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Abstract. Let ν be a valuation of arbitrary rank on the polynomial ring K[x] with
coefficients in a field K. We prove comparison theorems between MacLane-Vaquié key
polynomials for valuations µ ≤ ν and abstract key polynomials for ν.

Also, some results on invariants associated to limit key polynomials are obtained. In
particular, if char(K) = 0 we show that all the limit key polynomials of unbounded
continuous families of augmentations have the numerical character equal to one.

Introduction

Consider a valuation ν on the polynomial ring K[x], with coefficients in a field K. Let
Γν be its value group. The graded algebra of ν is the integral domain

grν(K[x]) =
⊕

γ∈Γν
Pγ/P+

γ ,

where Pγ = {g ∈ K[x] | ν(g) ≥ γ} ⊃ P+
γ = {g ∈ K[x] | ν(g) > γ}.

A MacLane-Vaquié (MLV) key polynomial for ν is a monic polynomial φ ∈ K[x] whose
initial term generates a prime ideal in the graded algebra grν(K[x]), which cannot be gene-
rated by the initial term of a polynomial of smaller degree.

Let KP(ν) be the set of MLV key polynomials for ν. If KP(ν) 6= ∅, the minimal degree
of a polynomial in KP(ν) is called the degree of ν.

By the work of MacLane and Vaquié, we may associate to ν a countable sequence of
augmentations of valuations on K[x]

(1) µ0 < µ1 < · · · < µn < · · · < ν

containing certain numerical invariants of ν [4, 14, 7].
This chain of augmentations of valuations is a mixture of ordinary and limit augmenta-

tions. In both cases, certain MLV key polynomials of the intermediate valuations µn < ν
are involved.

The initial valuation µ0 has always degree one. Let KP0 = {φ0}, where φ0 ∈ KP(µ0) is
any MLV key polynomial of degree one.

If µn−1 < µn is an ordinary augmentation, there exists φn ∈ KP(µn−1) such that µn is
equal to the truncated valuation νφn . That is, in terms of φn-expansions of polynomials
f ∈ K[x], the valuation µn acts as follows

f =
∑

0≤s
asφ

s
n, deg(as) < deg(φn) =⇒ µn(f) = min {ν (asφ

s
n) | 0 ≤ s} .

To any such ordinary augmentation step we attach the set

KPn = {φn} .
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If µn−1 < µn is a limit augmentation, there exists an ordinal λn and a well-ordered set
(χα)α<λn of MLV key polynomials for µn−1 of constant degree m, such that the correspond-
ing ordinary augmentations ρα = νχα of µn−1 satisfy

α < β =⇒ ρα < ρβ < µn.

A polynomial f ∈ K[x] is stable with respect to the set (ρα)α<λn if there exists an index
α0 such that ρα(f) = ρα0(f) for all α ≥ α0. In this case, we denote this stable value by
ρ∞(f). Otherwise f is said to be unstable.

In a limit augmentation, all polynomials of degree m are stable, but there are necessarily
unstable polynomials. Any unstable monic polynomial φ of minimal degree is said to be a
MLV limit key polynomial for the set (ρα)α<λn .

The limit augmented valuation µn is equal to νφn for some MLV limit key polynomial.
To any such limit augmentation step, we associate the well-ordered set

KPn = {χα | α < λn}+ {φn} ,
where “+” denotes the usual sum of totally ordered sets.

A celebrated result of MacLane-Vaquié states that ν falls in one, and only one, of the
following cases [7, Thm. 4.3].

(a) After a finite number r of augmentation steps, we get µr = ν.

(b) After a finite number r of augmentation steps, ν is the stable limit ν = ρ∞, of some
well-ordered set (ρα)α<λ of ordinary augmentations of µr of constant degree, such that all
polynomials in K[x] are stable.

(c) It is the stable limit, ν = limn→∞ µn, of a countably infinite chain of augmentations
as in (1), with unbounded degree.

We say that ν has finite depth r, quasi-finite depth r, or infinite depth, respectively.
If ν has quasi-finite depth, consider the totally ordered set

KP∞ = {χα | α < λ} ,
where χα ∈ KP(µr) is a MLV key polynomial such that ρα = νχα , for all α < λ.

Then, the well-ordered set of polynomials:

KP =


KP0 + · · ·+KPr, if ν has finite depth r,

KP0 + · · ·+KPr +KP∞, if ν has quasi-finite depth r,

KP0 + · · ·+KPn + · · · , if ν has infinite depth,

is a complete set of key polynomials for ν, as defined by F.J. Herrera Govantes, W. Mahboub,
M.A. Olalla Acosta and M. Spivakovsky in [2]. That is, for any f ∈ K[x] there existsQ ∈ KP
such that ν(f) = νQ(f). As a consequence, for any γ ∈ Γν , the set of polynomials

KPγ =
{
aQn1

1 · · ·Q
n`
` | a ∈ K

∗, Q1, . . . , Q` ∈ KP, n1, . . . , n` ∈ N
}
∩ Pγ

is a set of generators of Pγ as an additive group.
This property is the motivation for Spivakovsky’s strategy to attack the problem of local

uniformization [8, 12].
Certain abstract key polynomials were introduced by J. Decaup, W. Mahboub and M.

Spivakovsky as an intrinsic characterization of the polynomials in KP [1]. This idea was de-
veloped by Novacoski and Spivakovsky in [9, 10], where they proved some further properties
of key polynomials.

In this paper, we have a double aim. On one hand, in section 2, we review some of
these results, aiming at a determination of which MLV key polynomials of the intermediate
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valuations µn are abstract key polynomials for ν. We complete in this way some partial
results from [1, Sec. 3].

In section 3 we obtain similar results for limit key polynomials. Abstract limit key
polynomials were introduced by Novacoski and Spivakovsky in [9]. We prove that they
coincide with the MLV limit key polynomials of the limit augmentation steps in (1).

On the other hand, in section 4, we obtain some results on invariants attached to limit
key polynomials φ of a continuous family of augmentations

(ρα)α<λ , ρα = [µ; χα, γα],

of some base valuation µ. Our main result in this section is Theorem 4.11, where we prove
an identity between some of these invariants:

(2) t∞(φ) b∞ = mult(φ),

whenever the set of values γα = ρα (χα) is unbounded in a suitable group.

The number mult(φ) is the least positive integer b such that ∂b(φ) 6= 0, where ∂b = 1
b!

∂b

∂xb

is the b-th formal derivative, which makes sense in any characteristic.
For any α, consider the χα-expansion φ =

∑
0≤s as,αχ

s
α and let tα(φ) be the maximal

index s such that ρα(φ) = ρα (as,αχ
s
α). This positive integer tα(φ) stabilizes for α sufficiently

large [13, Sec. 3], [2, Sec. 4]. We denote by t∞(φ) the stable value of tα(φ), which is known
as the numerical character of φ.

Finally, for any α, let bα be the largest positive integer such that (ν(χα)− ν(∂bα(χα))/bα
takes a maximal value in Γν⊗Q. It is shown in [2, Sec. 7] that bα stabilizes for α sufficiently
large. We define b∞ to be the stable value of bα.

As a consequence of (2), if char(K) = 0, then t∞(φ) = b∞ = 1, because mult(φ) = 1.

1. Preliminaries

1.1. Valuations on a polynomial ring. Consider a valued field (K, v). Let k be the class
field of the valuation ring and Γ = v(K∗) the value group. Denote the divisible hull of Γ by

ΓQ = Γ⊗Q.

Let K[x] be the polynomial ring in one indeterminate. All the valuations on K[x] consi-
dered in this paper are assumed to extend this fixed valuation v on K.

Consider a valuation ν on K[x]. That is, for some embedding Γ ↪→ Λ into another ordered
abelian group, we consider a mapping

ν : K[x] −→ Λ ∪ {∞}
whose restriction to K is v, and which satisfies the following two conditions:

(1) ν(fg) = ν(f) + ν(g), ∀ f, g ∈ K[x].

(2) ν(f + g) ≥ min{ν(f), ν(g)}, ∀ f, g ∈ K[x].

The support of ν is the prime ideal

p = ν−1(∞) ∈ Spec(K[x]).

The value group of ν is the subgroup Γν ⊂ Λ generated by ν (K[x] \ p).
The valuation ν induces a valuation on the residue field κ(p), the field of fractions of

K[x]/p. Let kν be the residue class field of this valuation on κ(p).
Clearly, κ(0) = K(x), while for p 6= 0 the field κ(p) is a simple finite extension of K.
The extension ν/v is commensurable if Γν/Γ is a torsion group. In this case, there is a

canonical embedding Γν ↪→ ΓQ. All valuations with non-trivial support are commensurable
over v.
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We denote the graded algebra of ν defined in the Introduction by

Gν = grν(K[x]).

