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Abstract

The design of adaptive observers is a common approach for the joint state
and parameter-estimation problem. Nonetheless, there are still some obsta-
cles that have to be solved to improve the design of adaptive observers and
extend its implementability to a larger class of systems. First, the separa-
tion of the state-estimation and the parameter-estimation requires a relative
degree one or zero between some known signal and the parameters to be
estimated. Second, standard stability proofs for adaptive observers cannot
be easily extended to consider the unavoidable presence of sensor noise and
unmodelled system uncertainty. Consequently, on the one hand, this work
proposed a methodology to relax the relative degree condition through the
use of a high-gain observer that will be coupled with the adaptive observer.
On the other hand, the stability and performance of the proposed observer
scheme will be analysed by the use of a strict Lyapunov function based on
the Mazenc construction, which allows to have provable convergence and
to study the effect of sensor noise and model uncertainty through common
Lyapunov theory. Finally, the proposed approach is validated in a compart-
mental epidemiology model.
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1. Introduction and motivation

state-estimation is a central topic for feedback control, system identifi-
cation and fault diagnosis. The state-estimation problem for linear time-
invariant system is a well-understood problem with solutions for generic
systems, even in the presence of model uncertainty and sensor noise [1].
Nonetheless, such a generic solution does not exist for the more general case
of nonlinear systems, which rely on the system having a specific structure.

For systems with Lipschitz nonlinearities, it is possible to estimate the
state through a high-gain observer [2, 3, 4, 5]. Similar results have been ob-
tained for nonlinearities that are bounded [6, 7], that satisfy a bounded Ja-
cobian condition [8], a monotonic condition [9] or that are locally monotonic
with finite extrema [10]. The authors in [11] proposed a local transformation
that transformed a nonlinear system to a linear one with a measurable non-
linear perturbation that can be exactly cancelled. Naturally, the conditions
for the existence of such transformation were very restrictive and difficult to
check, being the most restrictive one the necessity of a linear output func-
tion. Later works defined a transformation and an observer that allowed a
nonlinear output map [12], it has been shown that such transformation exists
under mild observability assumptions [13, 14]. In [15], a manifold in which
the state-estimation error is stable is designed and then is rendered attractive
and invariant by the proper observer design. The shaping of the manifold
relied on solving a partial differential equation. This restriction was removed
by adding an output filter and a single dynamic scaling parameter [16].

State observers are model-based estimation techniques, consequently, un-
certainty and unmodelled disturbances have a direct effect on the state-
estimation accuracy. Under certain structural and observability conditions,
it is possible to decouple the disturbance and the state in order to have an
unbiased estimation [17, 18]. However, in a lot of cases, the observer can only
be robustified in an input-to-state (ISS) sense [19] to the disturbances, and,
usually, the accuracy can only be improved by increasing the gain of the ob-
server, which generates a well-known trade-off between disturbance rejection
and noise sensitivity [20]. Moreover, such approach may give limited infor-
mation about the disturbances. In this context, higher performance may be
achieved if the uncertainty can be modelled as the product of a known vec-
tor of functions and a vector of unknown parameters [21]. Then, couple the
observer with some parameter adaptation dynamics that estimates the un-
known parameters, and decouples the state-estimation from the uncertainty.
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This type of observer are commonly referred as adaptive observers.
Similar to the non-adaptive case, there is a complete theory on adaptive

observers for linear systems [22]. For nonlinear systems, adaptive designs
are restricted to certain structures/canonical forms. A common approach is
based on finding a Lyapunov function with a parameter error factor. Then,
an adequate parameter adaptation is designed to cancel the unknown param-
eter terms in the derivative of said function [23], which drives the derivative
negative semidefinite and allows to prove the state-estimation error conver-
gence to zero through the Barbalat’s lemma [23, 24]. In such context, state
convergence can be ensured even if the parameter-estimation does not con-
verge to the true value, which is a common thing in the absence of excitation
[22].

Nonetheless, the cancellation in the Lyapunov equation derivative can
only be achieved in systems that satisfy a strictly positive real condition
[23, 25], which is restricted to systems with relative degree one or zero be-
tween the measured outputs and the unknown parameter vector. There is a
significant amount of systems that do not possess this relative degree prop-
erty, e.g. fuel cells [26, 27] or DC-converters with unknown constant power
loads taking the generated current as the measured output and the constant
power load as the parameter to estimate [28, 29]. This fact motivates the
design of adaptive observers for higher relative degree systems. The most
common approach is to implement a filtered-based coordinate change in the
so-called filtered transformation [30, 31] or compute a set of auxiliary signals
that satisfy the relative degree condition through a set of filter [32, 33, 34, 35].
However, such approach presents some conflicts that should be considered.
First, the dynamics depend on the initial conditions of said filter. Therefore,
the stability analysis of the observer is trajectory-dependent, in the sense
that it pertains only to the trajectory generated for the given filter initial
conditions. This fact may have a great impact on the observer performance
and the observability study, which is overlooked in some papers. A further
discussion in the context of adaptive control can be found in [36]. Second, the
stability and accuracy analysis of the observers with filtered transformations
in the presence of uncertainty, noise and unknown states is far from trivial
and requires further study. Moreover, this analysis needs to consider the ini-
tial conditions of the filter as mentioned in the first point. Finally, as the filter
depends on the unknown parameters, persistent excitation is needed in order
to avoid state-estimation drift. Therefore, state and parameter-estimation
are not separated, which was the original objective in the design of an adap-
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tive observer. This fact motivates the design of alternative methodologies to
circumvent the relative degree restriction without the use of filters.

