(DR-regions) Let R be a 2d× 2d Hermitian matrix defined as:

R =

[
R00 R10

R∗10 R11

]
∈ C2d×2d (3)

Then, the subset of the complex plane defined according to

DR = {s ∈ C : R00 + (R10s)
H +R11s

∗s ≺ 0} (4)

is called a DR-region of degree d.

The class of DR-regions is a class of open convex subsets of the complex plane that
includes (among others) half-planes, disks, conic sectors, vertical and horizontal strips
and ellipses, symmetrical or not with respect to the real axis. For example, the vertical
left half-plane defined by Re(s) < λ is characterized by a matrix R equal to:

R =

[
−2λ 1

1 0

]
(5)

while the interior of a disk with center c = c1 + c2i and radius r is characterized by:

R =

[
c2

1 + c2
2 − r2 −c1 + c2i

−c1 − c2i 1

]
(6)

In contrast to LMI regions, DR-regions are able to represent non-convex region.
Without any assumption on the matrix R11, DR-regions are not convex, but with
R11 � 0, DR-regions become a slight modification of the characterization provided
by LMI regions (Rotondo, 2017). In Bachelier and Pradin (1999), non-convex regions
were considered as unions of convex subregions.

Before introducing the partial pole placement for LPV systems, let us recall the
existing approach for LTI system (Maamri et al., 2006).
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Let us consider the following system:

ẋ(t) = Ax(t) +Bu(t) (7)

Then, the following lemmas can be applied:

Lemma 1 (Peaucelle et al., 2000): The matrix A is said to be DR-stable, or in other
words all its eigenvalues lie inside the region DR if and only if there exists a matrix
P � 0 such that:

R00 ⊗ P + (R10 ⊗ (PA))H +R11 ⊗ (A∗PA) ≺ 0 (8)

In Maamri et al. (2006), Lemma 1 has been extended to partial pole placement in
DR, which means that only p eigenvalues are wished to be affected by the feedback.
To do so, some matrices are defined as follows:

Λ = V −1AV =

[
Λ1 0
0 Λ2

]
C =

[
Ip 0

]
V −1

C+ = V

[
Ip
0

]
Â = CAC+ B̂ = CB

where V is the modal matrix of A, that is, the matrix whose columns are the eigen-
vectors of A. Λ1 ∈ Cp×p is associated to the set of p eigenvalues desired to be affected
by the feedback, whereas Λ2 denotes the remaining eigenvalues.

Then, the following lemma can be applied:

Lemma 2 (Maamri et al., 2006): There exists a state-feedback gain K̂ that assigns

p poles in DR if and only if there exist an matrix X̂ � 0 and a matrix Ŝ such that the
LMI: [

R00 ⊗ X̂ + (R10 ⊗ (ÂX̂ + B̂Ŝ))H Z∗ ⊗ (ÂX̂ + B̂Ŝ)∗

Z ⊗ (ÂX̂ + B̂Ŝ) −Id ⊗ X̂

]
≺ 0 (9)

holds, where Z is deduced from the Cholesky factorization R11 = Z∗Z. In this case, a
suitable state-feedback gain is:

K̂ = ŜX̂−1 (10)

3. Pole clustering in a union of regions for LPV system

In this section, the aggregation technique is extended to LPV systems to compute a
state-feedback controller gain which performs pole clustering in a union of regions for
LPV systems.

Let us recall that an LPV system is defined as a finite-dimensional time-varying
system whose state equation, although linear, is described by matrices which are func-
tion of some varying parameters θ(t) ∈ Θ ⊂ Rnθ (with Θ known closed set), that are
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assumed to be unknown a priori, but that can be measured or estimated in real-time:

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t) (11)

where A(θ(t)) ∈ Rnx×nx , B(θ(t)) ∈ Rnx×nu are the state and input matrices, x(t) ∈
Rnx denotes the system state, u(t) ∈ Rnu is the control input. The system (11) is said
to be polytopic if it can be represented by state-space matrices A(θ(t)) and B(θ(t))
which range over a convex set:

ẋ =

w∑
n=1

µn(θ(t))
(
Anx(t) +Bnu(t)

)
(12)

where µn are the non-negative coefficients of the polytopic decomposition such that:

w∑
n=1

µn(θ(t)) = 1 µn(θ(t)) ≥ 0 ∀n = 1, ..., w ∀θ ∈ Θ

Let us use a gain-scheduled state-feedback control law given by:

u(t) = K(θ(t))x(t) (13)

where K(θ(t)) is the controller gain to be designed.

