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Abstract: This is an extended abstract with some of the results that will appear in the
forthcoming paper [1] in which we characterize when a given complete ideal in a two-dimensional
local ring with a rational singularity can be realized as a multiplier ideal.

1 Introduction

Let X be a complex variety of dimension d which is Q-Gorenstein and OX,O its corresponding
local ring at a point O ∈ X, with m = mX,O being the maximal ideal. Given an ideal b ⊆ OX,O
and a parameter λ ∈ R we may consider its corresponding multiplier ideal J(bλ) ⊆ OX,O. It
follows from its construction that multiplier ideals are complete so it is natural to wonder how
special are multiplier ideals among all complete ideals.

When X is smooth and d = 2, it was proved independently by Favre and Jonsson [2] and
Lipman and Watanabe [7], that every complete ideal a ⊆ OX,O can be realized as a multiplier

ideal; that is, we may find an ideal b and a parameter λ such that a = J(bλ). This result is no
longer true for d ≥ 3 as it has been proved by Lazarsfeld and Lee in [4]. Indeed, they show some
delicate properties regarding the vanishing of the syzygies of multiplier ideals which lead to the
existence of complete ideals in higher dimension that cannot be realized as multiplier ideals.

Lazarsfeld, Lee and Smith [5] partially extended the results in [4] to the non-smooth case
by giving some vanishing result on the first syzygy of multiplier ideals. This condition is still
enough to cook up examples of complete ideals that cannot be realized as multiplier ideals when
d ≥ 3. They also quoted in [5, Question 3.12] the following question regarding the remaining
case that is left open: Is every complete ideal in a complex algebraic surface having a rational
singularity a multiplier ideal? A partial answer to this question was provided by Tucker in [8]
by showing that this is indeed the case when X has a log-terminal singularity. In a forthcoming
paper [1] we will give a characterization of complete ideals that can be realized as multiplier
ideals by means of a new invariant that we introduce, the limiting boundary ∆∗D, and we give
examples where a complete ideal cannot be realized.

2 A reformulation of the problem via antinef closures

Let (Y,O) be a germ of complex surface with at worst a rational singularity. Let OY,O denote
the local ring at O and let m = mY,O ⊆ OY,O be the maximal ideal. Let π : X → Y be a
log-resolution of a m-primary complete ideal a ⊆ OY,O. We say that a is realized as a multiplier
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ideal in X if there exists another m-primary ideal b such that π is also a log-resolution for b
and there is a rational number λ such that a = J(bλ). More precisely, let F and G be integral
exceptional divisors such that a ·OX = OX (−F ) and b ·OX = OX (−G). Let Kπ be the relative
canonical divisor which is a Q-divisor with exceptional support. Then we want to find λ such
that a = J(bλ) := π∗OX (dKπ − λGe), where d·e denotes the round up of any Q-divisor and is
nothing but rounding up its coefficients..

Lipman [6, §18] gave a correspondence between complete ideals and antinef divisors that
will give us the right framework where we can address this question. Recall that an effective
integral exceptional divisor D ∈ EDiv≥0(X) is antinef if D · Ci < 0 for all the irreducible
components C1, . . . , Cr of the exceptional locus. Given any effective rational exceptional divisor
D ∈ EDiv≥0

Q (X) we may either consider its:

· Integral antinef closure : D̃ := min
{
D′ ∈ EDiv≥0(X) | D′ ≥ D, D′ · Ci ≤ 0 ∀ i

}
,

· Rational antinef closure: D̃Q = min
{
D′ ∈ EDiv≥0

Q (X) | D′ ≥ D, D′ · Ci ≤ 0 ∀ i
}
.

The existence of the integral antinef closure can be found in [6, §18] and it can be computed
using the unloading procedure described next: Set D0 = dDe. For any k ≥ 0, whenever there is
an exceptional component Ci such that Dk ·Ci > 0, define Dk+1 = Dk +Ci. If there is no such

Ci, then D̃ = Dk.

The existence of the Q-antinef closure follows from the cone structure of the set of antinef
divisors. To describe it we use the Q-unloading procedure, which can be deduced from [3], and
is described next: Set D0 = D. For any k ≥ 0, whenever there is an exceptional component Ci
such that Dk ·Ci > 0, define Dk+1 = Dk +

∑
xiCi, where the xi are the solutions of the system

of equations
∑

(Ci · Cj)xi = −D · Cj , ∀i, j. If there are no such Ci, then D̃Q = Dk.

The main result of this section is a reformulation of our initial problem in terms of the
following boundary Q-divisors that measure the difference between a divisor and its Q-antinef
closure. Namely, given any rational exceptional divisor D, we define

∆D = ˜(D +Kπ)
Q
− (D +Kπ) ≥ 0.

