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.

Abstract—Most of classical adaptive laws used in adaptive con-
trol have been developed based on the gradient descent algorithm
to minimize the control error. Hence, the sluggish convergence of
tracking error may affect the online learning, making accurate
parameter estimation difficult. The aim of this paper is to present
a new adaptive law to achieve optimal parameter estimation,
and then to showcase its application to adaptive control for a
benchmark servo system to retain simultaneous convergence of
both the estimation error and tracking error. For this purpose,
an auxiliary filter is introduced to extract the estimation error,
which is used to drive the adaptive law with a time varying gain to
minimize a cost function of the estimation error to achieve fast,
accurate parameter estimation. Finally, this new adaptation is
incorporated into an adaptive nonsingular terminal sliding mode
control (ANTSMC) for the considered servo system to obtain
tracking control and parameter estimation simultaneously. The
effectiveness of the developed method is validated by means of
comparative simulations and experiments.

Index Terms—Servo mechanisms, optimal parameter estima-
tion, adaptive control, sliding mode control.

NOMENCLATURE

θm Motor angular position.
θl Load angular position.
ω Load angular speed.
B = Bl + n2Bm Total viscous damping constant.
Bl Damping constants of the load.
Bm Damping constants of the motor.
J = Jl + n2Jm Total inertia.
Jl Load inertia.
Jm Motor inertia.
Ke Electromotive force constant.
Kt Motor torque constant.
n Transmission ratio.
Tm Motor output torque.
Ta Motor torque.
Tf Friction torque.
TL Load torque.
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Tl Output torque of the gearbox.
Fc Friction coefficient.
d(·) Nonlinear function.
τd = d(·)− TL, lump disturbance.

I. INTRODUCTION

High performance modeling and motion control of servo
mechanisms have been of great importance in practical engi-
neering applications, and thus drawn significant attentions in
the past decades [1]–[6]. However, there are usually unknown
dynamics such as friction, system uncertainties and external
disturbances in such systems, which can degrade the con-
trol performance. To address these problems, many advanced
control algorithms have been developed [7]–[9]. Moreover,
artificial intelligent techniques, such as neural network (NN)
[10]–[13], fuzzy logic control (FLC) [14]–[17], have also
been incorporated into adaptive control designs for uncertain
systems.

However, in most of existing adaptive control designs, the
adaptive laws used to update parameters are usually derived
based on the gradient algorithm to minimize the tracking con-
trol error [18]. These methods may trigger bursting phenomena
when the system is subject to disturbances, i.e., the estimated
parameters may go to infinity, leading to the instability of the
constructed control system. To address the robustness issue,
several modified adaptive laws have been proposed, such as e-
modification and σ-modification [18]. However, the parameter
estimation error may not converge to zero due to the included
damper terms in these robust adaptive laws. Following this
observation, a composite estimation method was incorporated
into adaptive control to enhance the estimation response for
unknown parameters [19]. Again, the estimated parameters
stay around the pre-set values only, such that the control error
convergence may be affected by the nonconvergent parameters
[18]. In this respect, some efforts have been made toward
developing novel parameter estimation methods, which can
guarantee that the estimated parameters converge to the true
values. In [20], an adaptive finite-time parameter estimation
was proposed for nonlinear systems with the persistent exci-
tation (PE) condition. In [21], [22], a novel filter operation
was further introduced to design adaptive laws based on the
extracted estimation error, where the widely used observer is
avoided. This idea has established a new parameter estimation
framework, which is independent of the control or observer
designs, while guaranteeing exponential or even finite-time
estimation error convergence. However, the adaptive laws
proposed in [21], [22] cannot obtain optimal convergence (i.e.,
to minimize a predefined estimation error cost function).
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On the other hand, from the perspective of control design for
servo systems, sliding model control (SMC) has been proved
as an effective method to accommodate the unknown, bounded
dynamics [23]–[26]. However, the induced chattering phe-
nomenon of SMC cannot be completely eliminated. To reduce
the chattering and enhance the transient control response, a
nonsingular terminal sliding mode control (NTSMC) approach
has been reported in [27]. In the subsequent work, by using a
new sliding mode surface design, the NTSMC has been further
modified to achieve faster convergence rate, i.e., nonsingular
fast TSMC (NFTSMC) [28], [29]. The key merit is that the
NFTSMC can retain the advantages of NTSMC and provide
a faster convergence rate. Nevertheless, when the NTSMC is
combined with adaptive control with classical adaptive laws to
address the tracking control for servo systems, the convergence
of the estimated parameters cannot be guaranteed [30], and the
tuning of adaptive learning gains in these adaptive estimation
and control schemes is not a trivial task.

Motivated by the above discussions, the aim of this paper
is to develop a new adaptive law to achieve optimal parameter
estimation (i.e., to minimize the estimation error in an optimal
manner), and then to showcase its application to adaptive
control synthesis to obtain simultaneous convergence of both
the estimation error and tracking error. We take a servo
system with unknown parameters as the benchmark example
in this paper. To obtain optimal parameter estimation, we first
introduce filter operations and auxiliary variables to extract
the parameter estimation error (the error between the unknown
parameters and their estimates), which is used to construct an
estimation error cost function. Then by minimizing this cost
function, a new optimal adaptive law with a time-varying gain
is obtained to eliminate the effect of the regressor and thus
improve the transient estimation response. Hence, the advance-
ment over the previous work [21], [22] is not trivial. Moreover,
to achieve finite-time tracking control as well as the parameter
estimation simultaneously, the proposed adaptive estimation
scheme is incorporated into a modified NFTSMC method,
where the potential singularity problem in the conventional
TSMC methods [31], [32] is avoided. Comparative simulations
and experiments are given to validate the effectiveness of the
developed methods.