3.1. Aggregation technique

The main idea of the algorithm employed to achieve pole clustering in a union of
regions is to use a structured feedback gain K(θ(t)) that modifies just a subset of the
system poles. Consider the Jordan canonical form for the matrix A(θ(t)):

Λ(θ(t)) = V (θ(t))−1A(θ(t))V (θ(t)) (14)

where V (θ(t)) is the modal matrix of A(θ(t)), which means that the columns of V (θ(t))
are the eigenvectors of A(θ(t)). Meanwhile Λ(θ(t)) can be rearranged in a form such
that:

Λ(θ(t)) =

[
Λ1(θ(t)) 0

0 Λ2(θ(t))

]
(15)

where Λ1(θ(t)) ∈ Cp×p is associated to the set of p eigenvalues that are wished to be
affected by the feedback. Let us define the following matrices:

C(θ(t)) =
[
Ip 0

]
V (θ(t))−1 (16)

with pseudo-inverse given by:

C(θ(t))+ = V (θ(t))

[
Ip
0

]
(17)
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and:

Â(θ(t)) = C(θ(t))A(θ(t))C(θ(t))+ (18)

B̂(θ(t)) =
[
Ip 0

]
V (θ(t))−1B(θ(t)) (19)

B̄(θ(t)) =
[
0 In−p

]
V (θ(t))−1B(θ(t)) (20)

and finally, consider a feedback gain defined as:

K(θ(t)) = K̂(θ(t))C(θ(t)) (21)

The closed-loop matrix then satisfies:

A(θ(t)) +B(θ(t))K̂(θ(t))C(θ(t)) = ...

... = V (θ(t))

[
Λ1(θ(t)) + B̂(θ(t))K̂(θ(t)) 0

B̄(θ(t))K̂(θ(t)) Λ2(θ(t))

]
V (θ(t))−1 (22)

which means that the eigenvalues associated to Λ1(θ(t)) are modified whereas
the eigenvalues of Λ2(θ(t)) are invariant with respect to the feedback K(θ(t)) =

K̂(θ(t))C(θ(t)), i.e. such feedback gain will only modify the p eigenvalues of inter-
est.

3.2. Partial DR-stability

In order to extend the pole clustering in a union of regions to LPV system, let us
consider the DR-stability of the LPV system (11), in the sense of all the frozen poles
of (11) lying in DR. By applying Lemma 1, DR-stability holds if there exists a matrix
P � 0 such that ∀θ ∈ Θ:

R00 ⊗ P + (R10 ⊗ (PA(θ(t))))H +R11 ⊗ (A(θ(t))∗PA(θ(t))) ≺ 0 (23)

The above means that for partial pole placement in DR being achieved by the
state-feedback gain K̂(θ(t)), the gain has to be chosen in such a way that it satisfies:

R00 ⊗ P̂ + (R10 ⊗ (P̂ (Â(θ(t)) + B̂(θ(t))K̂(θ(t)))))H + ...

...+R11 ⊗ ((Â(θ(t)) + B̂(θ(t))K̂(θ(t)))∗P̂ (Â(θ(t)) + B̂(θ(t))K̂(θ(t)))) ≺ 0 (24)

for some matrix P̂ � 0.
Deduced from the above, the next theorem states LMI conditions for obtaining a

controller gain that achieve partial pole placement.
Theorem 1: There exists a state-feedback gain K̂(θ) that assigns p eigenvalues of

the closed-loop matrix A(θ) +B(θ)K̂(θ)C(θ) in the region DR defined by (4) if there
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exist matrices X̂ � 0 and Ŝ(θ) of appropriate dimensions such that ∀θ ∈ Θ:[
R00 ⊗ X̂ + (R10 ⊗ (Â(θ)X̂ + B̂(θ)Ŝ(θ)))H Z∗ ⊗ (Â(θ)X̂ + B̂(θ)Ŝ(θ))∗

Z ⊗ (Â(θ)X̂ + B̂(θ)Ŝ(θ)) −Id ⊗ X̂

]
≺ 0 (25)

where Z is deduced from the Cholesky factorization R11 = Z∗Z. Then, the state-
feedback gain is given by:

K̂(θ(t)) = Ŝ(θ(t))X̂−1 (26)

Proof: It can be derived by following the steps in the proof of Theorem 2.1 in Maamri
et al. (2006). �

Hence, the partial pole placement procedure boils down in obtaining a solution for
the LMI (25), and then using (26) to recover the appropriate K̂(θ(t)).

