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Abstract

The optimization and monitoring of the energy consumption of machinery
lead to a sustainable and efficient industry. For this reason and follow-
ing a digital twin strategy, an online data-driven energy modeling approach
with adaptive capabilities has been proposed and described throughout this
paper. This approach is useful in developing robust energy management
systems that enhance the energy efficiency of industrial machinery. In this
way, the dynamic behavior of their energy consumption is modeled without
using phenomenological laws. In contrast, traditional methodologies hardly
consider such dynamic behavior or use an exhaustive modeling process. The
proposed approach includes an adaptive mechanism to consider the natu-
ral degradation of machinery. This mechanism is based on a concept drift
detector, which detects when the current consumption of the machine is
not correctly represented by the model estimation and adapts the model
to account for these new behaviors. The concept drift detector has broad
applicability in the face of reducing maintenance costs, measuring the im-
pact and evolution of either abnormal behaviors (e.g., failures) or degrada-
tion, and identify which elements change. The proposed methodology has
been validated in an industrial testbed. An experiment with three emulated
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concept drifts was carried out in the testbed. As a result, the proposed
adaptive approach obtained more than doubled the fit rate of the energy
prediction/estimation compared to the non-adaptive model and successfully
detected these changes in energy consumption.

Keywords: Non-intrusive load monitoring, Data-driven model, Subspace
identification, Energy models, Concept drift, Digital twin, Gaussian
mixture models, Energy efficiency, Machine fault diagnosis

1. Introduction

Towards the optimal use of energy resources and a sustainable environ-
ment, the deployment of methodologies related to energy efficiency in the
industry has been promoted in recent decades [1]. In addition, proper main-
tenance of industrial equipment reduces energy waste and production costs
in the industrial sector [2, 3]. Load monitoring leads to an understanding
of the energy consumption of specific appliances/equipment, which allows
implementing energy efficiency methodologies as well as early detection of
anomalies and measurement of equipment degeneration [4]. In this way,
predictive maintenance systems based on energy consumption can be im-
plemented, monitoring health status of equipment to anticipate and prevent
possible failures. Within load monitoring strategies, the non-intrusive load
monitoring (NILM) approach has been relevant due to its cost-effectiveness
and ease of installation and replacement. NILM measures the power service
entrance of an electrical circuit via a smart meter to disaggregate equipment-
level data [5]. NILM has extensive development in smart homes, but nowa-
days, it has aroused industrial interest, monitoring the energy consump-
tion of a production system (e.g., manufacturing machine) with a minimum
amount of sensors [6].

As most machining systems have significant energy saving potential, be-
ing one of the main consumers and waste producers of factories, motivating
to monitor and model their energy consumption profile to optimize their
yield [7, 8]. Thereby, production efficiency is improved while energy costs are
reduced. Furthermore, to cope with the high costs associated with stopping
a production line due to machine failure, the machine health management
for diagnosis and prognosis based on power consumption behavior has been
crucial for the realization of smart manufacturers [9]. In this way, a digi-
tal twin approach that can be computed and used as a reference to check
whether the real machinery functioning works as expected or experiences
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any failure [10].

The traditional modeling process to characterize the energy consumption
of an electromechanical system requires solid knowledge about phenomeno-
logical laws (e.g., chemistry, physics), mathematics, modeling, and particu-
lar properties of the system, being an exhaustive and exclusive procedure for
a particular system [11, 12]. Therefore, with an Industry 4.0 (I4.0) perspec-
tive, this article is focused on developing a data-driven modeling approach
geared towards electromechanical industrial machinery systems. The pro-
posed approach certainly reduces modeling efforts and takes advantage of a
large amount of available system data in I4.0 infrastructures.

Energy modeling of industrial machines focuses mainly on the machining
process, looking for energy consumption relationships and cutting/milling/
machining methods, process parameters, and tool geometries [1], e.g., Liang
et al. [13] present an Artificial Neural Networks (ANN)-based energy mod-
eling for energy-efficient machining optimization, considering dynamic and
aging conditions of machines during manufacturing life cycles. Zou et al.
[14] propose a data-driven stochastic manufacturing modeling method to
identify and predict energy-saving opportunities and their impact on pro-
duction, which are used for a distributed predictive control strategy, im-
proving overall profit and energy efficiency on production. Xie et al. [15]
develop an integrated model for predicting the specific energy consumption
(SEC) of manufacturing processes, considering the dynamic characteristics
of material-cutting power and the influence of the machine tools, work-
piece material, and cutting parameters. Most data-driven energy models
are based on well-known structures of machine learning strategies such as
neuronal models, linear support vector-based on regression, fuzzy logic func-
tions, and Gaussian mixture regression (GMM) [16, 17, 18, 19]. However,
the dynamic behavior of energy consumption is hardly characterized by a
short prediction horizon and few details of transient states.