The contributions of this paper are summarized as follows:

1) A novel adaptive optimal parameter estimation method
is developed, where a cost function of the derived estimation
error is defined to derive a time-varying gain to improve the
transient estimation response.

2) This new optimal parameter estimation scheme is further
incorporated into an adaptive NFTSMC control synthesis to
achieve simultaneous convergence of estimation error and
tracking error in finite-time (FT).

The paper is organized as follows. The system model is
shown in Section II. The optimal parameter estimation method
is given in Section III. Section IV introduces the control
design. Section V provides the stability and convergence anal-
ysis. Simulations are given in Section VI, and experiments are
provided in Section VII. Section VIII draws some conclusions.
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Fig. 1. Block diagram of the servo mechanism.

II. DYNAMIC MODEL AND PROBLEM FORMULATION

This paper considers a servo mechanism driven by a servo
motor (See Fig.1), which is modeled as

Jmθ̈m = Ta −Bmθ̇m − Tm (1)

Ta = Kt
u−Keθ̇m

R
(2)

Jlθ̈l = Tl −Blθ̇l − TL − Tf (3)

The definitions of variables as shown in Fig.1 and the above
equation have been defined in nomenclature. The friction force
is described as:

Tf = Fcsgn(ω) (4)

The backlash dynamics are defined as

Tl = nTm + d(Tm) (5)

The system dynamics given in (1)-(5) can be written as θ̇l = ω

Jtω̇ = −
(
B +

n2KtKe

R

)
ω +

nKt

R
u− Fcsgn(ω) + τd

(6)
Define the parameter vector Θ = [θ1, θ2, θ3, θ4]

T = [(B +
n2KtKe

R )/Jt,
nKt

JtR
, Fc/Jt, τd/Jt]

T , and state variable as x =
[x1, x2] = [θl, ω], then the model (6) is rewritten as{

ẋ1 = x2

ẋ2 = −θ1x2 + θ2u− θ3sgn(x2) + θ4
(7)

The aim of this paper is to propose an optimal parame-
ter estimation method to estimate the unknown parameters
θi, i = 1, ..., 4 and design an adaptive controller to achieve
position tracking for the servo mechanism, i.e., x1 tracks a
given reference xd.

III. ADAPTIVE OPTIMAL PARAMETER ESTIMATION

In this section, we will propose an optimal parameter esti-
mation (OPE) method to estimate unknown system parameters.
Differing from the classical adaptive estimation schemes, we
will introduce a cost function of the derived estimation error,
which provides a new analytical method to obtain optimal
parameter estimation with a time-varying gain rather than a
manually tuned constant gain as [21], such that faster, optimal
error convergence can be achieved by minimizing this cost
function.
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Fig. 2. Structure of the proposed control system

A. Filter Design

To facilitate the design of adaptive law, the following
dynamics of system (7) with the unknown parameter Θ is
considered

ẋ2 = ΘTΨ (8)

where Ψ = [−x2, u,−sgn(x2), 1]
T is the regressor.

The filtered variables x2f and Ψf of x2 and Ψ are defined
as {

κẋ2f + x2f = x2, x2f (0) = 0

κΨ̇f +Ψf = Ψ, Ψf (0) = 0
(9)

where κ > 0 is the filter constant. From (8), one can obtain

ẋ2f =
x2 − x2f

κ
= ΘΨf (10)

Then, the auxiliary matrix P and vector Q are defined as{
Ṗ = −lP +ΨfΨ

T
f , P (0) = 0

Q̇ = −lQ+Ψf

[
(x2 − x2f )/κ

]
, Q(0) = 0

(11)

where l > 0 is a constant.
The solution of (11) is given as

P (t) =

∫ t

0

e−l(t−r)Ψf (r)Ψ
T
f (r)dr

Q(t) =

∫ t

0

e−l(t−r)Ψf (r)
[
(x2 − x2f )/κ

]
dr

(12)

Finally, another auxiliary vector H is defined as

H = P Θ̂−Q (13)

where Θ̂ is the estimate of the unknown parameter Θ, which
will be updated online by the developed adaptive law.

Lemma 1: For the variable H defined in (13), which can be
obtained based on P,Q defined in (13), we have

H = P Θ̂−Q = −P Θ̃ (14)

where Θ̃ = Θ− Θ̂ denotes the estimation error.
Proof : From (12), we can verify that

Q = PΘ. (15)

Then, substituting (15) into (13), we can have H = P Θ̂ −
PΘ = −P Θ̃.

Remark 1: It is shown in Lemma 1 that the derived variable
H is a function of the unknown estimation error Θ̃, which can
be online calculated based on measurable dynamics x2,Ψ by
using the filter operations in (9) - (10) and algebraic calculation
in (13). As shown in our previous work [21], the variable H
can be used to design adaptive laws to obtain Θ̂ with guar-
anteed convergence. However, the adopted constant learning
gains in [21] cannot address the effect of the regressor P , and
thus the transient convergence response may be sluggish. This
paper aims to develop a new adaptive law design based on
the extracted estimation error H to obtain optimal parameter
estimation. Specifically, we will introduce a cost function of
the estimation error with H , which can be minimized to derive
a time-varying gain in the adaptive law to achieve improved
estimation response. Thus, the following developments are
essentially different to the previous work [21].