It is necessary to mention that the design condition (25) requires satisfying an in-
finite number of conditions, which leads to a computational issue. In order to reduce
the number of conditions from infinite to finite, the most common way to solve this
problem is to use the polytopic assumption. However, the non-linearity introduced by
the multiplications in (18) implies that even if a polytopic representation is available
for A(θ(t)), it does not necessarily hold that the same polytopic coefficients describe

how Â(θ(t)) varies with respect to θ(t). However, it is possible to introduce new vary-
ing parameters, that are some nonlinear function of the original varying parameters,
hereafter denoted by θ̂(t), and then obtain a polytopic representation for the matrix

Â with coefficients that depend on θ̂. This can be done using available methods in the
literature, such as the bounding box (Sun & Postlethwaite, 1998) the singular value
decomposition boxing (Baranyi, 2009) or identification approaches (Fujimori & Ljung,
2005).

Hence the matrices Â(θ(t)) and B̂(θ(t)) are expressed as polytopic combination of

matrices Âi and B̂i as follows:

Â(θ(t)) = Â(θ̂(t)) =

r∑
i=1

αi(θ̂(t))Âi (27)

B̂(θ(t)) = B̂(θ̂(t)) =

r∑
i=1

αi(θ̂(t))B̂i (28)

where αi are the non-negative coefficients of the polytopic decomposition such that:

r∑
i=1

αi(θ̂(t)) = 1 αi(θ̂(t)) ≥ 0 ∀i = 1, ..., r ∀θ̂ ∈ Θ̂ ⊂ Rnθ̂ (29)

and the matrix function Ŝ(θ(t)) is constrained to satisfy:

Ŝ(θ(t)) = Ŝ(θ̂(t)) =

r∑
i=1

αi(θ̂(t))Ŝi (30)
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Then, the approach proposed by Sala and Ariño Sala and Ariño (2007) to check the

definiteness of double polytopic sums (as the ones arising from the terms B̂(θ)Ŝ(θ) in
(25)) can be applied by choosing a scalar s ∈ N and using the symbols Ps and P+

s to
denote the following sets:

Ps =
{
~p = [~p1, . . . , ~ps]

T ∈ Ns|1 ≤ ~pk ≤ s ∀k = 1, . . . , s
}

(31)

P+
s = {~p ∈ Ps|~pk ≤ ~pk+1, k = 1, . . . , s− 1} (32)

whereas P(~p) ⊂ Ps denotes the set of permutations, with possible repeated elements,
of the multi-index ~p, thus obtaining the following corollary.

Corollary 1: For any s ∈ N, with s ≥ 2, there exist a matrix X̂ � 0 and matrices
Ŝ1, Ŝ2, . . . , Ŝr such that:

∑
~m∈P(~p)

[
R00 ⊗ X̂ + (R10 ⊗ (Â~m1

X̂ + B̂~m2
Ŝ~m1

))H Z∗ ⊗ (Â~m1
X̂ + B̂~m2

Ŝ~m1
)∗

Z ⊗ (Â~m1
X̂ + B̂~m2

Ŝ~m1
) −Id ⊗ X̂

]
≺ 0

(33)
holds ∀~p ∈ P+

s , where Z is obtained from the Cholesky factorization R11 = Z∗Z,

then the state-feedback gain given by (26), with Ŝ computed using (30), assigns p

eigenvalues of the closed-loop matrix A(θ) + B(θ)K̂(θ)C(θ) in the region DR defined
by (4).