If ν has non-trivial support p 6= 0, there is a natural isomorphism of graded algebras

(3) Gν ' grν̄(κ(p)),

where ν̄ is the valuation on κ(p) induced by ν.
Consider the initial term mapping inν : K[x]→ Gν , given by inν 0 = 0 and

inν g = g + P+
ν(g) ∈ Pν(g)/P+

ν(g),

if g 6= 0. The following definitions translate properties of the action of ν on K[x] into
algebraic relationships in the graded algebra Gν .

Definition 1.1. Let g, h ∈ K[x].
We say that g, h are ν-equivalent, and we write g ∼ν h, if inν g = inν h.
We say that g is ν-divisible by h, and we write h |ν g, if inν h | inν g in Gν .

1.2. MacLane-Vaquié key polynomials. A polynomial g ∈ K[x] is ν-irreducible if
(inν g)Gν is a non-zero prime ideal.

We say that g is ν-minimal if g -ν f for all non-zero f ∈ K[x] with deg(f) < deg(g).

For an arbitrary g ∈ K[x] we may define the truncation νg as we did in the introduction
for key polynomials:

f =
∑

0≤s
asg

s, deg(as) < deg(g) =⇒ νg(f) = min {ν (asg
s) | 0 ≤ s} .

This function νg is not necessarily a valuation, but it is useful to characterize the ν-
minimality of g.

Lemma 1.2. [6, Prop. 2.3] A polynomial g ∈ K[x] \K is ν-minimal if and only if νg = ν.

A MacLane-Vaquié (MLV) key polynomial for ν is a monic polynomial in K[x] which is
ν-minimal and ν-irreducible. A MLV key polynomial is necessarily irreducible in K[x].

We recall that KP(ν) denotes the set of MLV key polynomials for ν.

Suppose that ν has non-trivial support. By the isomorphism of (3), every non-zero
homogeneous element of Gν is a unit. Therefore, no polynomial in K[x] can be ν-irreducible.
Thus, KP(ν) = ∅.

If KP(ν) 6= ∅, the following subset of Γν is a subgroup:

Γν,deg(ν) = {ν(a) | 0 ≤ deg(a) < deg(ν)} ,
where deg(ν) is the minimal degree of the polynomials in KP(ν) [6, Lem. 2.11].

Definition 1.3. The relative ramification index of ν is the index erel(ν) =
(
Γν : Γν,deg(ν)

)
.

Consider the subring of homogeneous elements of degree zero in the graded algebra

∆ = ∆ν = P0/P+
0 ⊂ Gν .

There are canonical injective ring homomorphisms k ↪→ ∆ ↪→ kν . We denote the algebraic
closure of k in ∆ by

κ = κ(ν) ⊂ ∆.

This is a subfield such that κ∗ = ∆∗, the multiplicative group of all units in ∆.

Theorem 1.4. [6, Thm. 4.4] The set KP(ν) is empty if and only if all the homogeneus
elements in Gν are units. Equivalently, ν/v is commensurable and κ = ∆ = kν is an
algebraic extension of k.
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For any φ ∈ KP(ν), we denote by [φ]ν ⊂ KP(ν) the subset of all MLV key polynomials
which are ν-equivalent to φ.

Theorem 1.5. [6, Thm. 4.2] Suppose ν/v incommensurable. Let φ ∈ K[x] be a monic
polynomial of minimal degree satisfying ν(φ) 6∈ ΓQ. Then, φ is a MLV key polynomial for
ν, and KP(ν) = [φ]ν . In this case, κ = ∆ = kν is a finite extension of k.

Theorem 1.6. [6, Thms. 4.5,4.6] Suppose ν/v commensurable and KP(ν) 6= ∅. Let φ be a
MLV key polynomial for ν of minimal degree m. Let e = erel(ν).

Let u = inν a ∈ G∗ν , for some a ∈ K[x] such that deg(a) < m and ν(a) = eν(φ). Then,
ξ = (inν φ)eu−1 ∈ ∆ is transcendental over k and satisfies ∆ = κ[ξ].

Moreover, the canonical embedding ∆ ↪→ kν induces an isomorphism κ(ξ) ' kν .

These comensurable extensions ν/v admitting MLV key polynomials are called residually
transcendental valuations on K[x].

The pair φ, u determines a (non-canonical) residual polynomial operator

R = Rν,φ,u : K[x] −→ κ[y],

whose images are monic polynomials in the indeterminate y, which are not divisible by y
[6, Sec. 5]. This operator facilitates a complete description of the set KP(ν).

Theorem 1.7. [6, Prop. 6.3] Suppose ν/v commensurable and KP(ν) 6= ∅. Let φ be a MLV
key polynomial for ν of minimal degree m. A monic χ ∈ K[x] is a key polynomial for ν if
and only if either

(1) deg(χ) = m and χ ∼ν φ, or
(2) deg(χ) = me deg(R(χ)) and R(χ) is irreducible in κ[y].

Moreover, χ, χ′ ∈ KP(ν) are ν-equivalent if and only if R(χ) = R(χ′). In this case,
deg(χ) = deg(χ′).

The set KP(ν)/∼ν is in canonical bijection with the maximal spectrum of ∆ [6, Thm.
6.7]. Since the choice of a pair φ, u as above determines an isomorphism ∆ ' κ[y], it induces
a (non-canonical) bijection between KP(ν)/∼ν and the set of monic irreducible polynomials
in κ[y].

1.3. Chains of valuations. Let us fix an embedding Γν ↪→ Λ of ordered groups.
Let µ be another valuation on K[x] taking values in a subgroup of Λ. We say that

µ ≤ ν if µ(f) ≤ ν(f), ∀ f ∈ K[x].

If moreover µ 6= ν, we write µ < ν.
Suppose that µ < ν. Let Φµ,ν be the set of all monic polynomials φ ∈ K[x] of minimal

degree among those satisfying µ(φ) < ν(φ).
By a well known result of MacLane-Vaquié [14, Sec. 1], any φ ∈ Φµ,ν is a MLV key

polynomial for µ and satisfies

µ(f) = ν(f) ⇐⇒ φ -µ f, ∀ f ∈ K[x].

Actually, Φµ,ν is a whole class in KP(µ)/∼µ. That is, Φµ,ν = [φ]µ, for all φ ∈ Φµ,ν [7,
Cor. 2.5]. We define

deg (Φµ,ν) = deg(φ) for any φ ∈ Φµ,ν .

For any chain µ < η < ν of valuations, we have Φµ,ν = Φµ,η [7, Cor. 2.5]. In particular,

(4) µ(f) = ν(f) ⇐⇒ µ(f) = η(f), ∀ f ∈ K[x].
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Given a MLV key polynomial φ ∈ KP(ν) and an element γ ∈ Λ ∪ {∞} such that γ >
ν(φ), we may consider the augmented valuation ν ′ = [ν; φ, γ] defined using φ-expansions as
follows:

f =
∑

0≤s
asφ

s, deg(as) < deg(φ) =⇒ ν ′(f) = min {ν (as) + sγ | 0 ≤ s} .

The polynomial φ is a MLV key polynomial for ν ′ of minimal degree [6, Cor. 7.3].

2. Abstract key polynomials

Consider a valuation ν on K[x].
Abstract key polynomials for ν were introduced by J. Decaup, W. Mahboub and M.

Spivakovsky in [1] as an intrinsic characterization of the members of a complete set of key
polynomials defined by F.J. Herrera Govantes, W. Mahboub, M.A. Olalla Acosta and M.
Spivakovsky in [2].

In this section, we review some of these results. Our aim is to find exactly which MLV
key polynomials of the valuations µ ≤ ν are abstract key polynomials for ν, completing in
this way some partial results from [1, Sec. 3].

2.1. Invariants of polynomials with respect to a given valuation. Let N be the set
of positive integers. For any b ∈ N, consider the linear differential operator ∂b on K[x],
defined by Taylor’s formula:

f(x+ y) =
∑
0≤b

∂b(f)yb, ∀ f ∈ K[x],

where y is another indeterminate. Note that

∂b(x
n) =

(
n
b

)
xn−b, ∀n ∈ N,

if we agree that
(
n
b

)
= 0 whenever n < b.

Let f ∈ K[x] be a polynomial of positive degree. Denote

mult(f) = least b ∈ N such that ∂b(f) 6= 0.

Clearly, mult(f) = 1 if char(K) = 0. If char(K) = p, then mult(f) = pr is the largest
power of p such that f belongs to K[xp

r
].

This integer mult(f) is an intrinsic datum of f . We are interested in some data that may
be attached to f in terms of the valuation ν.

Definition 2.1. Let f ∈ K[x] \K such that ν(f) <∞. We define

ε(f) = max

{
ν(f)− ν(∂b(f))

b

∣∣∣ b ∈ N
}
∈ (Γν)Q .

If ν(f) =∞, we define ε(f) =∞.