B. Adaptive Optimal Parameter Estimation

In this section, a novel adaptive optimal parameter esti-
mation (AOPE) method is designed by minimizing a cost
function of the extracted error information Θ̃, which leads
to a time-varying gain in the adaptive law to compensate the
effect of regressor P and improve the estimation performance.
According to [18], a cost function is defined as:

J(Θ̂, t) =
1

2

∫ t

0

e−ρ(t−τ) [Q(τ)− P (τ)Θ̂(t)]T [Q(τ)− P (τ)Θ̂(t)]

m2(τ)
dτ

+
1

2
e−ρt(Θ̂(t)− Θ̂(0))TR0(Θ̂(t)− Θ̂(0))

(16)
where m2 = I4 + ∥PTP∥ is utilized for the normalization of
P , R0 = RT

0 > 0 and ρ > 0 are constants. The cost function
J(Θ̂, t) includes the discounting of the past estimation error
based on the current parameter estimate Θ̂ and penalties the
parameter change in [0, t] weighted by e−ρtR0. The constant
ρ serves as a forgetting factor, which implies that the effect of
old data and the initial error Θ̂(0) are discarded exponentially
as time t increases.

Note that the above cost function is different to the one
used in the derivation of the least-squares algorithm [18],
which is a function of the observer error rather than the
estimation error Θ̃. The cost function J(Θ̂, t) is a convex
function of Θ̂ at each time t, thus we can update the parameter
estimation Θ̂ to minimize the cost function J(Θ̂, t) to obtain
the optimal parameter estimation Θ̂(t), which satisfies the
minimum condition [33]

∂J(Θ̂, t)

∂Θ̂
= 0, ∀t ≥ 0 (17)

where ∂J(Θ̂, t)/∂Θ̂ denotes the partial derivative of the cost
function with respect to Θ̂.

Then from (17), we can obtain

∂J(Θ̂, t)

∂Θ̂
=

∫ t

0

e−ρ(t−τ)−PT (τ)Q(τ) + PT (τ)P (τ)Θ̂(t)

m2
dτ

+ e−ρtR0(Θ̂(t)− Θ̂(0)) = 0
(18)
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By solving the above equation, we can obtain the following
solution

Θ̂(t) =

(∫ t

0

e−ρ(t−τ)P
T (τ)P (τ)

m2
dτ + e−ρtR0

)−1

(∫ t

0

e−ρ(t−τ)P
T (τ)Q(τ)

m2
dτ + e−ρtR0Θ̂(0)

) (19)

The equation (19) gives a non-recursive algorithm. To facilitate
online updating the estimated parameter, we further take the
derivative of Θ̂ given in (19) with respect to time t. For the
simplicity of notation, we define

Γ(t) =

(∫ t

0

e−ρ(t−τ)P
T (τ)P (τ)

m2
dτ + e−ρtR0

)−1

,

W (t) =

(∫ t

0

e−ρ(t−τ)P
T (τ)Q(τ)

m2
dτ + e−ρtR0Θ̂(0)

)
.

(20)
Then the equation (19) can be rewritten as Θ̂(t) = Γ(t)W (t).

Considering the following matrix equality [34]:

d

dt
ΓΓ−1 = Γ̇Γ−1 + Γ

d

dt
Γ−1 = 0 (21)

then we can obtain

Γ̇ = −Γ

(
d

dt
Γ−1

)
Γ (22)

Then according to definition of Γ(t) as given above, we have

d

dt
Γ−1 =

d

dt

(∫ t

0

e−ρ(t−τ)P
T (τ)P (τ)

m2
dτ + e−ρtR0

)
=− ρ

∫ t

0

e−ρ(t−τ)P
T (τ)P (τ)

m2
dτ − ρe−ρtR0

+
PTP

m2
= −ρΓ−1 +

PTP

m2

(23)

Substituting (23) into (22) will yield

Γ̇ = ρΓ− Γ
PTP

m2
Γ, Γ−1(0) = R0 > 0 (24)

On the other hand, similar to (23), we can also obtain from
(20) that

dW

dt
= −ρW +

PTQ

m2
(25)

Now by differentiating (19), we can obtain the following
adaptive law for online parameter estimation

˙̂
Θ = −Γ

PTH

m2
(26)

Note the above adaptive law can be obtained based on the
following mathematical manipulators

˙̂
Θ =Γ̇W + ΓẆ

=

(
ρΓ− Γ

PTP

m2
Γ

)
W + Γ

(
− ρW +

PTQ

m2

)
= Γ

PTQ− PTP Θ̂

m2

= −Γ
PTH

m2

(27)

In the proposed adaptive law (26), the extracted estimation
error Θ̃ is used to drive the parameter estimation via the
term H . Hence, the estimation error dynamics of (26) can
be obtained as ˙̃Θ = −ΓPTP Θ̃

m2 . The exponential or even
finite-time convergence properties of adaptive laws using the
estimation error has been studied in the previous work [21].
However, a notable advancement of this adaptive law (26) is
that the time-varying gain Γ updated by (24) is introduced to
eliminate the effect of the induced filtered regressor P in the
term H in (26) on the transient convergence response of Θ̃.
Specifically, the gain Γ given in (24) converges exponentially
to the weighted average of PTP as shown in (20). Neverthe-
less, since R0 = RT

0 > 0 and the matrix P is semi-positive
definite [35] according to its definition given in (11), then
Γ exists for any t > 0. Moreover, different to the classical
adaptive laws derived based on the gradient algorithm, the
proposed adaptive law is driven by the estimation error Θ̃ by
minimizing the constructed cost function to achieve optimal
estimation performance.