Proof: Taking into account the definition of Â (θ(t)), B̂ (θ(t)) and Ŝ (θ(t)) in (27)-
(30), the parameter-dependent LMI (25) is equivalent to:

r∑
i=1

r∑
j=1

αi(θ̂)αj(θ̂)

[
R00 ⊗ X̂ + (R10 ⊗ (ÂiX̂ + B̂jŜi))

H Z∗ ⊗ (ÂiX̂ + B̂jŜi)
∗

Z ⊗ (ÂiX̂ + B̂jŜi) −Id ⊗ X̂

]
≺ 0

(34)
which corresponds to the problem of verifying the negativity of a double polytopic
sum. By applying Polya’s theorem on definite quadratic forms (Sala & Ariño, 2007),
(33) is obtained. �

As discussed by Sala and Ariño (2007), the sufficient conditions obtained through
the application of Polya’s theorem become progressively less conservative when s in-
creases, and actually exact, i.e. necessary and sufficient, for a finite value of s.

3.3. Pole clustering in a union of regions for LPV systems

Assume now that the region of interest D is obtained as follows:

D =

q⋃
k=1

DRk (35)

where each subregion DRk is a DR-region defined in (4). Then, the pole clustering in
the region D can be performed by successive partial pole clustering in the subregions
DRk , for k = 1, ..., q. This can be achieved according to the following algorithm.

Algorithm
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• Step 1: Consider the state matrix of the LPV system (11):

A(θ(t)) =

w∑
n=1

µn(θ(t))An (36)

• Step 2: Let k = 0 and A0(θ(t)) = A(θ(t)).
• Step 3: Let k = k + 1.
• Step 4: Compute Vk−1(θ(t)) and Λk−1(θ(t)) such that Ak−1(θ(t))Vk−1(θ(t)) =
Vk−1(θ(t))Λk−1(θ(t)); rearrange Λk−1(θ(t)) and Vk−1(θ(t)) in the form:

Λk−1(θ(t)) =

[
Λ1
k−1(θ(t)) 0

0 Λ2
k−1(θ(t))

]
where Λ1

k−1(θ(t)) contains the pk eigenvalues to be shifted to DRk ; then calculate
Ck−1(θ(t)) as:

Ck−1(θ(t)) =
[
Ipk 0

]
Vk−1(θ(t))−1

• Step 5: Compute:

Âk−1(θ(t)) = Ck−1(θ(t))Ak−1(θ(t))Ck−1(θ(t))+ (37)

B̂k−1(θ(t)) = Ck−1(θ(t))Bk−1(θ(t)) (38)

• Step 6: Obtain a polytopic representation for Âk−1(θ(t)) and B̂k−1(θ(t)) in

terms of dependence on a new scheduling vector θ̂k−1:

Âk−1(θ(t)) = Âk−1(θ̂k−1(t)) =

r∑
i=1

αk−1,i(θ̂k−1(t))Âk−1,i (39)

B̂k−1(θ(t)) = B̂k−1(θ̂k−1(t)) =

r∑
i=1

αk−1,i(θ̂k−1(t))B̂k−1,i (40)

• Step 7: Find matrices X̂k > 0 and Ŝk(θ̂k−1(t)) such that Theorem 1/Corol-

lary 1 holds, with X̂ = X̂k, Ŝ(θk−1(t)) = Ŝk(θ̂k−1(t)), Â(θk−1(t)) = Âk−1

(θ̂k−1(t)), B̂(θk−1(t)) = B̂k−1(θ̂k−1(t)) and R = Rk. Then, calculate K̂k(θ̂k−1

(t)) = Ŝk(θ̂k−1(t))X̂−1
k

• Step 8: Once K̂k(θ̂k−1(t)) has been obtained, compute the state-feedback gain
at step k as:

Kk(θ(t), θ̂k−1(t)) = K̂k(θ̂k−1(t))Ck−1(θ(t))

and the closed-loop matrix at step k as:

Ak(θ(t), θ̂0(t), .., θ̂k−1(t)) = Ak−1(θ(t), θ̂0(t), .., θ̂k−2(t)) +B(θ(t))Kk(θ(t), θ̂k−1(t))
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• Step 9: If k 6= q then go to Step 3
• Step 10: Compute the final state-feedback gain as:

K(θ(t), θ̂0(t), ..., θ̂q−1(t)) =

q∑
k=1

Kk(θ(t), θ̂k−1(t)) (41)

that achieves the desired pole clustering in the specified union of regions.
• Step 11: Stop