A solution was proposed in [37] for reduced-order observers. However,
such approach requires solving a PDE which is in general hard to com-
pute. Alternatively, parameter-estimation for higher relative degrees can be
achieved by implementing an extended high-gain observer [38, 28]. Nonethe-
less, this approach is limited to systems where the relative degree between
the measured output and the parameters is equal to the dimension of the
state vector.

There is a completely different state and parameter-estimation strategy
that is based on extending the state with the unknown parameters and
then, design a (non-adaptive) state observer to estimate the augmented
state [39, 40]. However, again, such approach does not separate state and
parameter-estimation. Moreover, the extended system may lose some bene-
ficial structural properties of the original system. Finally, the observability
study of the extended system may be significantly more difficult than the
analysis of the original system. A similar approach was pursued in [41, 42],
in which the observability conditions were relaxed, but relied on a restrictive
separability condition between the states and parameters.

Another point to consider is that the stability of most adaptive observer
techniques is based on the construction of a weak (weak in the sense that its
derivative is just negative semi-definite) Lyapunov function combined with
the Barbalat’s lemma [10]. Although this approach is sufficient to theoreti-
cally prove the stability of the observer in an ideal scenario, it is insufficient
for practical applications. First, a weak Lyapunov function cannot be used
to analyse the performance of the adaptive observer in presence of uncertain-
ties and sensor noise. Second, a weak Lyapunov function cannot be used to
prove the stability of the interconnection between the adaptive observer and
another system.

The key-points that are being addressed in this document can be sum-
marized as follows.

� KP1: Propose an alternative adaptive observer approach for higher
relative degree systems that is not based on the introduction of filters
nor augmenting the state vector with the unknown parameters.

� KP2: Avoid the standard approach of building a weak Lyapunov func-
tion and using the Brabalat’s lemma to prove the stability of the pro-
posed observer.
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� KP3: Analyse the performance of the adaptive technique in presence
of sensor noise and unmodelled disturbances.

Figure 1: Scheme of the proposed adaptive observer for higher relative degree systems.
The high-gain observer is implemented through equation (17). The factor ẑ depicts the
estimation of the auxiliary signal presented in Section 3, which is used to address the
relative degree conflict. Finally, the adaptive observer is computed through equations (11)
and (13).

Taking into account the issues presented before, the main contributions
of this work can be summarized as follows.

� C1: This work proposes the design of an auxiliary signal, z, that cir-
cumvents the relative degree limitation of adaptive observers.

� C2: Instead of using filters, the auxiliary signal is estimated through a
high-gain observer, which is feedback interconnected with the adaptive
observer. A general scheme of the proposed approach is depicted in
Fig. 1.

� C3: This work proposes a strict (strict in the sense that its derivative is
negative definite) Lyapunov function based on the Mazenc-construction
for the adaptive observer, which allows to prove the stability of the high-
gain observer-adaptive observer interconnection through small-gain ar-
guments.

� C4: The strict Lyapunov equation is used to analyse the performance
of the technique in presence of sensor noise and unknown disturbances.

The rest of the document is organized as follows. Section 2 presents the
standard adaptive observer design and the relative degree problematic. Sec-
tion 3 presents a methodology to design an auxiliary signal which allows to
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relax the relative degree restriction and introduces a high-gain observer to
estimate said auxiliary signal. Section 4 analyses the stability and perfor-
mance of the adaptive observer and high-gain observer coupling by the use of
a strict Lyapunov function. Section 5 validates the observer in a simple syn-
thetic system. Section 6 validates the proposed scheme in a compartmental
epidemiology model. Finally, some conclusions are drawn in Section 7.

2. Problem Formulation

Let us consider a multi-input multi-output nonlinear system of the form.