It is also well-recognized that the persistent expiation (PE)
condition imposed on the regressor is essential for proving the
parameter estimation convergence. Hence, we first establish
the relationship between the the standard PE condition and
the positive definiteness of the introduced matrix P .

Lemma 2 [21], [36]: The matrix P is positive definite
satisfying λmin(P ) > σ1 > 0 for a positive constant σ1 > 0,
if the regressor Ψ is PE.

Before we present the main results of this section, we first
evaluate the boundedness of the time-varying gain Γ.

Lemma 3: For the time-varying gain Γ defined in (24) with
the PE condition of Ψ being true, then we know

γ1I ≤ Γ(t) ≤ γ2I (28)

where γ1 = 1/(λmin(R0) + 1/ρ) and γ2 = eρTm2/σ2
1 .

Proof: By calculating the solution of equation (23), we have

Γ−1(t) = e−ρtΓ−1(0) +

∫ t

0

e−ρ(t−τ)P
TP

m2
dτ (29)

Consider the facts PTP
m2 ≤ I and

∫ t

0
e−ρ(t−τ)dτ ≤ 1/ρ, we

can further obtain

Γ−1(t) ≤ Γ−1(0) + I

∫ t

0

e−ρ(t−τ)dτ ≤ R0 + I/ρ (30)

On the other hand, when the PE condition of Ψ holds, the fact
λmin(P ) > σ1 > 0 is true. Hence, one can further verify from
(29) that

Γ−1(t) ≥
∫ t

0

e−ρ(t−τ)P
TP

m2
dτ ≥

∫ t

t−T

e−ρ(t−τ)P
TP

m2
dτ

≥ σ2
1

m2
e−ρT I

(31)
for any t > T > 0. Then the boundedness of the learning gain
Γ given in (28) can be verified.

The convergence of the proposed adaptive law can be
summarized as the following theorem:
Theorem 1: For the parameter estimation of system (8) under
the PE condition, the adaptive law (26) is used with the
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variables P,Q,H defined in (11)-(13) and the time-varying
gain given in (24), then the estimation error Θ̃ converges to
zero exponentially.
Proof: Consider a Lyapunov function as follows:

V1 =
1

2
Θ̃TΓ−1Θ̃ (32)

The time derivative of V1 is

V̇1 =Θ̃TΓ−1 ˙̃Θ +
1

2
Θ̃T Γ̇−1Θ̃

=− Θ̃T PTP

m2
Θ̃ +

1

2
Θ̃T (−ρΓ−1 +

PTP

m2
)Θ̃

≤ −1

2

(
σ2
1/m

2 + ρ/γ2
)
∥Θ̃∥2

≤ −µV1

(33)

where µ = γ1(σ
2
1/m

2 + ρ/γ2
)

is a positive constant. Then,
from the Lyapunov theorem, we can conclude that the estima-
tion error Θ̃ can converge to zero exponentially.

Remark 2: Lemma 2 shows that the minimum eigenvalue
condition λmin(P ) > σ1 > 0 can be fulfilled under the
conventional PE condition of Ψ. This positive definiteness
property will also be used to prove the convergence of the
proposed adaptive law (26). Hence, instead of validating the
PE condition directly, which is difficult to conduct online,
Lemma 2 provides an alternative method to verify the required
excitation condition by computing the minimum eigenvalue of
matrix P to test for λmin(P ) > σ1 > 0, which can be carried
out online.

Remark 3: From (24), if we set ρ = 0, then the gain Γ

given in d
dtΓ

−1 = PTP
m2 ≥ 0 will converge to zero, which

makes the proposed adaptive law (26) switched off. This has
been recognized as the gain wind-up issue in the adaptive
estimation. Hence, as inspired by the least square algorithm
we include the forgetting factor ρ to remedy this issue and to
guarantee the boundedness of the gain Γ as shown in Lemma
3.

IV. ADAPTIVE SLIDING MODE CONTROLLER DESIGN

In this section, we will incorporate the proposed adaptive
algorithm into the adaptive control to achieve tracking control
and parameter estimation simultaneously. To retain faster con-
trol error convergence, we first present a modified FNTSMC
without the singularity issue.

To construct the sliding mode surface, the tracking error is
defined as

e = xd − x1 (34)

Then a modified sliding mode surface s is constructed as

s = ė+ λ1e+ λ2β(e) (35)

where

β(e) =

{
|e|νsgn(e) s = 0 or s ̸= 0, |e| > µ

β1e+ β2|e|2sgn(e) s ̸= 0, |e| ≤ µ
(36)

where β1 = (2− ν)µν−1, β2 = (ν − 1)νν−2, and ν > 0 is a
positive constant. λ1 > 0 and λ2 > 0 are positive constants.