In particular, if ν(f) <∞ we have

(5) ν(∂b(f)) ≥ ν(f)− b ε(f), ∀ b ≥ 0,

and we define I(f) ⊂ N to be the set of positive integers for which equality holds.
If ν(f) = ∞ and f is irreducible, we agree that I(f) = {mult(f)}. Otherwise, the set

I(f) is not defined.

Examples.

• If deg(f) = 1, then ε(f) = ν(f) and I(f) = {1}.
• If a ∈ K∗, then ε(af) = ε(f) and I(af) = I(f).
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• If f is monic and b = deg(f), then ∂b(f) = 1. Hence, ν(f)/ deg(f) ≤ ε(f).

• If b 6∈ [mult(f),deg(f)], then ∂b(f) = 0. Hence, I(f) ⊂ [mult(f),deg(f)].

• For a ∈ K and f = (x− a)n, we have ε(f) = ν(x− a) and

I(f) = [1, n] ∩ N, if char(k) = 0,

I(f) =
{
b ∈ [1, n] ∩ N

∣∣∣ p - (nb )} , if char(k) = p.

Novacoski and Spivakovsky found an interesting interpretation of ε(f) in [10].

Proposition 2.2. Let f ∈ K[x] be a monic polynomial such that ν(f) <∞. Let Z(f) ⊂ K
be the multiset of roots of f in an algebraic closure of K.

For any extension ν̄ of ν to K[x], we have

(6) ε(f) = max{ν̄(x− θ) | θ ∈ Z(f)}.
Moreover, the multiplicity of ε(f) in the multiset {ν̄(x − θ) | θ ∈ Z(f)} is equal to

max(I(f)).

Proof. The equality (6) is proved in [10, Prop. 3.1]. We reproduce the proof because
we need it to prove the second statement.

Let Z(f) = {θ1, . . . , θn}, δ = max{ν̄(x − θi) | 1 ≤ i ≤ n}. Let r be the multiplicity of δ
in this multiset. For any integer 1 ≤ s ≤ n, we have

∂s(f) =
∑
J

∏
i 6∈J

(x− θi)

 =⇒ ν̄ (∂s(f)) ≥ min
J

∑
i 6∈J

ν̄(x− θi)

 ,

where J runs on all subsets of [1, n] ∩ N of cardinality s.
For s = r, the set J0 = {i ∈ [1, n] ∩ N | ν̄(x− θi) = δ} is the unique subset of cardinality

r for which the term
∑

i 6∈J0 ν̄(x− θi) takes the minimal value. Hence,

ν(∂r(f)) =
∑
i 6∈J0

ν̄(x− θi).

This implies

ν(f)− ν(∂r(f)) =
∑
i∈J0

ν̄(x− θi) = rδ.

For any s 6= r, let J be one of the subsets of cardinality s for which
∑

i 6∈J ν̄(x− θi) takes
the minimal value. Then,

(7) ν(f)− ν(∂s(f)) ≤
∑
i∈J

ν̄(x− θi) ≤ sδ.

This proves that ε(f) = δ and r belongs to I(f).
Now, if s > r, there is at least one index i ∈ J for which ν̄(x− θi) < δ. Hence, we get an

strict inequality in (7). This proves that s 6∈ I(f). �

Corollary 2.3. For any two f, g ∈ K[x] \K, we have

(8) ε(fg) = max{ε(f), ε(g)}.
Moreover, if ε(f) < ε(g) <∞, then I(fg) = I(g).

Proof. The equality (8) follows immediately from Proposition 2.2.
Suppose ε(f) < ε(g) <∞, and denote ε = ε(g) = ε(fg). For any b ∈ N,

∂b(fg) =

b∑
j=0

∂j(f)∂b−j(g) =⇒ ν (∂b(fg)) ≥ min{ν(∂j(f)) + ν(∂b−j(g)) | 0 ≤ j ≤ b}.
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For any index j > 0 the inequality (5) shows that

ν(∂j(f)) + ν(∂b−j(g)) ≥ ν(f)− jε(f) + ν(g)− (b− j)ε > ν(fg)− b ε.
For the index j = 0,

ν(f) + ν(∂b(g)) ≥ ν(f) + ν(g)− b ε = ν(fg)− b ε,
and equality holds if and only if b ∈ I(g). This proves that I(fg) = I(g). �

Remark 2.4. If supp(ν) = fK[x], then Proposition 2.2 still holds for f . In fact, there
must be a root θ ∈ Z(f) such that ν̄(x− θ) =∞. Then, necessarily supp(ν̄) = (x− θ)K[x].
Hence, the multiplicity of∞ in the multiset {ν̄(x−θ) | θ ∈ Z(f)} is equal to the multiplicity
of θ in the multiset Z(f), which coincides with mult(f) because f is irreducible.

2.2. Abstract key polynomials. Basic properties. Following the criterion of [9], we
drop the adjective “abstract” and talk simply of key polynomials for the valuation ν.

Definition 2.5. A monic Q ∈ K[x] is a key polynomial for ν if for all f ∈ K[x], it satisfies

0 < deg(f) < deg(Q) =⇒ ε(f) < ε(Q).

Examples

• All monic polynomials of degree one are key polynomials for ν.
• If supp(ν) = φK[x] for a monic φ ∈ K[x], then φ is a key polynomial for ν.

On the other hand, we saw in section 1.2 that KP(ν) = ∅ in this case.

By Corollary 2.3, all key polynomials are irreducible in K[x].
Let p be the characteristic exponent of the valued field (K, v). That is,

p =

{
char(k), if char(k) > 0,

1, if char(k) = 0.

Proposition 2.6. [9, Prop. 2.4] If Q ∈ K[x] is a key polynomial, then all the elements in
I(Q) are a power of the characteristic exponent p.

The next basic property of key polynomials is a generalization of [1, Prop. 10].

Lemma 2.7. Let Q ∈ K[x] be a key polynomial for ν, and let f ∈ K[x] be non-constant
polynomial such that ε(f) < ε(Q). Consider the division with remainder in K[x]:

f = a+ qQ, deg(a) < deg(Q).

Then, ν(f) = ν(a) < ν(qQ).

Proof. Suppose that ν(qQ) ≤ ν(a). Then, we have ν(qQ) ≤ ν(f) as well. Let us show
that this leads to a contradiction.

By Corollary 2.3, a 6= 0. Let us agree that ε(a) = −∞ if a ∈ K∗.
Since Q is a key polynomial, ε(a) < ε(Q). For any b ∈ I(qQ), we have

ν (∂b(f)) ≥ ν (f)− b ε(f) > ν (f)− b ε(Q) ≥ ν (qQ)− b ε(Q),

ν (∂b(a)) ≥ ν (a)− b ε(a) > ν (a)− b ε(Q) ≥ ν (qQ)− b ε(Q).

Since ∂b(qQ) = ∂b(f)− ∂b(a), we deduce

ν(qQ)− b ε(qQ) = ν (∂b(qQ)) > ν (qQ)− b ε(Q).

This implies ε(qQ) < ε(Q), contradicting Corollary 2.3. �

Corollary 2.8. Let Q ∈ K[x] be a key polynomial for ν, and let f ∈ K[x] be non-constant
polynomial such that ε(f) < ε(Q). Then, inν f is a unit in Gν .
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Proof. Corollary 2.3 shows that f is not divisible by Q in K[x]. Since Q is irreducible,
there is a Bézout identity in K[x]:

aQ+ bf = 1, deg(b) < deg(Q).

By Lemma 2.7, bf ∼ν 1, or equivalently, (inν b)(inν f) = inν 1 in Gν . �

Proposition 2.9. [1, Prop. 12] If Q is a key polynomial for ν, then the ν-truncation
function νQ is a valuation on K[x] such that νQ ≤ ν.

2.3. Comparison between abstract and MLV key polynomials. If ν has trivial sup-
port, then any key polynomial Q for ν is a MLV key polynomial for νQ [1, Thm. 23].

The following result does not assume trivial support and it shows that Q has minimal
degree in KP(νQ).

Proposition 2.10. If Q is a key polynomial for ν such that ν(Q) <∞, then Q is a MLV
key polynomial of minimal degree for νQ.

Proof. By Lemma 1.2, Q is νQ-minimal. Thus, Q -ν 1, so that inν Q is not a unit in Gν .
On the other hand, for all polynomials f ∈ K[x] of degree less than deg(Q), the element

inν f is a unit in Gν . In fact, this follows from ε(f) < ε(Q), by Corollary 2.8.
Hence, Q is a MLV key polynomial of minimal degree for νQ [6, Thm. 3.2+Prop. 3.5]. �

The rest of the section is devoted to analyzing which MLV polynomials of valuations
µ ≤ ν are (abstract) key polynomials for ν. The next two results are crucial for this
purpose.

Proposition 2.11. [1, Lem. 14+Prop. 15], [9, Prop. 2.7] Let Q ∈ K[x] be a key polynomial
for ν. Let f =

∑
0≤s asQ

s be the canonical Q-expansion of a non-zero f ∈ K[x]. Denote by

Sν,Q(f) the set of indices s for which ν(asQ
s) = νQ(f). Then,

(i) For all b ∈ N we have

(9) νQ (∂b(f)) ≥ νQ(f)− b ε(Q).