Now, given a convenient log-resolution π : X → Y of a such that aOX = OX(−F ), we want
to check whether there exists an antinef divisor G and a rational number λ such that

(1) ˜bλG−Kπc = F

Notice that the rational divisor λG is antinef as well and, denoting D = bλG−Kπc, we have
that D +Kπ ≤ λG. Therefore, the Q-antinef closure of D +Kπ satisfies

D +Kπ ≤ ˜(D +Kπ)
Q
≤ λG

and thus

D = bD +Kπ −Kπc ≤
⌊

˜(D +Kπ)
Q
−Kπ

⌋
≤ bλG−Kπc = D.

Under these premises, Equation 1 becomes

(2)
˜⌊

˜(D +Kπ)
Q
−Kπ

⌋
= ˜bD + ∆Dc = F.

Our approach to the problem is through the following

Proposition 1. An m-primary complete ideal a is realized as a multiplier ideal if and only
if there is a log-resolution π : X → Y of a with aOX = OX(−F ) and an integral exceptional

divisor D such that D ≥ b−Kπc, D̃ = F , and b∆Dc = 0.
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3 Working in a fixed log-resolution

Let’s start with a fixed log-resolution π : X → Y of a with aOX = OX(−F ). It might well
happen that we can not find an integral exceptional divisor D satisfying the conditions of
Proposition 1. Indeed there are cases in which we may find such a divisor in a further log-
resolution and cases where it will be impossible to find it, and thus giving examples of complete
ideals that can not be realized as multiplier ideals (see Section 5). Even though working in
a fixed log-resolution has a lot of shortcomings, the methods we present in this section will
illustrate the main ideas behind our general method.

The starting point of our method comes from the unloading procedure. We can reach every

D ≥ b−Kπc with D̃ = F by starting with D = F and then go backwards replacing D by
D − C for any exceptional component with (D − C) · C > 0, and contained in the support of
D−b−Kπc. If this is the case we say that going from D to D−C is an admissible subtraction.
Moreover, without getting into technical details, the multiplicities of ∆D−C are smaller than
the multiplicities of ∆D when (D +Kπ + ∆D) · C < 0. We will say in this case that we have a
strict subtraction. If a subtraction is admissible and strict we say that it is a good subtraction.

Our goal would be to find a chain of admissible subtractions F > D1 > · · · > Dn = D such
that b∆Dc = 0. In the case that every subtraction in the chain is also strict, hence good, we
will say that D < F is a good subdivisor and it is characterized as follows:

Proposition 2. D < F is a good subdivisor if and only if multC(∆D) < 1 for every subtracted
component C ⊂ supp(F −D).

It leads to the following characterisation:

Proposition 3. An m-primary complete ideal a is realized as a multiplier ideal if and only if
there is a log-resolution π : X → Y of a with aOX = OX(−F ) and a good subdivisor D < F
such that b∆Dc = 0.

This provides an efficient algorithm to decide whether a complete ideal can be realized as
multiplier ideal in X. Obviously if b∆F c = 0 then a is a multiplier ideal. Otherwise, we can
take F and consider recursively all the possible strict subtractions, until we either find some D
with b∆Dc = 0 or we run out of divisors (in which case a cannot be realized as multiplier ideal
in X). We point out that we may find examples of surfaces with a log-terminal singularity and
ideals that can not be realized in a given log-resolution. We already know, by Tucker’s result
[8], that they must be realized in a further log-resolution.

4 Comparing log-resolutions

In general, we have to study how the ∆D behave in different log-resolutions, in order to obtain
the best good chains possible. In order to get a minimal ∆D we would consider only strict
subtractions D − C and, in the case that they are not admissible, it would require to blow-up
m = 1 − (D − C) · C ≥ 0 smooth points of C to make them admissible, and thus good. This
process can be quite involved but we can speed it up using what we call

Standard procedure with length N : Let π : X → Y be a log-resolution of a with aOX =
OX(−F ) and consider (X,F ) as our starting pair. Given a positive integer N we will produce

a sequence X
(N)
n → · · · → X

(N)
1 → X → Y , hence a sequence of pairs (X

(N)
n , D

(N)
n ) as follows:

• If some initial irreducible component Ci ⊂ X is good-subtractible from D
(N)
n , then take

X
(N)
n+1 = X

(N)
n and D

(N)
n+1 as the result of subtracting Ci and all subsequent possible

good subtractions of non-initial components.
• If some initial irreducible component Ci ⊂ X is strict-subtractible but not admissible,

set mn,i = 1 − (D
(N)
n − Ci) · Ci. Then blow up Ci at mn,i smooth points, further

blow-up each of the resulting mn,i exceptional components at a smooth point, and
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then blow-up each of the newest exceptional components, and so on until we have
added Nmn,i exceptional components, forming mn,i tails of length N attached to the
original exceptional divisor at Ci. Then subtract Ci and all subsequent possible good
subtractions of non-initial components (including the newest ones).
• If no initial component is strict-subtratible, stop.