Then the derivative of s is calculated based on (7) as

ṡ = ẍ1 − ẋr = −θ1x2 + θ2u− θ3sgn(x2) + θ4 − ẋr (37)

where

ẋr =

{
ẍd + λ1ė+ λ2ν|e|ν−1ė s = 0 or s ̸= 0, |e| > µ

ẍd + λ1ė+ λ2β1ė+ 2λ2 β2|e|ė s ̸= 0, |e| ≤ µ
(38)

Then, an adaptive nonsingular terminal sliding mode control
(ANTSMC) is designed as

u =
1

θ̂2

[
− k1s− k2|s|γsgn(s) + θ̂1x2

+ θ̂3sgn(x2)− θ̂4 + σ2sgn(s) + ẋr

]
(39)

where θ̂i, i = 1, .., 4 is the estimation of θi, −k1s −
k2|s|γsgn(s) represents the feedback control which is used to
ensure the finite-time convergence of the sliding mode surface
s. γ = γ1/γ2 with γ1 > 0, γ2 > 0 and γ1 < γ2 are all positive
constants. σ2sgn(s) denotes a robust term used to reject the
potential bounded estimation error and other disturbances.
Thus, the control gains k1 and k2 are positive constants.

By substituting the control (39) into (37), we can obtain the
following tracking error dynamics

ṡ = −k1s− k2|s|γsgn(s)− Θ̃TΨ− σ2sgn(s) (40)

Remark 4: Compared with conventional sliding mode con-
trol designs, e.g., [37], this paper suggests a modified NTSMC
given in (35)-(36), which can avoid the singularity problem
since the introduced term β(e) can also overcome the singu-
larity problem in the case s ̸= 0 and e = 0.

In the above control (39), we need to obtain the estimated
parameters θ̂i. Since the tracking error has also been derived
in this section by using the sliding mode surface s in (35),
it can also be used in the design of adaptive law, so as to
guarantee the convergence of both the estimation error Θ̃ and
tracking error s simultaneously.

Then, when the adaptive parameter estimation is incorpo-
rated into the control design, we can design the following
adaptive law:

˙̂
Θ = Υ

(
Ψs− PTH

∥H∥
)
− Γ

PTH

m2
(41)

where Υ > 0 is a positive constant.
Remark 5: In this paper, we utilized the NTSMC to achieve

finite-time convergence of both the estimation error and con-
trol error due to the finite-time property of NTSMC. It is true
that the proposed adaptive law can be incorporated into other
adaptive control designs.

Remark 6: In the proposed adaptive law (41), the first term
is the gradient term of the tracking error s, the second term
is used to achieve finite-time convergence of Θ̃ together with
s, and the third term stemming from the optimal estimation
algorithm shown in the above section is used to enhance the
transient estimation response. It is noted that the obtained
parameters are smooth since an integration is adopted to
obtain the parameter estimates though there are high-frequency
switchings in the right side of (41). This is different to the
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SMC schemes. Finally, to avoid the potential singularity issue
in the control (39) (when θ̂2 = 0), we should set the initial
condition as θ̂2(0) > 0 and/or impose the projection method.

V. STABILITY ANALYSIS

To analyze the stability of the closed-loop system, we have
the following lemma.

Lemma 4 [38]: Assume that there exists a continuous,
positive-definite function V (t) satisfying

V̇ (t) + ηV (t) +ϖV ℓ(t) ≤ 0, ∀t ≥ t0, V (t0) ≥ 0 (42)

where η, ϖ, and 0 < ℓ < 1 are positive constants. Then, V (t)
satisfies

V 1−ν(t) ≤ (ηV 1−ℓ(t)+ϖ)e−η(1−ℓ)(t−t0)−ϖ, t0 ≤ t ≤ ts
(43)

and
V (t) ≡ 0, ∀t ≥ ts (44)

with ts is

ts = t0 +
1

η(1− ℓ)
ln

ηV (1−ℓ)(t0) +ϖ

ϖ
(45)

Now the stability of the proposed control system and the
convergence of the errors can be summarized as:
Theorem 2: Consider the close-loop system constituting of the
plant (6), adaptive control (39), and the parameter updating law
(41), then

1) The closed-loop system is stable.
2) The sliding mode surface s and the estimation error Θ̃

can converge to zero in finite-time.
3) The tracking error e will converge to zero in finite-time.
Proof: 1) Consider a Lyapunov function as follows:

V2 =
1

2
Θ̃TΥ−1Θ̃ +

1

2
s2 (46)

The time derivative of V2 is then derived as

V̇2 =− k1s
2 + Θ̃Ψs− k2|s|γ+1 − σ2|s| − Θ̃TΨs

− Θ̃TPTP Θ̃

∥P Θ̃∥
− Θ̃TΥ−1Γ

PTH

m2

≤− k1s
2 − k2|s|γ+1 − σ2|s| − σ1∥Θ̃∥

≤ − σ2|s| − σ1∥Θ̃∥
≤ − a

√
V2

(47)

where α = min{
√
2σ1,

√
2σ2} is a positive constant. Accord-

ing to the Lyapunov theorem, we know that V̇2 ≤ 0 and thus
s and Θ̃ are all bounded and converge to zero in finite-time.
Moreover, we can easily verify that the control u and the
system state x are all bounded. Hence, the closed-loop system
is stable.