(ii) If Sν,Q(f) 6= {0}, then equality holds in (9) for some b ∈ N.

(iii) If equality holds in (9) for b ∈ N and νQ (∂b(f)) = ν (∂b(f)), then ε(f) ≥ ε(Q).
If in addition, ν(f) > νQ(f), then ε(f) > ε(Q).

Proposition 2.12. [1, Prop. 20+Lem. 24] Let Q,Q′ ∈ K[x] be key polynomials for ν.
Then,

ε(Q) ≤ ε(Q′) ⇐⇒ νQ ≤ νQ′ .
In this case, νQ′(Q) = ν(Q). Moreover, ε(Q) < ε(Q′) if and only if νQ(Q′) < ν(Q′).

From now on, we fix a valuation µ on K[x] with values in the group Γν and satisfying

µ ≤ ν.

Let us first determine for which MLV key polynomials φ for µ the truncation νφ is a
valuation.

Lemma 2.13. Suppose µ < ν, and take φ ∈ KP(µ).

(1) φ ∈ Φµ,ν =⇒ νφ is a valuation and µ < νφ ≤ ν.
(2) φ 6∈ Φµ,ν , deg(φ) ≤ deg (Φµ,ν) =⇒ νφ = µ.
(3) deg(φ) > deg (Φµ,ν) =⇒ νφ is not a valuation.
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Proof. (1) For any φ ∈ Φµ,ν , the function νφ coincides with the augmented valuation
[µ;φ, ν(φ)] introduced in section 1.3. The inequalities µ < νφ ≤ ν are obvious.

(2) Suppose φ 6∈ Φµ,ν and deg(φ) ≤ deg (Φµ,ν). Then,

µ(φ) = ν(φ), µ(a) = ν(a), ∀ a ∈ K[x] with deg(a) < deg(φ).

Hence, µφ = νφ. Since φ is µ-minimal, Lemma 1.2 shows that µ = µφ = νφ.

(3) By section 1.3, Φµ,ν = [Q]µ for some Q ∈ KP(µ). Suppose that deg(φ) > deg(Q)
and νφ is a valuation. Let us derive a contradiction.

By the definition of νφ and Lemma 1.2, φ is νφ-minimal. Hence, inνφ φ is not a unit in
Gνφ . By Theorem 1.4, the set KP(νφ) is not empty.

Therefore, we may apply [6, Thm. 3.9] to both valuations µ and νφ. For all monic
polynomials f ∈ K[x] we have

µ(f)

deg(f)
≤ µ(φ)

deg(φ)
,

νφ(f)

deg(f)
≤

νφ(φ)

deg(φ)
,

and equality holds if and only if f is µ-minimal, or νφ-minimal, respectively.
If we apply these inequalities to f = Q we get a contradiction:

µ(Q)

deg(Q)
<

ν(Q)

deg(Q)
=

νφ(Q)

deg(Q)
≤

νφ(φ)

deg(φ)
=

ν(φ)

deg(φ)
=

µ(φ)

deg(φ)
=

µ(Q)

deg(Q)
,

where the last equality holds because Q is µ-minimal. �

Lemma 2.14. [9, Lem. 2.11] Let Q be a key polynomial for ν such that νQ < ν. Then, all
the polynomials in ΦνQ,ν are key polynomials for ν.

Proposition 2.15. Let µ be a valuation on K[x] such that µ ≤ ν. Then all the MLV key
polynomials for µ of minimal degree are key polynomials for ν.

Proof. If µ = ν and KP(ν) = ∅, the statement of the Proposition is vacuously true.
Therefore, in the case µ = ν we may assume that KP(ν) 6= ∅,

We proceed by induction on deg(µ). If deg(µ) = 1, the statement is obvious because all
the monic polynomials of degree one are key polynomials.

Suppose deg(µ) ≥ 2 and the statement holds for all valuations ρ < ν of degree less than
deg(µ). Let φ ∈ KP(µ) be a MLV key polynomial for µ of minimal degree deg(φ) = deg(µ).

Since KP(µ) 6= ∅, [7, Lem. 4.5] shows that µ has finite depth. By the theorem of
MacLane-Vaquié, µ is the augmentation of a valuation ρ of smaller degree. Let us discuss
in an independent way the cases in which µ is an ordinary or a limit augmentation of ρ.

Ordinary augmentation. We have µ = [ρ;χ, µ(χ)], for a certain MLV key polynomial
χ ∈ KP(ρ) satisfying µ(χ) > ρ(χ), which becomes a MLV key polynomial of minimal degree
for µ [6, Cor. 7.3].

In particular, deg(φ) = deg(χ) and µ(φ) = µ(χ) [6, Thm. 3.9]. Let us write φ = χ + a,
with a ∈ K[x] of degree less than deg(χ). Since Φρ,µ = [χ]ρ, we have

ρ(a) = µ(a) ≥ µ(χ) > ρ(χ).

Hence, φ ∼ρ χ, so that φ ∈ Φρ,µ.
Now, let Q ∈ KP(ρ) be a MLV key polynomial for ρ of minimal degree; that is, deg(Q) =

deg(ρ) < degµ) = deg(φ). By the induction hypothesis, Q is a key polynomial for ν.
Since φ -ρ Q, we have Q 6∈ [φ]ρ = Φρ,µ = Φρ,ν . By Lemma 2.13, νQ = ρ. Thus, Lemma

2.14 shows that φ ∈ Φρ,µ is a key polynomial for ν.
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Limit augmentation. The valuation ρ admits a well-ordered set (ρα)α<λ of ordinary
augmentations of constant degree m, determined by MLV key polynomials χα ∈ KP(ρ) of
degree m such that ρα = µχα = νχα .

All the polynomials f ∈ K[x] of degree less than or equal to m are stable; that is,
ρα(f) = µ(f) = ν(f) for all α sufficiently large.

There are polynomials which are not stable, and we have µ = νϕ for some monic unstable
ϕ ∈ K[x] of minimal degree, which becomes a MLV key polynomial of minimal degree for
µ [6, Cor. 7.13]. See section 3.1 for a more precise definition of limit augmentations.

In particular, deg(ϕ) = deg(φ) and µ(ϕ) = µ(φ) [6, Thm. 3.9]. Let us write φ = ϕ + a,
with a ∈ K[x] of degree less than deg(ϕ). By the minimality of deg(ϕ), the polynomial a is
stable; that is, for some index α0 we have

ρα(a) = µ(a) ≥ µ(ϕ) > ρα(ϕ), ∀α ≥ α0.

Hence, φ ∼ρα ϕ for all α ≥ α0. This implies that φ is unstable too:

ρα(φ) = ρα(ϕ) < µ(ϕ) = µ(φ), ∀α ≥ α0.

By the induction hypothesis, all the χα are key polynomials for ν. Take any b ∈
[1, deg(φ)] ∩ N. Since deg (∂b(φ)) < deg(φ), the polynomial ∂b(φ) is stable. Take α suffi-
ciently large so that

ρα (∂b(φ)) = µ (∂b(φ)) = ν (∂b(φ)) , ∀ b ∈ N.
By [2, Sec. 4], or [13, Sec. 3], the integers max(Sν,χα(φ)) are all positive, and stabilize for

a sufficiently large index α. In particular, Sν,χα(φ) 6= {0} for all α. By (iii) of Proposition
2.11, ε(φ) > ε(χα) for all α sufficiently large.

Now, take any f ∈ K[x] with deg(f) < deg(φ). Since f and ∂b(f) are stable, we may
take α sufficiently large so that

ρα(f) = ν(f), ρα (∂b(f)) = ν (∂b(f)) , ∀ b ∈ N.
By (i) of Proposition 2.11, for all b ∈ N we have

ν(f)− ν (∂b(f))

b
=
ρα(f)− ρα (∂b(f))

b
≤ ε(χα) < ε(φ).

Thus, φ is a key polynomial for ν. �

Lemma 2.13 exhibited some MLV key polynomials for µ that are not (abstract) key
polynomials for ν. The next lemma offers some more examples.

Lemma 2.16. Suppose µ < ν, and take φ ∈ KP(µ). If φ 6∈ Φµ,ν and deg(φ) > deg(µ), then
φ is not a key polynomial for ν.

Proof. If deg(φ) > deg(Φµ,ν), the Lemma follows from Lemma 2.13 and Proposition 2.9.
Suppose deg(µ) < deg(φ) ≤ deg(Φµ,ν).

Let φ0 be a MLV key polynomial of minimal degree deg(φ0) = deg(µ). By Lemma 2.13,
νφ = µ = νφ0 .

By Proposition 2.15, φ0 is a key polynomial for µ. Hence, φ cannot be a key polynomial
because it would satisfy ε(φ) > ε(φ0), contradicting Proposition 2.12. �

We may summarize the results obtained so far in the next two theorems.