Remark 4. Each pair (X
(N)
n , D

(N)
n ) is determined by data on the initial log-resolution π :

X → Y if one also remembers how many tails have been created from each initial exceptional

component. More precisely, each step can be codified by the pair (D
(N)
n ,mn), where D

(N)
n is

the image of D
(N)
n in X and mn = (mn,1, . . . ,mn,r) ∈ Zr≥0 is the vector such that at this step

there are mn,i tails attached to the initial components C1, . . . , Cr.

At each step we may consider the corresponding ∆
D

(N)
n

and its images ∆
D

(N)
n
⊂ X decrease

and have a limit ∆∗n when N →∞ that can be computed as follows

Proposition 5. Let
(
X(N), D(N)

)
be a pair computed using the standard procedure of length

N , and for each i = 1, . . . , r let mi be the number of tails attached to the initial exceptional
component Ci ⊂ X. Then there exists ∆∗D = limN→∞∆D(N), which can be computed as the
smallest solution of the system of inequalities(

D(N) +K0 + ∆∗D

)
· Ci < −mi i = 1, . . . , r.

The fact that the limiting boundary ∆∗D can be computed on the initial log-resolution by
taking into account the tail-counting vector m motivates the following definitions.

Definition 6. A divisor D ⊂ X is an asymptotically good subdivisor of F if for big enough
N ∈ N there is a pair

(
X(N), D(N)

)
obtained by the standard procedure of length N such that

the image of D(N) in X is D.

Let D ≤ F be an asymptotically good subdivisor and C ⊂ X an (initial) exceptional
component. We say that the subtraction D > D − C is asymptotically good if for big enough
N ∈ N there is a pair

(
X(N), D(N)

)
obtained by the standard procedure of length N such that

the image of D(N) in X is D and D(N) > D(N) − C is a good subtraction (where we identify

C ⊂ X0 with its strict transform in X(N)).

Asymptotically good subtractions can be numerically characterized in the original log-
resolution with the help of the tail-counting vector m ∈ Nr.

Lemma 7. Let (D,m) be a pair given by D ⊂ X and m = (m1, . . . ,mr) ∈ Nr. The subtraction
D > D − Ci of the exceptional component Ci is asymptotically good with mi tails constructed
from each exceptional component Ci if and only if

(D +Kπ + ∆∗D) · Ci < −mi

It follows from the definition that a subdivisor D ≤ F ⊂ X is asymptotically good if it can
be reached from F by a chain of asymptotically good subtractions

(F, 0) > (D1,m1) > · · · > (Dn,mn) = (D,m),

where the convention that we follow is that an asymptotic subtraction is (D,m) > (D′,m′)
where D′ = D − Ci for some exceptional component Ci, mi ≤ m′i and mj = m′j for all j 6= i.
The main result of this work is

Theorem 8. Let π : X → Y be a log-resolution of an m-primary complete ideal a with aOX =
OX(−F ). The ideal a is realized as a multiplier ideal in a further log-resolution if and only if
there is an asymptotically good chain from (F, 0) to a pair (D,m) such that b∆∗Dc=0.
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Example 9. Consider the rational singularity given by the intersection matrix

M =


−4 1 1 1 1 1
1 −2 0 0 0 0
1 0 −2 0 0 0
1 0 0 −2 0 0
1 0 0 0 −2 0
1 0 0 0 0 −1


with relative canonical divisor Kπ =

(
−1, −1

2 ,
−1
2 ,
−1
2 ,
−1
2 , 0

)
. In particular it is a log-canonical

singularity. Consider the antinef divisor F = (2, 1, 1, 1, 1, 4) and let’s look for asymptotically
good chains. We first compute ∆F = ∆∗F = −Kπ =

(
1, 1

2 ,
1
2 ,

1
2 ,

1
2 , 0
)
, with

(F +Kπ + ∆∗F ) ·M = F ·M = (0, 0, 0, 0, 0,−2) ≤ (0, 0, 0, 0, 0, 0) = −m0.

The only asymptotically strict subtraction is that of C6, but since F · C6 = −2 ≤ −1 = C2
6 ,

two tails need to be added. This means we have to take D1 = F − C6 = (2, 1, 1, 1, 1, 3) and
m1 = (0, 0, 0, 0, 0, 2). Then we have ∆∗D1

= Kπ + C6 =
(
1, 1

2 ,
1
2 ,

1
2 ,

1
2 , 1
)
, with

(D1 +Kπ + ∆∗1) ·M = F ·M = (0, 0, 0, 0, 0,−2) = −m1.

No further asymptotically strict subtraction is thus possible. Since both b∆∗F c ,
⌊
∆∗D1

⌋
6= 0, the

ideal defined by F is not a multiplier ideal.

References
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