The contribution of this paper is an online adaptive energy modeling
approach in a NILM scheme for manufacturing machines, addressing the
variability of real manufacturing systems and their impact on operational
performance. This methodology is based on a system identification (SI)
algorithm to build mathematical models based on data [20]. These models
predict the dynamic behavior of energy consumption of industrial machinery,
with high precision and are also fully applicable in the control theory. More-
over, since systems undergo a natural degradation over time that causes a
loss of accuracy in the model prediction, an adaptive mechanism is proposed
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to measure how that prediction deviates from the current consumption, us-
ing a concept drift strategy [21]. When this deviation exceeds a threshold,
the model is adapted to include the new dynamic behavior. The proposed
approach has applicability for both optimizing operations and predictive
maintenance, whose adaptive feature provides robustness and reliability to
end-users.

The proposed modeling methodology computes a state-space representa-
tion (SSR) to predict the instantaneous power consumption. The prediction
is performed according to inputs signals, indicating the configuration (e.g.,
speed) and state (on/off) of each electromechanical equipment of industrial
machinery. Therefore, the dynamic behavior of transient states when an
equipment undergoes a change, either in its configuration or state, can be
properly modeled, including the main temporal response features (e.g., over-
shoot, undershoot, settling time, rise time, peak time). Furthermore, the
stationary states of each equipment can be represented by modeling the
level of energy consumption for each configuration. These criteria are cru-
cial to capture changes to face the detection of failures or new unexpected
behaviors, compromising the efficiency of the process. However, SSR is a
linear model around an operating point of a real system, which limits its
use in broad operations to deal with non-linear behaviors. Whereas ANN
approaches can model non-linear behaviors and can learn new behaviors.
Those capabilities are necessary for the industry since the real industrial
systems can show non-linear behaviors and undergo changes due to con-
stant operations. Nevertheless, the dynamic behaviors of industrial systems
have a stochastic nature, where ANN approaches do not excel by definition.

In this paper, subspace identification (Sub-ID) procedure with a Ham-
merstein modeling is proposed to characterize the non-linearities between
inputs and outputs (power consumption). Additionally, with the adaptive
mechanism, the model will change to consider new behaviors of the system.
In this way, the proposed modeling approach provides a model with high
prediction precision and a known model structure in dynamic and control
systems, whose interpretation of parameters has been widely studied. On
the other hand, the interpretation of the ANN weights is challenging, as well
as to determine the relationships of those weights with the dynamic param-
eters (e.g., time constant, natural frequency, and damping ratio), similarly
for other machine learning approaches. Thus, for cases where a dynamic be-
havior needs to be modeled in great detail, the proposed SI approach is an
option and can provide features to facilitate subsequent dynamic analyses.
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Figure 1: Adaptive energy model scheme and publish-subscribe pattern.

The structure of this paper is organized as follows: In Section 2, the
proposed methodology is detailed, describing the data-driven modeling pro-
cedure and adaptive mechanism. Section 3.1 presents the validation process
that was carried out in an industrial machine, whose results are shown in
Section 3.2 with their corresponding analysis. Finally, in Section 4, the
conclusions and further work are drawn.

2. Energy models

Manufacturing industries constantly face challenges to improve their per-
formance and reduce costs, optimizing not only reliability and productivity
but also considering different sustainability issues. Therefore, following a
NILM scheme, this paper proposes a methodology to compute dynamic en-
ergy models to predict machine energy consumption with high accuracy and
an adaptive mechanism to update the model when prediction accuracy de-
teriorates, i.e., a mechanism to assess when the model has lost accuracy,
and then compute a new one, adapting to new behaviors over time. This
degradation in precision occurs because the system experiences either a pro-
gressive or abrupt change in behavior during the operating time. For this
reason, the model cannot correctly represent the current behavior of the
system, which may be due to deterioration of the equipment from constant
use, machine modification (e.g., installation of new components, change of
tools), or machine failure.