Theorem 2.17. Suppose that µ < ν and φ ∈ KP(µ). Then, φ is a key polynomial for ν if
and only if it satisfies one of the following two conditions.

(1) φ ∈ Φµ,ν ,
(2) φ 6∈ Φµ,ν and deg(φ) = deg(µ).

In the first case, νφ = [µ;φ, ν(φ)]. In the second case, νφ = µ.



12 ALBERICH, F. BOIX, FERNÁNDEZ, GUÀRDIA, NART, AND ROÉ

Theorem 2.18. Let φ ∈ KP(ν). Then, φ is a key polynomial for ν if and only if deg(φ) =
deg(ν). In this case, νφ = ν.

By Theorem 1.7, two µ-equivalent MLV key polynomials for µ have the same degree.
Hence, the next result follows immediately from Theorems 2.17 and 2.18.

Corollary 2.19. Suppose that µ ≤ ν and φ ∈ KP(µ). If φ is a key polynomial for ν, then
all the polynomials in [φ]µ are key polynomials for ν too.

Corollary 2.20. Let φ ∈ KP(ν) of minimal degree. Then, ε(φ) ≥ ε(f) for all f ∈ K[x].

Proof. By Theorem 2.18, φ is a key polynomial for ν and νφ = ν.
The result follows from (i) of Proposition 2.11. �

Also, these results lead to another characterization of abstract key polynomials.

Theorem 2.21. Let ν be a valuation on K[x], and Q ∈ K[x] a monic polynomial. The
following conditions are equivalent.

(1) Q is a key polynomial for ν.
(2) νQ is a valuation and either supp(ν) = QK[x], or Q is a MLV key polynomial for

νQ of minimal degree.
(3) νQ is a valuation and Q has minimal degree among all the monic polynomials f ∈

K[x] satisfying νf = νQ.

Proof. (1) ⇒ (2) follows from Propositions 2.9 and 2.10.
(2) ⇒ (1) follows from Proposition 2.15.
(2) ⇒ (3). Let f ∈ K[x] be a monic polynomial such that νf = νQ. If supp(ν) = QK[x],

then ν(f) = νf (f) = νQ(f) =∞, so that f is a multiple of Q.
Suppose that Q is a MLV key polynomial for νQ of minimal degree. By Lemma 1.2, f is

νQ-minimal; thus, deg(f) is a multiple of deg(Q) [6, Prop. 3.7].
(3) ⇒ (2). Suppose supp(ν) 6= QK[x]. Then, (3) implies that ν(Q) < ∞. By Lemma

1.2, Q has minimal degree among all the νQ-minimal polynomials.
Let Q0 be a MLV key polynomial for νQ of minimal degree. By [6, Prop. 3.7], Q = Q0 +a

for some a ∈ K[x] with deg(a) < deg(Q0) and νQ(a) ≥ νQ(Q0). Hence, either Q ∼νQ Q0

(if νQ(a) > νQ(Q0)), or deg(R(Q)) = 1 (if νQ(a) = νQ(Q0)). By Theorem 1.7, Q is a MLV
key polynomial for νQ of minimal degree. �

A key polynomial Q for ν is said to be maximal if νQ = ν. These key polynomials admit
the following characterization.

Corollary 2.22. Let ν be a valuation on K[x], and Q ∈ K[x] a monic polynomial. The
following conditions are equivalent.

(1) Q is a maximal key polynomial for ν.
(2) Either supp(ν) = QK[x], or Q is a MLV key polynomial for ν of minimal degree.
(3) ε(Q) ≥ ε(f) for all the polynomials f ∈ K[x], and Q has minimal degree among all

the polynomials with this property.

Proof. Theorem 2.21 shows that (1) and (2) are equivalent.

(2) ⇒ (3). Corollary 2.20 shows that ε(Q) ≥ ε(f) for all the polynomials f ∈ K[x].
Since Q is a key polynomial for ν, for any polynomial f of smaller degree ε(f) cannot be

maximal because ε(f) < ε(Q).

(3) ⇒ (1). By definition, a monic polynomial of minimal degree for which ε(Q) takes a
maximal value is a key polynomial for ν. Finally, νQ = ν by Proposition 2.12. �

Only the valuations ν of finite depth admit maximal key polynomials.
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3. Comparison of MacLane-Vaquié and abstract limit key polynomials

3.1. MacLane-Vaquié limit key polynomials. Let us recall the definition of MacLane-
Vaquié (MLV) limit key polynomials [14, Sec. 1.4].

Let µ be a valuation on K[x] admitting MLV key polynomials.

Definition 3.1. A continuous family of augmentations of µ is a family

(ρi = [µ;χi, γi])i∈A

of ordinary augmentations of µ, parameterized by a set A, satisfying the following conditions:

(1) The set A is totally ordered and contains no maximal element.
(2) All MLV key polynomials χi ∈ KP(µ) have the same degree.
(3) For all i < j in A, χj is a MLV key polynomial for ρi and satisfies

χj 6∼ρi χi and ρj = [ρi;χj , γj ].

The common degree m = deg(χi), for all i, is called the stable degree of the family.
The basic example of a continuous family of augmentations is provided by any valuation

ν on K[x] such that µ < ν.

Proposition 3.2. Let ν be a valuation on K[x] such that µ < ν. Suppose that the set
A = ν (Φµ,ν) does not contain a maximal element. For any α ∈ A, choose any polynomial
χα ∈ Φµ,ν such that ν(χα) = α, and build ρα = [µ;χα, α] = νχα. Then, (ρα)α∈A is a
continuous family of augmentations of µ.

Proof. Clearly, the family (ρα)α∈A satisfies conditions (1) and (2) of Definition 3.1.
Let m = deg (Φµ,ν). For α < β in A, write χβ = χα + a for some a ∈ K[x] of degree less

than m. Since ν(χα) = α < β = ν(χβ), we deduce that µ(a) = ν(a) = α. By the definition
of the augmented valuations,

ρα(χβ) = α < β = ρβ(χβ), ρα(χα) = α = ρβ(χα).

As we saw in section 1.3, these equations show that χα 6∈ Φρα,ρβ = [χβ]ρα . In particular,
χβ is a MLV key polynomial for ρα and χα 6∼ρα χβ.

Finally, [ρα; χβ, β] = ρβ, because both valuations coincide on χβ-expansions. �

A polynomial f ∈ K[x] is stable with respect to the family (ρi)i∈A if

ρi(f) = ρi0(f), ∀ i ≥ i0,
for some index i0. This stable value is denoted by ρ∞(f).

By the equivalence (4), an unstable polynomial f satisfies necessarily

ρi(f) < ρj(f), ∀ i < j.

Let m∞ be the minimal degree of an unstable polynomial. We agree that m∞ = ∞ if all
polynomials are stable. The following properties hold for all continuous families:

• The mappings defined by i 7→ γi and i 7→ ρi are isomorphisms of ordered sets
between A and {γi | i ∈ A}, {ρi | i ∈ A}, respectively.
• For all i ∈ A, χi is a MLV key polynomial for ρi, of minimal degree.
• For all i ∈ A, deg(ρi) = m ≤ m∞.
• For all i, j ∈ A, ρi(χj) = min{γi, γj}. In particular, all the polynomials χi are

stable.
• Φρi,ρj = [χj ]ρi for all i < j in A.
• All the valuations ρi are residually transcendental.
• If i is not a minimal element in A then ρi has relative ramification index equal to

one (cf. Definition 1.3). In particular, all the value groups Γρi coincide.
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The common value grup Γ∞ := Γρi for all i, is called the stable value group of the
continuous family. Note that γi ∈ Γ∞ for all i.

Remark. Any cofinal family of (ρi)i∈A will have the same limit behaviour. Since all totally
ordered sets admit well-ordered cofinal subsets, we may always assume that the set A is
well-ordered.

Essential continuous families of augmentations. Any continuous family falls in one
of the following three cases:

(a) It has a stable limit. That is, m∞ = ∞, so that the function ρ∞ is a valuation on
K[x]. This valuation is commensurable and satisfies KP(ρ∞) = ∅.

(b) It is inessential. That is, m∞ = m.

(c) It is essential. That is, m < m∞ <∞.

Let ν be a valuation on K[x] such that ρi < ν for all i ∈ A.
If (ρi)i∈A is inessential and f ∈ K[x] is an unstable polynomial of degree m, then the

ordinary augmentation µ = [ρ; f, ν(f)] satisfies

ρi < µ ≤ ν, ∀ i ∈ A.
In other words, µ is closer to ν than any ρi, and µ is obtained from ρ by a single augmen-
tation. In the terminology of [7], we may avoid the continuous family (ρi)i∈A along the
process of constructing a MacLane-Vaquié chain of valuations for ν.

In the terminology of [2], all the key polynomials χi may be replaced by the single key
polynomial f in any complete set of key polynomials for µ.