4. Shifting pole clustering

4.1. DR(θ(t))-stability for LPV systems

In this section, a shifting pole clustering approach for LPV system is introduced, which
is inspired the ideas in Rotondo et al. (2013). Unlike the approach discussed in Section
3, hereafter we consider the case in which the LMI region is scheduled by the varying
parameter, which means that the considered region is some D(θ(t)), obtained through
subsets of the complex plane DR(θ(t)) defined according to:

DR(θ(t)) = {s ∈ C : R00(θ(t)) + (R10(θ(t))s)H +R11(θ(t))s∗s ≺ 0} (42)

where R(θ(t)) is a 2d× 2d Hermitian matrix given by:

R(θ(t)) =

[
R00(θ(t)) R10(θ(t))
R10(θ(t))∗ R11(θ(t))

]
∈ C2d×2d, θ ∈ Θ (43)

If the DR(θ(t))-stability of the LPV system (11) is considered, then the inequality
(23) becomes:

R00(θ(t))⊗P + (R10(θ(t))⊗ (PA(θ(t))))H +R11(θ(t))⊗ (A(θ(t))∗PA(θ(t))) ≺ 0 (44)

and for partial pole placement in DR(θ(t)), the aggregated state-feedback gain K̂(θ(t))
has to be chosen in such way that it satisfies:

R00(θ(t))⊗ P̂ + (R10(θ(t))⊗ (P̂ (Â(θ(t)) + B̂(θ(t))K̂(θ(t)))))H + ...

+R11(θ(t))⊗ ((Â(θ(t)) + B̂(θ(t))K̂(θ(t)))∗P̂ (Â(θ(t)) + B̂(θ(t))K̂(θ(t)))) ≺ 0 (45)

for some matrix P̂ � 0.
The following theorem provides the parameter-dependent LMIs required to achieve

partial pole placement in the shifting DR(θ)-region.

Theorem 2: There exists an aggregated state-feedback gain K̂(θ) that assigns p

eigenvalues in the region DR(θ) defined by (42) if there exist a matrix X̂ � 0 and a

matrix Ŝ(θ) such that ∀θ ∈ Θ:[
R00(θ)⊗ X̂ + (R10(θ)⊗ (Â(θ)X̂ + B̂(θ)Ŝ(θ)))H Z∗(θ)⊗ (Â(θ)X̂ + B̂(θ)Ŝ(θ))∗

Z(θ)⊗ (Â(θ)X̂ + B̂(θ)Ŝ(θ)) −Id ⊗ X̂

]
≺ 0 (46)

where Z(θ) is given by the parameter-varying Cholesky factorization R11(θ) =
Z∗(θ)Z(θ), then the aggregated feedback gain is given by (26).
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Proof: This theorem is a modification of Theorem 1, in which the matrices de-
scribing the DR-region are allowed to vary according to the varying parameter θ(t).
�

It is necessary to mention that due to the varying nature of R(θ(t)), there would

appear triple summations due to terms such as (R10(θ(t)) ⊗ (P̂ (Â(θ(t)) + B̂(θ(t))

K̂(θ(t)))))H . These terms can be handled using Polya’s theorem, as done in Corol-
lary 1 for the case of double summations, obtaining sufficient conditions that become
progressively less conservative and eventually necessary. The details are omitted. Note
that, by looking at (5)-(6), it is possible to constrain R10(θ) and R11(θ) to be constant,
and still obtain parameter-varying vertical half-planes or disks with a fixed center but
a parameter-varying radius, which can be used to change online the closed-loop per-
formance while reducing triple summations into double summations, thus simplifying
the application of Polya’s theorem.

4.2. Shifting pole clustering in a union of DR(θ(t))-regions for LPV
system

Assume the region of interest D(θ(t)) to be defined as follows:

D(θ(t)) =

q⋃
k=1

DRk(θ(t)) (47)

where each subregion DRk(θ(t)) is a region defined as in (42). Then, the shifting pole
clustering in D(θ(t)) can be performed by successive partial pole placement in the
subregions DRk(θ(t)), for k = 1, ..., q, where Rk(θ(t)) must be constrained to vary
polytopically in order to obtain a finite number of conditions which can be solved
computationally:

Rk(θ(t)) =

w∑
n=1

µn(θ(t))Rk,n (48)