The proposed data-driven energy models can be applied in both the
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Figure 2: Block model of a Hammerstein model [23].

machine control system (e.g., to enhance energy efficiency) and machine
diagnostics (e.g., predictive maintenance, fault detection). For this reason,
the scheme supports the publish-subscribe pattern as shown in Figure 1,
providing versatility and extensibility since it is a multi-purpose oriented
approach. The adaptive energy model of the machine depends on machine
control signals u(k) and energy measurements S(k). Control signals indicate
when equipment is activated and under which conditions. Moreover, such
control signals are extracted from the programmable logic controller (PLC)
or computer numerical control (CNC), avoiding installing more sensors, just
an energy sensor following a NILM scheme. The current power consumption
prediction/estimation Ŝ(k) of the machine is used as a reference to measure
the degradation of prediction accuracy (concept drift). Therefore, when
the model has been updated, it would be sent to a dispatcher (topic) to
distribute it to the subscribed external systems.

In this way, with a publish-subscribe pattern, the proposed approach can
be scalable to the production line to monitor or improve energy efficiency,
using the different energy models for each machine in production planning.
Furthermore, this methodology can be easily integrated into infrastructures
as the energy cloud proposed by Sequeira et al. [22]. Thus, this novel
proposed approach is divided into two parts: a data-driven energy model-
ing methodology for electromechanical systems and an adaptive mechanism,
which are outlined in Subsections 2.1 and 2.2, respectively.

2.1. Subspace identification structure for nonlinear systems

Previous works have already proposed a methodology for identifying
energy models via subspace identification (Sub-ID) algorithms [20]. This
methodology represents the machine as a multiple-input and multiple-output
(MIMO) system; the inputs U ∈ U are activation/deactivation signals for
each device, and the outputs S ∈ Rl are the total instantaneous power
consumption of the machine for each line. Note that the number of outputs l
may vary depending on the energy sensor or the electrical phases to consider.
Often a three-phase line is used. Furthermore, every input has a domain Ui
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Figure 3: Hammerstein-based electric engine modeling.

for i ∈ {0, 1, . . . ,m}, where m is the number of inputs, then U = U1 × · · · ×
Um. The input domain Ui can be binary (either on or off), or the activation
can have a range of values related to power consumption, e.g., the power
consumption of an engine can vary depending on speed or torque, thereby,
they are candidates to be used as inputs and establish an operating range.
Thus, the general form of the input domain can be expressed as

Ui , {ui ∈ Z≥0 | ui ≤ ui ≤ ui ∨ ui = 0},

being ui, ui ∈ Z≥1 the lower and upper bounds to activate i-th device,
respectively.

Sub-ID is a state-space identification procedure based on the Hankel
matrix, which is created with an input-output identification dataset. This
matrix performs as a regressive matrix that solves a least-squares problem,
given a linear combination of subspace matrices that describe the data.
The state-space matrices are computed through the decomposition of the
subspace matrices, using reliable, widely known and available numerical
algorithms [20]. The result is a discrete-time linear time-invariant (LTI)
state-space representation,

x(k + 1) = Ax(k) +Bu(k) + ω(k), (1a)

y(k) = Cx(k) +Du(k) + υ(k), (1b)

with

E

[(
ωT

υT

)(
ωT υT

)]
=

(
Q S
ST R

)
δpq ≥ 0, (1c)
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being E[•] the expected value, u ∈ U , y ∈ Rl and x ∈ Rn vectors
at discrete-time instant k of the m inputs, l outputs and n states (i.e.,
the model order) of the system, respectively. Moreover, A ∈ Rn×n is the
(dynamical) system matrix, B ∈ Rn×m is the input matrix that represents
a linear transformation of the current input in the contribution to the next
state, C ∈ Rl×n is the output matrix that describes the effect of current
states over outputs, D ∈ Rl×m is the feedthrough (or feedforward) matrix
that allows modeling the direct effect of the input on the measurements/
outputs, ω ∈ Rn and υ ∈ Rl are non-measurable vector signals that affect
the states and measures, respectively. Additionally, Q ∈ Rn×n, S ∈ Rn×l

and R ∈ Rl×l are the covariance matrices of the noise signals ω(k) and υ(k)
[24].

The linear model (1) is capable of predicting the future behavior of
the system (with high accuracy) around an operating point, with direct
proportionality between input and output. It is suitable for applications that
require the system to operate in a narrow range. Although for other cases,
nonlinear models are an option, allowing to expand the operating range
and describe complex behaviors. The block-oriented model is one of the
most studied classes of nonlinear models, which is based on interconnecting
static nonlinearities (memoryless) to an LTI model. Within this class, the
Hammerstein model is studied, which consists of removing the nonlinearities
from inputs to outputs of the system with a nonlinear function (see Figure
2), thus, new inputs are established, having a linear relationship with the
outputs and is used to identify an LTI model [23].