2) According to the above proof, we know that s converges
to zero in finite-time. When the sliding surface s = 0, one has

ė = −λ1e− λ2β(e) (48)

Select a Lyapunov function as follows

V3 =
1

2
e2 (49)

and differentiating V3 along (48) yields

V̇3 =− λ1e
2 − λ2|e|ν+1

=− 2λ1V3 − λ22
ν+1
2 V

ν+1
2

3

(50)

If s ̸= 0, then (50) can be written as

V̇3 =e(−λ1e− λ2β1e− λ2β2|e|2sgn(e))
=− (λ1 + λ2β1)e

2 − λ2β2|e|3

=− 2(λ1 + λ2β1)V3 − λ2β22
3
2 |e| 32

(51)

Define α1 = 2λ1 or = 2(λ1 + λ2β1), α2 = λ22
ν+1
2 or =

λ2β22
3
2 , and α3 = ν+1

2 or = 3/2, then, we can obtain

V̇3 + α1V3 + α2V
α3
3 ≤ 0 (52)

Then based on Lemma 4, we can obtain that the tracking error
e will converge to zero in finite-time given by

t1 =
1

α1(1− α1)
ln

α1V
1−α3
2 (t0) + α2

α2
(53)

In the engineering applications, the parameter tuning of the
proposed control algorithm can be conducted in a straight-
forward way. The parameters to be tuned include two sets:
adaptive estimation parameters κ, l and Θ̂(0), and controller
parameters k1, k2 and λ1, λ2. The tuning guidelines can be
briefly summarized as follows:

1) Choose proper initial parameter condition Θ̂(0), which
should satisfy θ̂2(0) > 0.

2) Large feedback gains k1, k2 and λ1, λ2 can lead to fast
convergence of tracking error while triggering oscillations in
the control actions. The learning gain Γ can improve the
estimation performance of Θ̃, but may excite the parameter
oscillations.

3) The filter constants κ, l cannot be set too large to seek
for a trade-off between the robustness and convergence rate.

The flowchart for the practical implementation of the pro-
posed control algorithm can be summarized as follows:

The implementation of the proposed algorithm

1: Initialization: Set initial condition Θ̂(0), γ(0), filter constant
κ and l, sliding mode surface parameters λ1, λ2, and
control parameters k1 and k2;

2: Start procedure;
3: Compute the sliding mode surface s from (35);
4: Compute the control law u via Eq.(39) for integration

interval t ∈ [ti, ti+1], i ∈ N ;
5: Online adaptation: online calculate the P and Q based on (11);
6: Compute the parameter error information H given in (13);
7: Update adaptive estimation Θ̂ according to (26) for integration

interval t ∈ [ti, ti+1], i ∈ N ;
8: Continuation: let i := i+ 1;
9: End procedure

VI. SIMULATION RESULTS

To verify the effectiveness of the developed estimation and
control algorithms, simulations are implemented on a servo
mechanism. A PC with CPU i7 and 8 G memory is used to
run the simulation. The system parameters in (6) are chosen
as Jt = 0.2, Kt = 0.185, Ke = 0.3, R = 1.5Ω, TL = 0.1
and n = 10. The friction force is Tf = Tcsgn(x2), where



7

0 5 10 15
-3

-2

-1

0

1

2

3

Po
sit

io
n 

tra
ck

in
g 

(ra
d) xd x1

0 5 10 15

Time(s)

-5

0

5

Sp
ee

d 
tra

ck
in

g 
(ra

d/
s) ẋd x2
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Fig. 3. Simulation results (a) Control performance; (b) Parameters estimates
for θ1, θ2, θ3, θ4.

the Coulomb friction coefficient is Tc = 0.07. Then, the
unknown parameters can be set as Θ = [θ1, θ2, θ3, θ4]

T =
[18, 6.16, 0.35, 1]T . The controller parameters are k1 = 20,
k2 = 1.5, λ1 = 11, λ2 = 5, ν = 17/12, σ2 = 0.1. A desired
trajectory xd = 2 sin(0.5πt) is first utilized in simulation.

In order to validate the estimation performance, three pa-
rameter estimation methods are adopted in this simulation.

1) Adaptive Optimal Parameter Estimation (AOPE): The
parameter update law (41) is designed in Section IV. The initial
conditions are set as Θ̂(0) = [0 1 0 0]T . The filter time con-
stant is selected as k = 0.01 l = 1. The adaptive parameters
are chosen as ρ = 20, Υ = 0.5 and Γ(0) = 100diag[1 1 1 1].

2) Adaptive Parameter Estimation (APE) [21]: The adaptive
parameter estimation method with finite-time convergence is
tested. The parameter update law is ˙̂

Θ = Γ1

(
Ψs− PTH

∥H∥
)

with
a constant gain Γ1 = diag[2.5 4 3 0.5]. The other parameters
are the same as AOPE.

3) Gradient algorithm: The adaptive law is ˙̂
Θ = Γ1Ψs with

a constant Γ1 = diag[2.5 4 3 0.5] is also tested for comparison.
Simulation results are depicted in Fig.3, where the position

tracking performance and speed tracking performance are de-
picted in Fig.3 (a), and Fig.3 (b) shows the results of the above
three parameter estimation methods. One can find in Fig.3 (a)
that the position tracking and speed tracking can achieve sat-
isfactory performance with the proposed algorithms. Fig.3(b)
illustrates that the parameters from the proposed updating law
converge to the actual values very fast. By comparing the
estimation results of AOPE and APE, one can find that the
transient performance of the proposed parameter updating law
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Fig. 4. Simulation results (a) Position tracking and tracking error (b)
Parameters estimates for θ1, θ2, θ3 and θ4

with a time-varying gain is faster than APE with a constant
gain. This shows that the time-varying gain given in (24) can
address the effect of regressor and thus improve the transient
performance. Among three parameter estimation methods, the
gradient methods provides inaccurate estimation since it does
not contains the information of the estimation error Θ̃. These
results show that the use of parameter estimation error in the
adaptive law can contribute to achieving fast convergent and
accurate estimation performance.