The shifting pole clustering in a union of DR(θ(t))-regions is achieved through the
algorithm introduced in Section 3.3, the main differences are the following:

• At Step 1, additionally consider the varying of the regions as (48).
• In Step 6, a new polytopic representation for Rk (θ(t)) in terms of the new

scheduling vector θ̂k−1:

Rk(θ(t)) = Rk(θ̂k−1(t)) =

r∑
i=1

αk−1,i(θ̂k−1(t))Rk,i (49)

must be sought. An approximate solution can be found by considering the actual
values of Rk(θ(t)) for several values of θ(t) as if they were known measurements,
while the matrices Rk,i are unknown parameters to be estimated using estimation
techniques, e.g., least-squares. Further details about this point are provided in
connection with the example in Section 5.2.
• At Step 7, the LMI (46) should hold, with R(θ(t)) replaced by Rk(θ(t)).

12



5. Numerical example

5.1. DR-stabilization in a union of DR-regions

Let us consider a polytopic LPV system as in (12) with matrices given by:

A1 =

 2.05 −15.93 15.32
40.47 −326.56 298.17
44.86 −359.16 327.50

 A2 =

15.86 −44.81 41.76
53.22 −361.51 335.84
56.30 −388.59 360.65



B =
[
1 0 0

]T
where A(θ(t)) depends on the varying parameters θ(t) ∈ [0, 1] as follows:

A(θ(t)) = µ1(θ(t))A1 + µ2(θ(t))A2 (50)

with:

µ1(θ(t)) = θ(t) µ2(θ(t)) = 1− θ(t)

The system is clearly open-loop unstable since its frozen poles are all located in the
right half-plane, as shown in Fig. 1.
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Figure 1. Position of the open-loop frozen poles for θ ∈ [0, 1].

Pole clustering is performed as follows: at iteration k = 1, the two conjugate poles
are moved to DR1

; then, at iteration k = 2, the remaining open-loop unstable real
pole is moved to DR2

. The mentioned regions DR1
and DR2

are selected as disks with
predetermined center and radius, as listed in Table 1.
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Table 1. Parameter chosen for controller design.

Center of DR1
Radius of DR1

Center of DR2
Radius of DR2

D1 (−30, 0) 10 (−70, 0) 10
D2 (−50, 0) 17 (−100, 0) 17
D3 (−50, 0) 17 (−150, 0) 17
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(a) Poles position in D1 at iteration k = 1
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(b) Poles position in D2 at iteration k = 1

Figure 2. Position of the closed-loop frozen poles after the first iteration k = 1.

The design is performed using two different sets of regions, with D1 located closer
to the imaginary axis (hence, corresponding to a slower time response), whereas D2 is
located farther (thus corresponding to a faster response). Note that Table 1 provides
also another set of regions, denoted as D3, which will be considered later, in the next
subsection, for the sake of illustrating the shifting pole clustering technique.

The controller design is performed by applying Algorithm 1. It is worth mentioning
that, in Step 6 of the algorithm, after computing Âk−1 and B̂k−1, the new scheduling

vector θ̂k−1 has been obtained by choosing the elements of Âk−1 and B̂k−1 as varying
parameters, and the corresponding polytopic representation with matrices Âk−1,i and

B̂k−1,i has been obtained by applying the approach commonly referred to in the liter-
ature as bounding box, i.e. by considering different combinations of the maximum and
minimum values of each element of Âk−1 and B̂k−1. The interested reader will find the
values of Âk−1,i, B̂k−1,i, together with the K̂k,i obtained in step 7 of the algorithm,
reported in the Appendix.

Fig. 2 shows that after the iteration k = 1 of the algorithm, the two conjugate poles
(in the frozen parameter-varying sense) are moved into the first region DR1

, while
the third parameter-varying pole is kept at the original location. Fig. 3 shows that
at iteration k = 2 of the algorithm, the third pole is eventually moved to the second
region DR2

.
In order to validate the obtained control law, let us perform simulations starting

from the initial condition:

x(0) =
[
5 −5 5

]T
Fig. 4 shows the closed-loop response by applying the designed state-feedback con-
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(a) Poles position in D1 at iteration k = 2
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(b) Poles position in D2 at iteration k = 2

Figure 3. Position of the closed-loop frozen poles after the second iteration k = 2.

trol law. It is clear that if the dominant poles are farther from the imaginary axis, the
system converges to zero faster, i.e. the convergence of the states with chosen region
D2 is faster than with region D1, as it would be predicted by LTI considerations about
the pole location.