Most manufacturing machinery relies on electric motors, which may have
a variable-frequency drive (VFD) connected to control their speed. With
that in mind, a systems identification methodology is proposed to model
the dynamics of electric peaks based on Sub-ID, e.g., the peak generated by
the electric motor when it is turned on. Consider a three-phase motor with
a constant load that is modeled as a black box, with speed as input and
power consumption of each line as output. Using a dataset with impulse
responses at different speeds, the model can be identified, but the obtained
model has some problems, e.g., the transient peak is shorter than the real
one and when it turns off there is a negative peak. The previous discussion
can be further performed by using Figure 3 (for the first phase/line) with
model 1 (whose order n is equal to three) that follows the structure (1) and
has a fit rate of 47.54%. The fit rate was computed as the complement of
the normalized root mean squared errors, also known as the Coefficient of
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Determination (R2) [25], i.e.,

R2(S, Ŝ) = 100 max

(
1− ‖S − Ŝ‖2
‖S − µS‖2

, 0

)
%, (2)

where S is the energy consumption measurement, µS the mean of S and Ŝ
the estimated consumption. Note that the estimation Ŝ is computed using
just the input signal, i.e., S measurements are not fed back to compute Ŝ.

For improving the previous result, it is recommended to create an arti-
ficial input with a delay from the original input and when the real input is
off (with null value) the artificial one should be 0 as well, i.e.,

ua(k) =

{
0 if u(k) = 0

u(k − δ) otherwise
, (3)

being δ the delay. Consequently, a new input vector is defined as u(k) =[
u(k) ua(k)

]T
and used to generate a new LTI model.

Following the strategy described above, model 2 shown in Figure 3 is
obtained, giving a fit rate of around 79%. This result demonstrates an
improvement compared to model 1, having proper peak identification and
eliminating the negative peak. However, models 1 and 2 have a notable
steady-state error, which is due to the polynomial increase in consumption
while the engine speed increases linearly. For this reason, the LTI model is
not able to describe this behavior. This problem is solved by mapping the
input from linear increasing to polynomial increasing, i.e.,

up(k) = w1u(k) + w2u
2(k), (4)

where w1 and w2 are weights that can be determined with a polynomial
regression between the speed and the mean of the consumption in the sta-
tionary part. In this way, a new LTI model is computed using a new input

vector up(k) =
[
up(k) up,a(k)

]T
, being up,a a delayed input from up.

Applying the previous procedure, model 3 is obtained with a fit rate of
82% (see Figure 3). Although model 3 fit rate is 3% over model 2 and may
seem unrepresentative, this strategy can be applied for cases with a high
stationary error, resulting in a significant improvement. Furthermore, this
methodology can be extrapolated to different devices with a similar energy
consumption profile. Thereby, a proper characterization of the nonlinearities
of the system leads to a reduction in model order or an increase in accuracy,
being essential for the identification and elimination of delays between input
and output.
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2.2. Adaptation mechanism

Machine power consumption profiles can change over time due to many
reasons, e.g., degradation resulting from constant use in an industrial envi-
ronment or the installation of new equipment. Figure 1 depicts an online
adaptation scheme to fit the model estimation with current machine energy
consumption behaviors. The reference model is initialized using a model
identified offline and predicts the machine consumption, which is compared
with real energy consumption in the adaptation-law block. This block tracks
the error between current and estimated consumption to measure accuracy
degradation, and when the model cannot accurately estimate consumption,
a new model is generated that replaces the current reference model.

Based on the methodology presented by Diaz-Rozo et al. [21], the adap-
tation law has been addressed by detecting a concept drift, which is defined
as a change over time in unforeseen ways of the statistical properties of the
target variables [26]. Diaz-Rozo et al. [21] proposed a concept drift detec-
tor to track the outliers in an adaptive sliding window, discriminating data
drifting from a scattered outlier.

Consider an error signal between measures and estimations

e(k) = S(k)− Ŝ(k),

whose probability density function can be described by a Gaussian Mixture
Model (GMM) with kc clusters

p(x = e(k); Ψ) =

kc∑
i=1

φi N (x;θi), (5)

being Ψ = (φ1, . . . , φkc ,θ1, . . . ,θkc) the mixture parameters, φi ∈ R a mix-
ture weight that satisfies

∑kc
i=1 φi = 1 and φi ≥ 0, N a multivaraible normal

distribution defined as

N (x;θ) =
exp

(
−1

2(x− µi)
TΣ−1(x− µ)

)√
(2π)l |Σ|

, (6)

with parameters θ = (µ,Σ), where µ ∈ Rl is a vector of means and Σ ∈ Rl×l

a covariance matrix for l features. In this sense, Assumption 1 is established.