This justifies why we call it “inessential”.

Only the essential continuous families admit (non-fake) limit key polynomials. From now
on, we suppose that our chain (ρi)i∈A is essential.

We define the set of MLV limit key polynomials for (ρi)i∈A:

KP∞ = KP∞ ((ρi)i∈A) ,

as the set of monic unstable polynomials in K[x] of minimal degree m∞.
Take φ ∈ KP∞. Let Γ∞ ↪→ Λ be an embedding of ordered groups, and choose γ ∈ Λ∪{∞}

such that
γ > ρi(φ), ∀ i ∈ A.

We may consider a limit augmentation

µφ,γ = [(ρi)i∈A;φ, γ],

which on φ-expansions f =
∑

0≤s asφ
s acts as follows:

µφ,γ(f) = min{ρ∞(as) + sγ | 0 ≤ s} = min{µφ,γ (asφ
s) | 0 ≤ s}.

This function µφ,γ is a valuation on K[x] which satisfies µφ,γ > ρi for all i ∈ A.

Let ν be a valuation on K[x] such that ν > ρi for all i ∈ A.
For every stable polyomial f one has ν(f) = ρ∞(f). In particular,

ν(χi) = ρ∞(χi) = γi, for all i ∈ A.
Any MLV limit key polynomial φ ∈ KP∞ is a key polynomial for ν.
Indeed, take γ = ν(φ). For all i < j in A, we have ρi(φ) < ρj(φ) ≤ ν(φ) = γ. The

limit augmented valuation µφ,γ clearly satisfies µφ,γ ≤ ν. By [6, Cor. 7.13], φ is a MLV key
polynomial for µφ,γ of minimal degree. Thus, our claim follows from Proposition 2.15.

In the following section we show that φ is actually a limit key polynomial for ν.
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3.2. Abstract limit key polynomials. Let ν be a valuation on K[x]. Novacoski and
Spivakovsky define in [9] an (abstract) limit key polynomial for ν as a monic polynomial
Q ∈ K[x] for which there exists a key polynomial Q− satisfying the following conditions.

(K1) deg(Q−) = deg
(

ΦνQ− ,ν

)
.

(K2) the set {ν(χ) | χ ∈ ΦνQ− ,ν
} has no maximal element.

(K3) νχ(Q) < ν(Q) for all χ ∈ ΦνQ− ,ν
.

(K4) Q has minimal degree among all polynomials satisfying (K3).

Proposition 3.3. Let (ρi)i∈A be an essential continuous family of augmentations of a
valuation µ. Let ν be a valuation on K[x] such that ν > ρi for all i ∈ A. Then, all MLV
limit key polynomials for (ρi)i∈A are limit key polynomials for ν.

Proof. Take φ ∈ KP∞ and let us fix any i ∈ A. Take Q− = χi, which is a key polynomial
by Proposition 2.15. By the arguments in section 1.3, we have

[χj ]ρi = Φρi,ρj = Φρi,ν , ∀ j > i.

Since χi -ρi χj , we have χi 6∈ [χj ]ρi = Φρi,ν , and Lemma 2.13 shows that νχi = ρi. Since
deg(χi) = deg(χj) = deg (Φρi,ν), condition (K1) is satisfied.

Since our continuous family is essential, all the polynomials of degree m are stable. Thus,
for any χ ∈ ΦνQ− ,ν

= Φρi,ν there exists j ∈ A such that ν(χ) = ρ∞(χ) = ρj(χ). By [6,

Thm. 3.9] we deduce (K2), because

ν(χ) = ρj(χ) ≤ ρj(χj) = γj < γk = ν(χk), for all j < k.

Also, the inequality ν(χ) < γk implies νχ < ρk, by an obvious comparison of the two
valuations on χ-expansions. Hence, νχ(φ) ≤ ρk(φ) < ν(φ). This proves (K3).

Finally, any monic polynomial Q satisfying (K3) is unstable , Thus, deg(Q) ≥ m∞ =
deg(φ). This proves (K4). �

The converse statement holds too.

Proposition 3.4. Let Q ∈ K[x] be a limit key polynomial for ν. Then, Q is a MLV limit
key polynomial for some essential continuous family of augmentations.

Proof. Let Q− ∈ K[x] be a key polynomial such that the pair Q,Q− satisfies conditions
(K1)–(K4). Define µ = νQ− and m = deg(Q−). By (K1), all polynomials in Φµ,ν have
degree m.

By (K2), the totally ordered set A := ν (Φµ,ν) contains no maximal element. Consider
the continuous family of augmentations (ρα)α∈A described in Proposition 3.2.

For any χ ∈ Φµ,ν , let α = ν(χ) ∈ A. By definition, ρα = νχα for some χα ∈ Φµ,ν such
that ν(χα) = α. The valuations νχ and νχα can be seen as augmentations of µ:

νχα = [µ;χα, α], νχ = [µ;χ, α].

Since ν(χα) = ν(χ) = α and deg(χα − χ) < m, we have:

µ(χα − χ) = ν(χα − χ) ≥ α.
By well-known criteria [7, Lem. 2.8], the two augmentations coincide: νχα = νχ.

Therefore conditions (K3) and (K4) say that the monic polynomial Q is unstable :

ρα(Q) = νχ(Q) < ν(Q),

and has minimal degree with this property. Hence, Q is a MLV key polynomial for this
continuous family of augmentations.

Finally, this continuous family is essential because m∞ = deg(Q) > m. Indeed, we have
µ(Q) ≤ ρα(Q) < ν(Q) for all α; hence, deg(Q) = m would imply that Q belongs to Φµ,ν .
Since obviously νQ(Q) = ν(Q), this contradicts (K3). �
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4. Invariants of limit key polynomials

4.1. Basic invariants of continuous families. We keep the notation of section 3.1. Let
us fix an essential continuous family (ρi)i∈A of a valuation µ on K[x]. Recall that

ρi = [µ; χi, γi], χi ∈ KP(µ), γi ∈ Γ∞ for all i ∈ A.
Our aim in this section is to study certain invariants of the MLV limit key polynomials

of (ρi)i∈A, introduced in [13, Sec. 3] and [2, Sec. 4].
Let φ ∈ KP∞, and let n = bm∞/mc. Denote the canonical χi-expansion of φ by

φ = an,i χ
n
i + an−1,i χ

n−1
i + · · ·+ a1,i χi + a0,i, ∀ i ∈ A.

Since deg(as,i) < m for all s, i, all these coefficients as,i are stable.
The index ti(φ) = max (Sρi,χi(φ)) is always positive and decreases as i grows. Thus, it

stabilizes for i sufficiently large. The stable value is known as the numerical character of
φ. We denote it by1

t∞ = t∞(φ).

This integer is a power of the characteristic exponent p of the valued field (K, v) [2, Sec. 7].
Let i0 ∈ A be an index which stabilizes t∞. Let us denote t = t∞ for simplicity. It is

easy to check that the image of the coefficient at,i in the graded algebra stabilizes too:

at,i ∼ρk at,j , for all i0 ≤ i < j ≤ k.
In particular, it determines a stable value

α∞ = α∞(φ) = ρi(at,i) = ρ∞(at,i) ∈ Γ∞, ∀ i ≥ i0.
Since ρi(φ) = ρi

(
at,i χ

t
i

)
, we have

ρi(φ) = α∞ + t∞ γi, ∀ i ≥ i0.
Proposition 4.1. Take φ ∈ KP∞ and let i0 ∈ A be an index that stabilizes t = t∞. Then,

φ ∼ρi at,j χtj , ∀ i0 < i < j.

Proof. As we saw in section 3.1, Φρk,ρ` = [χ`]ρk for all k < ` in A. Hence χ` is a MLV
key polynomial for ρk, for all k ≤ `. Thus, it is ρk-minimal and Lemma 1.2 shows that

(10) ρk(φ) = min {ρk (as,` χ
s
`) | 0 ≤ s} for all k ≤ `.

Now, denote α = α∞ and take any pair of indices j > i > i0. Let us apply (10) for k = i,
` = j. For s = t we get the minimal value

ρi
(
at,j χ

t
j

)
= α+ tγi = ρi(φ).

The proposition follows if we show that ρi

(
as,j χ

s
j

)
> ρi(φ) for all the indices s 6= t.

For s < t, we apply (10) for k = j = `. We get

ρ∞(as,j) + sγj = ρj
(
as,j χ

s
j

)
≥ ρj(φ) = α+ tγj

=⇒ ρ∞(as,j) ≥ α+ (t− s)γj > α+ (t− s)γi.
For s > t, we apply (10) for k = i0, ` = j. Since t− s is a negative integer, we get

ρ∞(as,j) + sγi0 = ρi0
(
as,j χ

s
j

)
≥ ρi0(φ) = α+ tγi0

(11) =⇒ ρ∞(as,j) ≥ α+ (t− s)γi0 > α+ (t− s)γi,
In both cases, we deduce that

ρi
(
as,j χ

s
j

)
= ρ∞(as,j) + sγi > α+ tγi = ρi(φ).