To study the effect of parameter uncertainties on the dy-
namic response of the servomechanism system, we change
the parameter θ1 at t = 2.5s as

Θ =

{
[18, 6.16, 0.35, 1], 0 ≤ t < 3

[15, 6.16, 0.35, 1], 3 ≤ t ≤ 15
(54)

It should be noted that since the unknown parameters and
the variations can be accurately estimated via the proposed
adaptive law as guaranteed in Theorem 1, the effect of pa-
rameter uncertainties can be estimated and then compensated
in the proposed control. Fig.4 shows the position tracking
(Fig.4(a)) and parameter estimation (Fig.4(b)) under the pa-
rameter changes. From Fig.4(a), we can see that the transient
response has a small overshoot at t = 3s. Moreover, the
sudden change in the parameters can be tracked after very
short transient at 3 sec.

Moreover, to study the effect of external disturbance on
the control response for the servomechanism system, a square
wave with amplitude 2 is used as the reference signal, and a
time-varying sinusoidal wave d = 0.1 sin(0.5πt) is simulated
as the external disturbance injected into the system measure-
ments. Simulation result is shown in Fig.5. From this result,
one can find that the developed control method can guarantee
satisfactory control response even in the presence of external
disturbances.
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Fig. 6. Diagram of the servo mechanism.

VII. EXPERIMENTS

A. Experiment Setup

In this section, experimental results are given to demon-
strate the effectiveness of the proposed control method. The
experimental setup is given in Fig.6. The turntable servo
system comprises of a PMSM (HC-UFS13), which is driven
by a PWM amplifiers in the motor card (MR-J2S-10A).
The control algorithms are implemented by the digital signal
processor (DSP) with the sampling time 0.01s. A Pentium
3.0 GHz industrial control computer by running C++ program
in CSS3.0 developing environment. The output position is
measured by means of an encoder with a resolution of 800
divisions. A gear transmission system with a gear ration of 80
is included; then, the encoder output signals have a resolution
of 64000 per rotation. In real-time experiments, a digital signal
processor (DSP, TMS3202812) is adopted to implement the
proposed control algorithm, and running the required multiply
and addition operations involved in the proposed adaptive
control methods within 10 ms is straightforward in terms of
computational costs.

B. Controller Design

In this section, four control schemes are compared: adaptive
control with a time-varying gain parameter updating law
(AOPE), adaptive control with a constant gain parameter
updating law (APE), adaptive control with gradient based up-
dating law (Gradient), and a standard PID control, respectively.
The controller parameters are set as k1 = 11, k2 = 1.5,
λ1 = 40, λ2 = 10, ν = 17/12, σ2 = 0.1. For the parameter
estimation, the initial conditions are set as Θ̂(0) = [0 6 0 0]. A
standard PID control is also implemented for comparison. The
parameters are chosen as: 1) AOPE: l = 1, k = 0.5, ρ = 20
and Γ(0) = 10 ∗ diag

(
[0.1 1.0 0.1 1.0 0.1]

)
. 2) APE: Γ1 =

diag
(
[2 1.1 1 2.0]

)
. 3) Gradient: Γ1 = diag

(
[2 1.1 1 2.0]

)
is used. 4) PID control gains are Kp = 30, Ki = 0.05
and Kd = 5. The PID control gains were set for a certain
reference xd = 0.4 sin(2πt/5.5) by first using the genetic
algorithm (GA) reported in [39], which can be derived based
on the nominal system model. Then, to address the effect of
modeling uncertainties, the obtained PID gains are slightly
modified by using a trial-and-error method to achieve better
control response. All the control gains are fixed for other
references to show/compare their ability of adapting different
operation scenarios. It is true that it might be possible to obtain
better tracking performance for specific reference if we retune
some control gains for each reference. However, the returning
process is time-consuming and thus not preferable in practice.

To quantitatively compare the performance of different
controllers, the following error indices are adopted:1) Inte-
grated absolute error IAE =

∫
|e(t)|dt; 2) Integrated square

error ISDE = (e(t) − e0)
2; 3) Integrated absolute control

IAU =
∫
|u(t)|dt, and 4) Integrated square control ISDU =

(u(t)−u(0))2, where u(0) is the mean value of control action.

C. Experiment Results

The control performance of the proposed adaptive control
with parameter estimation is experimentally evaluated by com-
paring their responses under different position references. To
evaluate the control and parameter estimation performances,
experiments are first conducted to track a compound reference
signal xd = 0.6 sin(2πt) + 0.8 sin(4πt). The experimental
results are shown in Fig.7.