Assumption 1. The error signal e(k) has stochastic nature and it is com-
posed of a mixture of a finite number of Gaussian distributions with unknown
parameters.
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For a given number of clusters kc, the unknown parameters Ψ can be
estimated by the Expectation-maximization (EM) algorithm with identifica-
tion data (or training data) [27]. The EM algorithm is an iterative method
for finding maximum likelihood solutions, which initialize the parameter (ei-
ther using the k-means algorithm or randomly) and then alternate two steps
called E-step and M-step.

The Expectation step (E-step) evaluates the training data with current
parameters to compute the posterior probabilities or the expectation of the
log-likelihood. The Maximization step (M-step) re-estimates the parameter
by maximizing the expected log-likelihood obtained in the E-step. These
new estimated parameters are used in the next E-step and so on, guarantee-
ing a progressive increase in the log-likelihood until the parameter converges
(within a given tolerance) or reaches the maximum number of iterations.

Several criteria and methodologies have been proposed to select the num-
ber of clusters kc [28, 29]. The criteria reported by Christopher Bishop in
[27] is followed for developing this paper. This strategy only needs to per-
form a single training, given a relatively large number kc of components,
inspecting the mixture weights φ = (φ1, . . . , φkc) to select the number of
most relevant mixtures. Thereby, a threshold λk is defined, and then kc will
be the number of weights greater than λk. Once determined kc, a new GMM
will be trained with this number of components.

Having the basic concepts related to GMM, the concept drift will be
detected when the GMM of error loses accuracy, i.e., the error distribution
has changed. This strategy consists of two main steps: 1) detect outliers and
2) count the number of outliers within a sliding window and check whether
or not there is a concept drift.

2.2.1. Outlier detection

By using a sequential analysis technique called the Page-Hinkley test
[30], changes in the probability distribution can be detected. To measure
the goodness of fit from the GMM to a data sample, the log-likelihood
criterion is used, defined as

logL(e(k); Ψ) = log (p(x = e(k); Ψ)) ,

where logL(e(k); Ψ) ≤ 0 for any value of e(k) since the likelihood function
p is defined within the range [0, 1]. Therefore, log-likelihood values close to
0 mean that the samples are more likely.
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As the signal error can have noise, disturbances, or error peaks during
transitions (device switching) that produce false negatives in log-likelihood,
then the log-likelihood should be smoothed out by filtering out sudden
spikes. The filtering procedure used in this paper was the Slope Comparing
Adaptive Repeated Median (SCARM) [31] – an adaptive online repeated
median filter – since it is a robust filter that does not need explicit param-
eters. In this way, it is not required to predefined a suitable width of the
sliding window as conventional approaches, e.g., moving average filter.

From smoothed log-likelihood

ll
∧

(k) = scarm (logL(e(k); Ψ)) ,

the Page-Hinkley test [30] is performed to detect when the probability dis-
tribution deviates from normal behavior. This test measures the point of
change in the mean of a sequence of a normal random variable using a cu-
mulative sum test scheme, i.e.,

cum(k) = cum(k − 1) + ll
∧

(k)− ll(k)− ω, (7a)

ll(k) =
1

ncum

ncum−1∑
i=0

ll
∧

(k − i), (7b)

being ll(k) a moving average with windows of ncum = min
{
nw, k

}
, nw the

window width for k ≥ nw and ω ∈ R≥0 a tolerance that defines the maximum

accepted change. Typically, ω can have a value close to ll(k)−ll
∗

2 , where ll
∗

is known as Rejectable quality level [30]. Thus, to assess the rejection of the
no-change hypothesis, a ph signal is defined as

ph(k) = cummax(k)− cum(k), (8a)

with

cummax(k) = max
{

cum(k − i), i = 0, . . . , ncum − 1
}
, (8b)

which is used to determine the reject signal that detects outliers as follows:

reject(k) =

{
1, if ph(k) ≥ λ
0, otherwise

, (9)

with a threshold λ ∈ R≥0 to label the current sample as an outlier with
value 1. Then, the no-change hypothesis would be rejected.
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2.2.2. Concept drift detection

In order to discriminate outliers produced by noise, brief disturbances,
transient states, or model degradation (concept drift), a threshold s is de-
fined to establish the minimum number of non-outliers (within a defined
window) required to indicate whether the model is suitable. Therefore, a
concept drift is detected when the following inequality is satisfied:

r =

nw−1∑
i=0

(1− reject(k − i)) < s, (10)

being r the number of non-outliers. Note that r starts to be calculated when
k ≥ nw.