�

1This invariant is denoted by t in [13] and by δ in [2].
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Residual polynomial operators of a continuous family. Let µ be a residually trans-
cendental valuation on K[x]. Let e be the relative ramification index of µ. Take φ a MLV
key polynomial for µ of minimal degree m. Take a ∈ K[x] a polynomial of degree less than
m such that µ(a) = µ(φe). Let u = (inµ a)−1 ∈ G∗µ.

Let us recall the definition of the residual polynomial operator

R = Rµ,φ,u : K[x] −→ κ(µ)[y]

introduced in [6, Sec. 5] (cf. Section 1.2)2.
We define R(0) = 0. For any non-zero polynomial f ∈ K[x], consider the canonical

φ-expansion f =
∑

0≤s asφ
s and denote

S(f) = Sµ,φ(f) = {s | µ(asφ
s) = µ(f)} , s0 = min(S(f)).

All s ∈ S(f) belong to a fixed class modulo e. Hence, S(f) ⊂ {s0, s1, . . . , sd}, where

sj = s0 + je, 0 ≤ j ≤ d, sd = max(S(f)).

We may write

f ∼µ
∑
s∈S(f)

asφ
s ∼µ φs0

(
as0 + · · ·+ asjφ

je + · · ·+ asdφ
de
)
,

having into account only the monomials for which sj ∈ S(f). We define

R(f) = ζ0 + ζ1 y + · · ·+ ζd−1 y
d−1 + yd,

where the coefficients ζj ∈ κ(µ) are defined by:

ζj =

{
(inµ asj )(inµ asd)

−1uj−d, if sj ∈ S(f),

0, if sj 6∈ S(f).

We are going to use this operator for the valuations ρi in our essential continuous family.
Consider any i ∈ A which is not a minimal element. For all j > i, write

χj = χi + aj , aj ∈ K[x], deg(aj) < m.

Since ρj(χj) = γj > γi = ρj(χi), the stable value of aj is ρi(aj) = ρj(aj) = γi = ρi(χi).
We saw in section 3.1 that

[χj ]ρi = Φρi,ρj = Φρi,ρk = [χk]ρi , for all i < j < k.

Hence, χj ∼ρi χk, and this implies

ρi(aj − ak) = ρi(χj − χk) > ρi(χj) = γi.

Therefore, the following unit in the graded algebra Gρi is well defined:

ui = inρi aj , for all j > i.

The valuation ρi has relative ramification index equal to one. Thus, we may consider a
residual polynomial operator

Ri = Rρi,χi,ui : K[x] −→ κi[y],

where κi = κ(ρi) is the maximal subfield of ∆ρi .
For this choice of the pair χi, ui, we have by definition:

Ri(a) = 1, Ri(χi) = 1, Ri(χj) = y + 1, for all i < j,

for all a ∈ K[x] with deg(a) < m.

2Actually, the operator Rµ,φ,u we describe here is the operator Rµ,φ,u−1 of [6, Sec. 5].
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Since the residual operator is multiplicative [6, Cor. 5.4], we deduce immediately from
Proposition 4.1 and [6, Cor. 5.5] that

(12) Ri(φ) = Ri(at,j)Ri(χj)
t = (y + 1)t.

This result may be deduced from [2, Prop. 4.2] too.

Corollary 4.2. Take φ ∈ KP∞ and let i0 be an index that stabilizes t∞. Then,

Sρi,χi(φ) = {0, t∞}, ∀ i ≥ i0.
Proof. By the very definition of Ri, the coefficient of degree s of Ri(φ) is zero if and

only if s 6∈ Sρi,χi(φ). Thus, the computation of (12) shows that 0, t∞ belong to Sρi,χi .
If char(k) = 0, then t∞ = 1 and the statement is obvious. If char(k) = p > 0, then

t∞ = pe for some e ≥ 0, so that Ri(φ) = yt∞ + 1, and the statement follows too. �

Intrinsic invariants of a continuous family. We are ready to show that the invariants
t∞, α∞ are independent of the choice of the MLV limit key polynomial φ.

Lemma 4.3. For any two φ, ϕ ∈ KP∞ there exists an index i0 ∈ A such that

φ ∼ρi ϕ, ∀ i ≥ i0.
Proof. Write φ = ϕ+ a with a ∈ K[x] of degree less than m∞. Since a is stable, there

exists an index i0 such that ρi(a) = ρ∞(a) for all i ≥ i0. We want to show that

ρi(a) > ρi(φ) ∀ i ≥ i0.
In fact, ρi(a) ≤ ρi(φ) leads to a contradiction:

ρj(a) = ρi(a) ≤ ρi(φ) < ρj(φ), ∀ j > i,

which implies that ϕ would be stable: ρj(ϕ) = ρj(a) = ρ∞(a) for all j > i. �

The next result follows immediately from Proposition 4.1 and Lemma 4.3.

Corollary 4.4. For all φ, ϕ ∈ KP∞ we have t∞(φ) = t∞(ϕ) and α∞(φ) = α∞(ϕ).

Let us recall another intrinsic invariant b∞ of the continuous family.
Take any valuation ν on K[x] such that ν > ρi for all i. For instance, any limit augmen-

tation of (ρi)i∈A.
In [2, Sec. 7] it is shown that for a sufficiently large index j0 one has:

I(χj) = {b∞}, ∀ j ≥ j0,
for a certain positive integer b∞.

Since all the polynomials χj and all their derivatives ∂b(χj) are stable, it is clear that b∞
does not depend on the choice of the valuation ν.

By Proposition 2.6, b∞ is a power of the characteristic exponent p of (K, v).

On the other hand, all the χj are key polynomials for ν such that νχj = ρj by Theorem
2.17. Let us denote εj = ε(χj) ∈ (Γ∞)Q. In [2, Cor. 7.3] it is proved that

ρ∞(∂b∞(aj)) > ρ∞(∂b∞(χj)) = ρ∞(∂b∞(χk)) for all j0 ≤ j < k.

In particular, we may consider another invariant of the essential continuous family (ρi)i∈A,
independent of j and the choice of ν:

(13) δ∞ := ρ∞(∂b∞(χj)) ∈ Γ∞, j ≥ j0.
As a consequence we get an explicit formula for the variation of εj :

γj − b∞εj = δ∞ = γk − b∞εk =⇒ εk − εj =
1

b∞
(γk − γj) ,

for all k > j. Finally, let us state and prove a basic relationship between these invariants.
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Lemma 4.5. For any φ ∈ KP∞, we have t∞b∞ ≥ mult(φ).

Proof. Let j be a sufficiently large index so that it stabilizes both t∞ and b∞. Recall
that χj is a key polynomial for ν such that νχj = ρj . By Corollary 4.2, Sρj ,χj (φ) = {0, t∞}.
Let b = t∞b∞. By [2, Prop. 6.1] or [1, Prop. 14],

ρj(∂b(φ)) = ρj(φ)− bεj .
In particular, ∂b(φ) 6= 0, so that b ≥ mult(φ). �

4.2. Vertically bounded continuous families. Let us recall Hahn’s embedding theorem
for ordered groups. A basic reference for this result is [11].

Let Λ be an abelian (totally) ordered group. A subgroup H ⊂ Λ is convex if it satisfies

0 < β < γ, γ ∈ H =⇒ β ∈ H,
for all β, γ ∈ Λ>0.

For any γ ∈ Λ we denote by Hγ the convex subgroup generated by γ. That is, Hγ is the
intersection of all convex subgroups of Λ that contain γ. The convex subgroups of the form
Hγ are said to be principal.

The principal convex subgoups of Λ are totally ordered by inclusion. Let us denote by

I = Prin(Λ)

the set of non-zero convex principal subgroups of Λ, ordered by decreasing inclusion.
Formally, we consider I as an abstract totally ordered set parameterizing the non-zero

principal convex subgoups. For any i ∈ I we denote by Hi the corresponding principal
convex subgroup. Note that

i ≤ j ⇐⇒ Hi ⊃ Hj .

Denote by RIlex the Hahn product; that is, RIlex ⊂ RI is the subgroup of the cartesian

product RI formed by the elements γ = (xi)i∈I whose support

supp(γ) = {i ∈ I | xi 6= 0} ⊂ I
is a well-ordered subset, with respect to the ordering induced by I. It makes sense to
consider the lexicographical ordering on RIlex.

By Hahn’s theorem, there is an embedding of ordered groups

Λ ↪−→ ΛQ ↪−→ RIlex,

such that the natural mapping

Prin(Λ) −→ Prin
(
RIlex

)
, Hγ 7→ (Hγ)R = convex subgroup of RIlex generated by γ

is an isomorphism of ordered sets.

Definition 4.6. Consider a subset S ⊂ Λ>0 of positive elements in Λ, and let HS be the
convex subgroup of Λ generated by S.