5.2. Shifting DR(θ(t))-stabilization in a union of parameter-varying
DR-regions

In this section, the previously described numerical system is considered for the im-
plementation of the shifting approach described in Section 4. In order to keep the
mathematical complexity simple, we consider that only the radius of the disks of in-
terest varies depending on the value of the scheduling parameter θ(t), which means
that:

Rk(θ(t)) =

[
c2

1 + c2
2 − rk(θ(t))2 −c1 + c2i
−c1 − c2i 1

]
with rk(θ(t)) defined as:

r1(θ(t)) = (1 + 1.2θ(t))r1,0 (51)

r2(θ(t)) = (1 + 3θ(t))r2,0 (52)

where rk,0 denotes the values of the radii denoted as D3 in Table 1.

It is worth mentioning that, after obtaining the polytopic matrices Âk−1,i and B̂k−1,i

at step 6 of the algorithm, in terms of the new varying parameter θ̂k−1, it is necessary

to describe the variation of the regions of interest Rk(θ(t)) in terms of θ̂k−1(t) as well
as possible. Although an exact solution to this problem, in general, does not exist, an
approximate solution can be found by fitting the following equation:

rk(θ(t))
2 =

r∑
i=1

αk−1,i(θ̂k−1(t)) · βk−1,i(θ̂k−1(t)) + βk−1,0 (53)
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Figure 4. The closed-loop response by pole clustering in D1 (blue) and D2 (red).
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in the least-squares sense, using as input data (αk−1,i(θ̂k−1(t)); rk(θ(t))
2) where

αk−1,i(θ̂(t)) are the known coefficients of the polytopic decomposition obtained be-
forehand and rk(θ(t))

2 is the radius of the circular region Rk (θ(t)). The coefficient
vector βk−1 = [ βk−1,0 βk−1,1 · · · βk−1,r ]T is then computed as:

βk−1 =
[
I αk−1

]+
rk(θ(t))

2 (54)

Fig. 5 shows the frozen-parameter poles position after shifting pole clustering in
D3, where the circles in red correspond to Rk(θ(t)) when θ = 0 while those in blue to
Rk(θ(t)) when θ = 1. Moreover, Fig.6 shows that the desired regions and the actual
positions of the closed-loop poles vary according to the value of θ.
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(a) Poles position in D3 at iteration k = 1
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(b) Poles position in D3 at iteration k = 2

Figure 5. Position of the closed-loop frozen poles using the shifting pole clustering approach.

Fig.7 shows that the behavior of the closed-loop state variables depends upon the
trajectory of θ. These responses have been obtained starting from the initial state

x(0) =
[
−5.6 5.4 6.1

]T
in four different cases, three of which corresponding to

constant values of the scheduling parameter θ = 0.2, θ = 0.6 and θ = 1 (red, green
and blue line, respectively), and the remaining case corresponding to a time-varying
scheduling parameter trajectory as follows: θ(t) = 0.6−0.4 cos(5πt) (purple line). It can
be seen from the figure that the closed-loop system behaves as expected, in the sense
that for the value of θ which corresponds to poles located farther from the imaginary
axis, a faster dynamics of the closed-loop system is obtained. The purple curve shows
that at the beginning of the simulation, the system behaves in an underdamped way
due to the value of the varying parameter being approximately equal to θ = 0.2
(exactly equal at t = 0); then, as the value of θ(t) increases with time, the closed-loop
frozen pole get closer to the real axis, which increases the damping and causes the
oscillations to fade away.