For establishing the values of nw and s, the criteria of an adaptive window
proposed by Diaz-Rozo et al. [21] was followed. Based on Batch Sampling,
Chernoff bound and let r(k − nw), . . . , r(k) be independent trials, Assump-
tion 2 is established.

Assumption 2. Let r(kw) be a discrete random variable ∀ kw ∈ {k −
nw, . . . , k}, which follows a Bernoulli distribution with parameter p, i.e.,

r(kw) ∼ Bern(p).

Remark 1. Let X = {x1, . . . , xnBern} be a set of independent trials that
follows the Bernoulli distribution with parameter p ∈ [0, 1], such that: ∀j ∈
{1, . . . , nBern}, xj ∈ {0, 1}, and ∀xj, Pr [xj = 1] = p or Pr [xj = 0] = 1− p.
Besides, X satisfies that E [X] = p and Var(X) = p(1− p).

Thus, the classical sample size problem can be posed to determine the
smallest size that satisfies a probability, which is defined as follows:

Pr [|p̃− p| ≤ εp] ≥ 1− δ

2
, (11)

where ε ∈ (0, 1) is the margin of absolute error and δ ∈ (0, 2) is the confi-
dence parameter. Inequality (11) was developed by Osamu Watanabe [32],
resulting in adaptive window size bounded by

nw ≤
3(1 + ε)

(1− ε)ε2p
ln

(
2

δ

)
, (12)

knowing p in advance, which according to Diaz-Rozo et al. [21], p is esti-
mated every cycle as r/nw, as long as it satisfies with r ≥ s, otherwise p = 1.
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Algorithm 1 The adaptive mechanism algorithm

Precondition: Uiden and Siden, identification input-output data
Precondition: n, model order
Precondition: ω and λ, Page-Hinkley test parameters
Precondition: δ and ε, Batch sampling parameters

1: Compute the initial state-space model (1) and train the initial GMM
(5). Using p = 1, s and nw are initialized with Eqs. (13) and (12),
respectively

2: Start-up of the machine and control system
3: Sensor and reference model generate S(k) and Ŝ(k), respectively, adap-

tation law block receives them, and compute e(k)
4: Outlier detection step:

Smooth the log-likelihood ll
∧

(k), and compute cum(k), ph(k) and
reject(k) signals with Eqs. (7), (8), and (9), respectively

5: Concept drift detection step:

Calculate the r(k) signal using Eq. (10) If r(k) < s then a concept
drift is detected and go to step 6, else p = r/nw and go to step 7

6: Using the last measures of S and u, a new state-space model is calcu-
lated, as well as a new GMM is trained and compute nw with p = 1,
updating the reference model

7: If the process has finished then exit, else go to step 3

Futhermore, s is a defined window

s =
3(1 + ε)

ε2
ln

(
2

δ

)
, (13)

which does not depend on p.

When a concept drift is detected, a new model is generated with the
stored measurements from the last machine cycle and replaced by the current
reference model. Algorithm 1 gathers all the main steps that the adaptive
mechanism block must follow.

3. Adaptive energy model in a real industrial setup

In this section, both the validation procedure and the performance re-
sults of the proposed approach are presented. First, the used industrial
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experimental testbed is described, together with an explanation of the em-
ulated concept drifts. Next, the results are shown and discussed.

3.1. Experiments

The performance of the proposed approach was validated using the in-
dustrial testbed shown in Figure 5. This testbed is certificated by the Indus-
trial Internet Consortium (IIC) [33], whose objective is to validate Industrial
Internet of Things (IIoT) technologies for smart factories, having the typ-
ical components of a machine tool: two tool axis (spindles), an X-axis of
translation (servomotor), a robot to change tools, a pneumatic system, a
coolant system, and an industrial control system (e.g., PLC, CNC). In or-
der to monitor the power consumption of the machine, an energy meter
called Aingura Insights1 (AI) is installed at the electrical source entrance of
the machine, following a NILM scheme [5]; AI acquires energy samples with
a frequency of 8 kHz and is equipped with a Zynq® Ultrascale+™ MPSoC
to process them. In this way, the energy consumption of the whole machine
is measured, whereas the states (e.g., speed, torque) of every element in
the machine are extracted from PLC and CNC, without affecting any of its
processes.