We say that S is vertically bounded (VB) if S admits an upper bound in HS.
We say that S is horizontally bounded (HB) if S has no upper bounds in HS, but it

admits an upper bound in Λ.
We say that S is unbounded (UB) if S admits no upper bounds in Λ.

Clearly, any such set S falls in one, and only one, of the three cases VB, HB or UB.
Horizontally bounded sets occur only in ordered groups of rank greater than one.

The next table displays some examples in the ordered group Λ = Q2
lex. In this case, all

convex subroups are principal and I = {1, 2}. The non-zero convex subgroups are H1 = Λ,
H2 = {0} ×Q. The set S is a sequence S = (γn)n∈N.
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γn HS boundedness

(0, 1− (1/n)) {0} ×Q VB

(1, n) Λ VB

(0, n) {0} ×Q HB

(n, 0) Λ UB

Lemma 4.7. Let S = {γα | α ∈ A} be a subset of positive elements in Λ. Let HS be the
convex subgroup of Λ generated by S. Then, the following conditions are equivalent.

(1) S is vertically bounded.
(2) For all q ∈ Q, q > 1, there exists α ∈ A such that qγα > S in ΛQ.

In this case, HS is a principal convex subgroup.

Proof. Let us see that (2) implies (1). From qγα > S we deduce that nγα > S for any
integer n ≥ q. Thus, S admits an upper bound nγα ∈ HS .

Let us show that (1) implies (2). If γ ∈ HS satisfies γ > S, then S ⊂ Hγ by the convexity
of Hγ . Hence, HS = Hγ is a principal convex subgroup.

Let i ∈ I such that Hi = HS . Then,

(HS)R =
{

(xj) ∈ RIlex | xj = 0, ∀ j < i
}
.

Thus, we may write

γ = (0 · · · 0 x ? ? · · · ), γα = (0 · · · 0 xα ? ? · · · ), ∀α ∈ A,
where x, xα ∈ R are the i-th coordinates. They satisfy 0 ≤ xα ≤ x for all α ∈ A, and xα > 0
for some α (otherwise S would not generate Hi).

Consider b = sup{xα | α ∈ A}. For any given q ∈ Q, q > 1, there exists α ∈ A such that
b < qxα. Hence, qγα > S. �

Definition 4.8. Let (ρi)i∈A be an essential continuous family of augmentations such that
A is well-ordered. Let i0 be the first element in A that stabilizes t∞, and consider the set

S = {γi − γi0 | i > i0} .
We say that (ρi)i∈A is vertically bounded, horizontally bounded or unbounded according

to the boundedness status of S introduced in Definition 4.6.

Theorem 4.9. Let (ρi)i∈A be a vertically bounded essential continuous family of augmen-
tations. Then, m∞ = mt∞ and α∞ = 0.

Proof. Denote t = t∞, α = α∞, and let i0 be the first index that stabilizes t∞.
The set S = (γi − γi0)i>i0 admits an upper bound in the principal convex subgroup

generated by S. By Lemma 4.7, there exists an index j > i0 such that

(14)
t+ 1

t
(γj − γi0) > (γi − γi0) , ∀ i > i0.

Take any φ ∈ KP∞, and let n = bm∞/mc. Consider the canonical χj-expansion of φ,

φ = an,j χ
n
i + an−1,j χ

n−1
i + · · ·+ a1,j χi + a0,j .

Claim. φ ∼ρi at,j χtj + · · ·+ a1,j χj + a0,j , ∀ i > i0.

To prove the Claim we must show that

ρi
(
as,j χ

s
j

)
> ρi(φ) = α+ tγi, ∀ s > t, ∀ i > i0.

This holds whenever i < j by Proposition 4.1. Thus, we may assume that i ≥ j. In this
case, ρi(χj) = γj .
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Take any s > t. We saw in (11) that ρ∞(as,j) ≥ α+ (t− s)γi0 . Hence,

ρi
(
as,j χ

s
j

)
= ρ∞(as,j) + sγj ≥ α+ (t− s)γi0 + sγj = α+ tγi0 + s (γj − γi0) .

We want to show that α+ tγi0 + s (γj − γi0) > α+ tγi, which amounts to

s(γj − γi0) > t(γi − γi0),

and this follows from (14). This ends the proof of the Claim.

By the Claim, the polynomial F = at,j χ
t
j + · · · + a1,j χj + a0,j is unstable . By the

minimality of m∞ = deg(φ), we must have F = φ.
Since the coefficients as,j have degree less than m = deg(ρi0), those which are non-zero

determine units in the graded algebra Gρi0 . Conversely, any unit in Gρi0 is the initial term

of a polynomial of degree less than m [6, Prop. 3.5]. Therefore, there exist polynomials
b, c0, . . . , ct−1 ∈ K[x], all of degree less than m, such that:

bat,j ∼ρi0 1, bas,j ∼ρi0 cs, 0 ≤ s < t.

Since ρi0(cs) = ρ∞(cs) for all s, we have

bat,j ∼ρi 1, bas,j ∼ρi cs, 0 ≤ s < t,

for all i > i0. By the Claim, we deduce that

bφ ∼ρi χtj + ct−1χ
t−1
j + · · ·+ c0, ∀ i > i0.

Since bφ is clearly unstable , this implies that the polynomial of degree mt,

χtj + ct−1χ
t−1
j + · · ·+ c0,

is unstable too. By the minimality of m∞ = deg(φ) = deg(at,j) + mt, we deduce that
deg(at,j) = 0, which implies at,j = 1 because φ is monic.

This proves that m∞ = mt and α = ρ∞(at,j) = 0. �

Corollary 4.10. For all VB essential continuous families, we have t∞ > 1.
Therefore, there are no VB essential continuous families at all, if char(k) = 0.

Theorem 4.9 was proved for ρ of finite rank in [13, Sec. 3], and for ρ of rank one in
[2, Sec. 5]. Actually, both proofs are valid for arbitrary rank, once the right definition of
vertically bounded chain is introduced. We followed the approach of Vaquié in [13].

4.3. Invariants of unbounded continuous families.

Theorem 4.11. Let (ρi)i∈A be an essential continuous family. If the set (γi)i∈A is un-
bounded in Γ∞, then

t∞b∞ = mult(φ), ∀φ ∈ KP∞ .

Proof. Let ν be any valuation on K[x] such that ν > ρi for all i. Recall that all the χi
are key polynomials for ν such that νχi = ρi. Denote εi = ε(χi) for all i.

Let φ ∈ KP∞
(
(ρi)i∈A

)
. Denote

b = mult(φ), t = t∞, α = α∞.

Since ∂b(φ) has degree less than m∞, it is a stable polynomial. Let i0 ∈ A be any index
that stabilizes t∞, b∞ and ρ∞(∂b(φ)). By definition,

εi =
ν(χi)− ν(∂b∞(χi))

b∞
=
γi − δ∞
b∞

, ∀ i ≥ i0,

where δ∞ is the invariant introduced in (13).
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By (i) of Proposition 2.11, for all i ≥ i0 we have

ρi(∂b(φ)) ≥ ρi(φ)− bεi = α+ tγi − bεi = α+ tγi −
b

b∞
(γi − δ∞) = α+

(
t− b

b∞

)
γi +

bδ∞
b∞

.

From this inequality we deduce(
t− b

b∞

)
γi ≤ ρ∞(∂b(φ))− α− bδ∞

b∞
, ∀ i ≥ i0.

Since ∂b(φ) 6= 0, we have necessarily tb∞ ≤ b: otherwise, the set (γi)i∈A would admit an
upper bound in (Γ∞)Q, and hence in Γ∞, contradicting our assumption.

This proves tb∞ ≤ b, and the equality follows from Lemma 4.5. �

Corollary 4.12. If char(K) = 0 and the set (γi)i∈A is unbounded in Γ∞, then

t∞ = b∞ = 1.

Proof. If char(K) = 0, then mult(φ) = 1. �

In W. Mahboub PhD thesis [5], some examples of continuous families and limit key
polynomials are exhibited. Among the HB ones, there are some examples in which the
inequality t∞b∞ ≥ mult(φ) is an equality (Examples 5.3.1, 5.3.2, and 5.3.3), and one where
it is an strict inequality (Example 5.3.4).

On the other hand, any monic irreducible polynomial φ ∈ K[x] which determines an
extension of K with defect, is a limit key polynomial of a suitable continuous family. In
the survey [3] of F.-V. Kulhmann, some VB examples are exhibited. Among them, we find
some cases where the inequality t∞b∞ ≥ mult(φ) is an equality (Example 3.14), and some
where it is an strict inequality (Examples 3.12, 3.17, 3.20 and 3.22).
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Séminaires et Congrés 10, SMF, Paris (2005), Actes du colloque franco-japonais, juillet 2002, édité par
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Email address: julio.fernandez.g@upc.edu, jordi.guardia-rubies@upc.edu
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