Fig.7 (a) show the output position versus the desired tra-
jectories and tracking error. Fig.7 (b) depicts the parameter
estimation for different updating laws (e.g., AOPE, APE,and
Gradient). From Fig.7 (a), one can see that the position
tracking can achieve relatively satisfactory performance (the
tracking error in the steady-state is around 0.01 rad, equivalent
to 0.6 degree). Moreover, we can find in Fig.7 (b) that
the proposed AOPE and APE methods can guarantee that
the estimated parameters to converge to the actual values.
However, the transient response of the proposed AOPE is
better than APE. This is attributed to the time-varying gain
used in the proposed AOPE, which can address the effect of
the regressor. Among three parameter estimation methods, the
gradient algorithm produces the worst estimation performance
since it is only driven by the tracking error s.

Moreover, to further demonstrate the effectiveness of the p-
resented algorithm, comparative experiments have been carried
out for two different reference signals (low speed, and high
speed). Fig.8 (a)-(b) shows the position tracking response and
tracking error for two sinusoidal trajectories xd with different
amplitudes and frequencies, i.e., xd = 0.4 sin(2πt/5.5), and
xd = 0.8 sin(2πt/4). As depicted in Fig.8 (a), the tracking
errors of the proposed control with AOPE, APE, gradient
and PID methods are around 0.01, 0.02, 0.03, and 0.032 rad
in the steady-state, respectively, though the transient tracking
error reaches 0.1 rad before the adaptive laws achieve con-
vergence. Moreover, Fig.8 (b) shows the tracking errors of
three controllers for the reference xd = 0.8 sin(2πt/4) with a
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Fig. 7. Experiment results (a) Position tracking and tracking error (b)
Parameters estimates for θ1, θ2, θ3 and θ4

larger amplitude and a smaller period (implying fast motion
dynamics), the tracking error for fast varying trajectories
shown in Fig. 8(b) is slightly larger than Fig.8(a). Again,
as it is shown, the tracking performance of the proposed
adaptive controller with AOPE is superior over the other three
control methods. It is also noted that for some case studies, the
configured hardware (e.g., encoder) may lead to unavoidable
lag in the control response, which also contributes to the anti-
phase issue as shown in Fig.8. It is also noted that the test-
rig is not build to operate in nano-scale precision. Hence,
the ultimate control precision is determined by the hardware
configurations. However, the provided experimental results all
clearly demonstrate the advantages and better response of the
proposed control scheme over other methods in terms of both
the control response and estimation performance.

It should also be noted that since all parameters in the
test-rig are unknown, these experimental results are indeed
obtained in the presence of fully unknown parameters, and
dedicated to verify the effectiveness of handling the parameter
uncertainties. In fact, this is also a benefit for using the adap-
tive control scheme. Nevertheless, the collected measurements
(e.g., x, ẋ) via the encoder suffer from measurement noise, so
that the obtained experimental results also show the effects of
the disturbance. Hence, the tracking errors converge to a small
set around zero in the experiments.

Table I summarizes the performance indices for all different
experimental results. One can see from Table I that the pro-
posed adaptive control (39) with new adaptive law (40) obtains
smaller IAE and ISDE in all cases and thus better control
performance, i.e., it can obtain smaller tracking error. The
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Fig. 8. Experiment results : (a) Low speed tracking and error for xd =
0.4 sin(2πt/5.5); (b) High speed tracking and error for xd = 0.8 sin(2πt/4)

adaptive controller (39) with APE algorithm achieves fair con-
trol performance in terms of IAE and ISDE, while the gradient
control method leads to the largest tracking errors. This exactly
illustrates how the addition of the estimation error Θ̃ and
the time-varying gain Γ allows for the compensation of time-
varying dynamics to improve the overall estimation and control
performance. With respect to the required control actions, it is
interesting to note that all these three controllers require very
similar control efforts (i.e., IAU). In addition, among these four
control algorithms, PID control produces the worst control
performance. Nevertheless, in terms of computational costs,
PID control with 3 multiply and 3 addition operations within
sampling interval, 10 ms, which clearly performs superior than
the proposed AOPE that requires 32 multiply and 28 addition
operations. However, as we explained, the adopted DSP can
run these computations within 10 ms.

TABLE I
COMPARISON RESULTS OF PERFORMANCE INDICES.

xd = 0.4 sin(2πt/5.5) xd = 0.8 sin(2πt/4)

PID Gradient APE AOPE PID Gradient APE AOPE

IAE 0.0161 0.0139 0.0129 0.0046 0.0244 0.0361 0.0193 0.0118

ISDE 0.0082 0.0086 0.0043 0.0032 0.1640 0.0339 0.0101 0.0039

IAU 10.7713 8.8217 8.5839 8.6910 13.1120 11.7714 14.1843 11.7925

ISDU 5.5950 4.4431 4.1557 4.1351 9.9513 7.8721 13.0298 9.2363

VIII. CONCLUSION

This paper developed a novel adaptive optimal parameter
estimation and the associated control scheme for servo mech-
anisms with unknown parameters. Auxiliary filter variables
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are first developed to extract the information of parameter
estimation error. Then, a cost function of the extracted es-
timation error is constructed to derive a time-varying gain
in the adaptive law to achieve optimal parameter estimation.
Moreover, an adaptive NTSMC is designed by combining the
terminal sliding manifold with the proposed learning algorithm
to achieve convergence of both the tracking error and estima-
tion error simultaneously. Simulation and experimental results
demonstrated that the proposed method can obtain superior
parameter estimation and tracking performance over classical
methods. It is noted that the proposed learning algorithm
can be incorporated into other adaptive control synthesis for
other systems, e.g., robotics, aerospace, which will be further
addressed in our future work.
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