For the validation test, a machine cycle was established where the robot
installs and removes the tools on the spindles at the beginning and end of
the cycle, respectively, and during the cycle, the spindles and the X-axis are
activated at different speeds, while the peripheral equipment (i.e., pneumatic
system and coolant system) are activated automatically to satisfy machine
conditions. An experiment was carried out with this machine cycle, with a
duration of four hours and 43 minutes. Moreover, three concept drifts were
emulated by modifying the settings of the axis and the peripheral equipment
to affect their consumption profile.

The collected data of both smart energy meter and control system were
post-processed, resampling the data with a digital filter at 100 Hz and syn-
chronizing them to generate a dataset that establishes the system inputs
as machine states and the outputs as power consumption measures. The
following inputs were established from the five most consuming devices of
the machine: the angular speeds of the two spindles and the X-axis servo
motor, and activation/deactivation signals of both cooling system motor and
pneumatic system pump. The first machine cycle of the dataset was used

1https://www.ainguraiiot.com
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Figure 4: Initial reference model performance. Consumption profile and estimation of a
machine cycle, with a close view of the main consumers. (a) Comparison between the
energy consumption profile and the estimate of the second power phase. (b) Red spindle.
(c) Blue spindle. (d) The X-axis servo motor. (e) The pneumatic system pump. (f)
Cooling system motor started. (g) Cooling System motor shutdown.

as training data to compute the initial model (with order n equal to six).
This initial model was tested with training data and yielded an average fit
rate of 77.2% for the three phases. Figure 4 displays the energy profile of
the second power phase since the performance of the other phases is similar.

3.2. Results

The adaptive energy model was validated with the following settings: the
outlier detection step was tuned to classify outliers greater than 20% of the
maximum value of ph signal obtained with the training data, using a ω = 0,
giving a value of λ = 3000. The concept-drift detection step was configured
with a maximum absolute marginal error of 5 % and a confidence parameter
greater than 80 %, i.e., ε = 0.05 and δ = 0.4. With these parameters, the
width of the windows to detect concept drift are s = 2027 and nw = 2134
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Figure 5: Industrial Internet Consortium Testbed.
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Figure 6: Evolution model fit-rate.

when p = 1.

Using the generated dataset as a data stream, the proposed approach
was evaluated, resulting in the evolution of the fit rate per machine cycle
shown in Figure 6, being labeled the three emulated concept drifts as vertical
dashed lines. Figure 6 demonstrates the ability of the adaptive mechanism
to recover the fit rate against concept drifts, achieving a maximum fit rate
of 82 %. Moreover, analyzing the amount of drop in the fit rate after each
concept drift indicates how abrupt the concept drift is, or in a context of
failures, the impact of a failure on power consumption and how it evolves,
e.g., in this experiment, it is notable that the drops of the concept drift
increase exponentially and if it is due to failure, then the failure impact
increases exponentially.

Figure 7a shows a comparison between the energy measurements and
the prediction signals, which was filtered (with a mean filter) to improve the
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Figure 7: Adaptive energy model signals obtained during the experiment. (a) Profiles
of measured and predicted energy consumption of the second power phase. (b) Energy
consumption profiles with a moving average. (c) Log-likelihood signal. (d) cum signal.
(e) Page-Hinkley signal. (f) r signal. (g) Concept drift signal.
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Table 1: Fit rates for the entire experiment.

Lines L1 L2 L3

Fit rate (R2) [%]
Sub-ID 34.28 32.12 33.73
ASub-ID 68.54 67.96 69.42

Table 2: Fit rate of the first and last machine cycle by model.

Machine cycle ASub-ID Sub-ID ARX ANN

Fit rate (R2) [%]
Initial 77.17 75.57 65.15 58.32
Final 72.05 13.57 16.05 0

visualization and perceive the similarity of both signals (see Figure 7b). In
this way, the performance of the estimated energy consumption is perceived
and illustrates that it can follow the measurements. After each concept
drift, the prediction loses accuracy but the adaptive mechanism manages to
recover it. From the error signal between measures and prediction, the com-
puted log-likelihood signal is displayed in Figure 7c, along with its filtered
signal ll

∧

to reduce noise, avoiding false positives when detecting outliers.
The cum signal (7) was computed using ll

∧

signal and is shown in Figure 7d.

Note that the cum signal captures the relevant variations of the ll
∧

signal,
demonstrating that it is a suitable feature to insight the behavior behind the
ll
∧

signal. Thus, the obtained ph signal (8) from the cum signal is presented
in Figure 7e. With the λ established, the outliers were correctly detected
after each concept drift (see Figure 7g).