6. Conclusions

This paper has provided a procedure for pole clustering in a union of DR-regions
for LPV systems. From this technique, a method to compute a state-feedback gain
that achieves the desired closed-loop pole location has been deduced. Furthermore,
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Figure 6. Position of the closed-loop poles for different values of θ using the shifting approach.
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this technique has been extended to the shifting case, thus allowing pole clustering in
parameter-dependent varying regions which enables online modification of the tran-
sient performance. The proposed technique has been validated using simulations on
a numerical system, demonstrating the main characteristics and the effectiveness of
the developed control strategy. Future work will be devoted to developing equivalent
techniques for LPV systems with residual nonlinearities, such as parameter-varying
Lipschitz or quadratic terms.
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Appendix A. Numerical values for pole clustering in D1

The matrices Âk−1,i and B̂k−1,i in (39)-(40) during iteration of Algorithm 1 k = 1 are
given as follows:

Â0,1 =

[
2 −10

10.36 2

]
Â0,2 =

[
2 −10

10.36 1

]
Â0,3 =

[
2 −10
10 2

]
Â0,4 =

[
2 −10
10 1

]
Â0,5 =

[
2 −10.36

10.36 2

]
Â0,6 =

[
2 −10.36

10.36 1

]
Â0,7 =

[
2 −10.36
10 2

]
Â0,8 =

[
2 −10.36
10 1

]
Â0,9 =

[
1 −10

10.36 2

]
Â0,10 =

[
1 −10

10.36 1

]
Â0,11 =

[
1 −10
10 2

]
Â0,12 =

[
1 −10
10 1

]
Â0,13 =

[
1 −10.36

10.36 2

]
Â0,14 =

[
1 −10.36

10.36 1

]
Â0,15 =

[
1 −10.36
10 2

]
Â0,16 =

[
1 −10.36
10 1

]

B̂0,1 =

[
−0.43
−0.10

]
B̂0,2 =

[
−0.45
−0.11

]
B̂0,3 =

[
−0.43
−0.11

]
B̂0,4 =

[
−0.45
−0.10

]
then, the obtained controller gains are K̂k,i are:

K̂1,1 =
[
91.68 192.69

]
K̂1,2 =

[
91.97 187.00

]
K̂1,3 =

[
88.38 187.32

]
K̂1,4 =

[
89.11 185.33

]
K̂1,5 =

[
91.44 191.78

]
K̂1,6 =

[
91.78 186.36

]
K̂1,7 =

[
88.18 185.52

]
K̂1,8 =

[
89.03 184.72

]
K̂1,9 =

[
90.88 193.00

]
K̂1,10 =

[
90.87 186.08

]
K̂1,11 =

[
88.27 191.49

]
K̂1,12 =

[
88.50 186.24

]
K̂1,13 =

[
91.03 192.73

]
K̂1,14 =

[
90.89 185.82

]
K̂1,15 =

[
87.92 190.19

]
K̂1,16 =

[
88.58 186.09

]
During the iteration k = 2, the matrices Âk−1,i, B̂k−1,i and K̂k,i are obtained as

follows:

Â1,1 = 11 Â1,2 = 1 B̂1,1 = 0.18 B̂1,2 = 0.16

K̂2,1 = −405.98 K̂2,2 = −343.60

Appendix B. Numerical information of pole placement in D2

When the region of interest is the one denoted as D2 in Table 1, at iteration k = 1
of Algorithm 1, the matrices Âk−1,i and B̂k−1,i have the same values as the ones

previously shown for the case of D1. Then, the obtained controller gains K̂k,i are as
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follows:

K̂1,1 =
[
102.96 549.39

]
K̂1,2 =

[
102.32 539.21

]
K̂1,3 =

[
99.73 539.80

]
K̂1,4 =

[
99.44 533.60

]
K̂1,5 =

[
102.48 550.38

]
K̂1,6 =

[
102.98 538.35

]
K̂1,7 =

[
100.40 541.86

]
K̂1,8 =

[
98.61 531.05

]
K̂1,9 =

[
103.57 550.09

]
K̂1,10 =

[
104.04 536.49

]
K̂1,11 =

[
100.49 547.46

]
K̂1,12 =

[
99.79 537.14

]
K̂1,13 =

[
104.01 548.72

]
K̂1,14 =

[
104.29 535.83

]
K̂1,15 =

[
99.43 547.46

]
K̂1,16 =

[
99.24 536.97

]
At iteration k = 2, the matrices Âk−1,i and B̂k−1,i are obtained as follows:

Â1,1 = 11 Â1,2 = 1 B̂1,1 = 0.08 B̂1,2 = 0.06

and the controller gains K̂k,i are:

K̂2,1 = −1611.80 K̂2,2 = −1465.50
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