With the ph signal, the r signal (10) is calculated by counting the number
of non-outliers within a window with a variable width nw and is shown in
Figure 7f. When the r signal is less than s, a concept drift is detected. There-
fore, after every true concept drift, the adaptive approach detects concept
drifts, although it is not instantaneous since the concept drift is artificially
introduced and labeled when all devices are turned off, then the outlier was
detected after the first equipment was turned on. Among the emulated con-
cept drifts, more than one concept drifts were detected. This because the
adaptive methodology has a transient state until reaching the proper model
that presents the new behavior.

3.3. Comparative assessment

The performance of the proposed adaptive energy model (ASub-ID) was
compared with the non-adaptive model (Sub-ID), using the established ini-
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Figure 8: Comparison of different evolution fit rate per machine cycle for each type of
model.

tial model for ASub-ID. As a result, ASub-ID obtained a fit rate higher than
68% (see Table 1) for the entire experiment, which represents an improve-
ment of up to 50 % compared to a non-adapted model. Furthermore, with
training data, an autoregressive-exogenous (ARX) model and an ANN were
computed to compare the accuracy of each type of model. The parameters
of the models were tuned to obtain the best fit rate, resulting in the fol-
lowing: an ARX model of 10th order and an ANN with two layers and 50
hidden neurons.

Averaging the fit rate of model prediction of each line, the fit rate per
machine cycle for each approach is presented in Figure 8. Futhermore, Ta-
ble 2 shows the fit rate values at the beginning and end of the experiment
by model. ASub-ID had the best energy prediction over time, followed by
Sub-ID, although it is overpassed by the ARX model after the third concept
drift. ANN performed poorly as it needs more training data to find better
weights to improve its predictions. Therefore, to model dynamic behaviors,
system identification approaches (such as Sub-ID and ARX) manage to cal-
culate suitable models with fewer model parameters and training data than
ANN approaches. On the other hand, models without an adaptive mech-
anism lose precision over time, with greater drops after each concept drift.
Thus, regardless of the structure of the model, the integration of an adaptive
mechanism in the digital twin paradigms enhances the prediction accuracy
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and makes it possible to monitor the changes that the system undergoes.

4. Conclusion

Through the optimization and monitoring of energy consumption in fac-
tories, this research is motivated to increase the efficiency and sustainability
of the manufacturing process. For this reason, this work contributes to the
literature with an online energy modeling methodology, which generates dy-
namic models of energy consumption of industrial machines. This approach
has high accuracy and adaptive capabilities, i.e., it is capable of detecting
new energy consumption behaviors (concept drift) and generating a new en-
ergy model that considers them. The combination of a system identification
approach with a concept drift detection method represents a novelty that
provides model adaptability capabilities in digital twin applications. Thus,
this data-driven methodology allows generating multipurpose energy mod-
els that can be used by multiple external systems (e.g., energy management
systems, diagnostic systems, prediction systems), providing reliability by
sharing the new model to those systems that are interested, keeping them
up-to-date. Therefore, the proposed approach innovatively enhances the
performance of applications aimed at energy efficiency on industrial systems
and also aids in their diagnostic to detect early failures in electromechanical
systems.

This modeling strategy was validated on an industrial testbed, which has
allowed to design and carry out an experiment with three concept drifts ar-
tificially introduced. As a result, the performance of the adaptive approach
revealed an improvement in prediction by doubling the fit rate compared to
the non-adaptive model. The concept-drift detection enables manufacturers
to measure how the system is changing, which large consumer is changing,
and to give early warning when the system behaves abnormally or experi-
ences a failure. On the other hand, the proposed approach was compared
with other widely known modeling methods, the autoregressive-exogenous
model and artificial neural networks. The adaptive approach proposed out-
performed and obtained a maximum fit rate per machine cycle of 82.81%,
while the other models had less than 66%.

The meaningful findings obtained demonstrate the proper performance
of the proposed methodology, innovatively combining dynamic models with
machine learning algorithms to contribute to optimal management of energy
resources. In this way, the proposed data-driven modeling incorporates an
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adaptive feature, which can be individually enhanced. Therefore, as fur-
ther works, automation energy modeling processes need to be improved,
as well as to include more input characterizations to increase the fit rate
and robustness of the solution. The adaptation mechanism needs to reduce
the transient time after detecting a true concept drift and eliminate false
concept drift. On the other hand, with the proposed approach, a strategy
to measure the energy degradation of electromechanical systems must be
developed, which helps in the early detection of faults or anomalies.
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