ẋ = f(x,u) + Bφ(x,u)θ + w (1)

y = C(u,y)x + v

where x ∈ Rn are the system states, y = [y1, ..., ym]ᵀ ∈ Rm are the measured
outputs, u ∈ Rq are the controlled inputs and θ ∈ Rp is a vector of unknown
constant parameters to be estimated. The matrices B ∈ Rn×s and C(·, ·) ∈
Rm×n are assumed to be known and bounded. The functions f(·, ·) ∈ Rn×1

and φ(·, ·) ∈ Rs×p are assumed to be known, bounded and Lipschitz, with
Lf and Lφ as Lipschitz constant, respectively. The linear regressor factor
is assumed to be upper bounded as ‖φ(·, ·)‖ ≤ φmax. The factor v ∈ Rm

depicts unknown sensor noise, which is assumed to be upper-bounded by a
positive constant ϑ as ‖v‖2 ≤ ϑ. The factor w ∈ Rn×1 depicts unmodelled
disturbances or uncertainty, which are also assumed to be upper-bounded as
‖w‖ ≤ w2. Finally, there exists some sets X0 ⊆ X ⊆ Rn and U ⊆ Rq, such
that the trajectories of (1), with initial conditions x(0) in X0 and input u(t)
belonging to U for all times, remain in X for all t ≥ 0.

In this work, part of the uncertainty is modelled as a linear combination
of basis functions, Bφ(x,u)θ, where the vector θ is unknown. In some
problems, this formulation arise naturally from the first principles of the
system. Alternatively, if there is no information of the uncertainty, certain
universal approximators can be adapted in this context. For example, neural
networks [43, 44] in which only the outer layer is being adapted, uncertainty
modelled through fuzzy sets [45, 46] or reproducing kernels [47].

Define x̂ as the estimation of the states and θ̂ as an estimation of the
unknown parameters, the dynamics of which will be defined below. It is
assumed that x̂ is generated through an observer of the form:

˙̂x = f(x̂,u) + g(x̂,u)ey + Bφ(x̂,u)θ̂, (2)
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where ey = y − C(u,y)x̂ and g(·) ∈ Rn×1 is a bounded function designed

such that, in the case where θ = θ̂, the state-estimation error, ex = x − x̂,
converges to a small bounded value. Specifically, it is assumed that there is
a quadratic radially unbounded Lyapunov function,

Vx =
1

2
eᵀ
xP(t)ex, (3)

where P(t) is a symmetric positive definite matrix, which is (possibly) time-
varying and upper and lower bounded by positive constants, such that the
following holds

α1‖ex‖ ≤ Vx ≤ α2‖ex‖
∂Vx
∂t

+
∂Vx
∂ex

ėx ≤ −α3‖ex‖2 + α4‖ex‖‖w‖+ α5‖ex‖‖v‖, (4)

where αi for i = 1, .., 5 are positive definite constants.

Remark 2.1. This document focuses on observers the stability of which can
be proven through quadratic Lyapunov functions with a matrix P that can (but
is not restricted to) be time-varying. This includes the common observers in
[2, 3, 4, 5, 8] for a constant matrix P and [48] for a time-varying matrix.

In general, the condition θ̂ = θ will not be satisfied. Therefore, the

objective is to design some parameter adaptation dynamics,
˙̂
θ, to reduce

the effect of the disturbance term Bφ(x,u)θ and recover the performance
depicted in (4).

2.1. Adaptation dynamics and the relative degree conflict

An approach to solve the adaptation problem is based on the following
observation. Consider the observer (2), the Lyapunov function (3) and the
perturbed case where θ 6= θ̂. Moreover, define the parameter-estimation
error as: eθ = θ − θ̂. Then, consider the radially unbounded composite
Lyapunov function:

Vx,θ = Vx +
1

2
eᵀ
θeθ. (5)

The derivative of function (5) is:

∂Vx,θ
∂t

+
∂Vx,θ
∂ex

ėx ≤ −α3‖ex‖2 + eᵀ
θφ(x̂,u)ᵀBᵀP(t)ex

− eᵀ
θ
˙̂
θ + α4‖ex‖‖w‖+ α5‖ex‖‖v‖ (6)
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From (6), it is possible to see that the following parameter adaptation:

˙̂
θ = φ(x̂,u)ᵀBᵀP(t)ex, (7)

would recover the performance depicted in (4).
This approach allows to exactly cancel the effect of the unknown factor

Bφ(x,u)θ without relying on high control gains as it is done in alternative
robust observers [2, 6], which results in higher transient performance and
better noise sensitivity. Moreover, in the absence of sensor noise and unmod-
elled uncertainty, w = v = 0, it can be proved that the parameter-estimation
also converges to the true value. See the proof in Appendix A. Notice that
this result does not guarantee that the estimation is bounded in the presence
of noise and disturbances. This is a direct consequence of Vx being a weak
Lyapunov function. For this reason, the stability of the proposed technique
will be analysed in with a different approach. This will be the aim of Section
4.

Nonetheless, the adaptation depicted in (7) is not actually computable as
it depends on the unknown state-estimation error, ex. To make this approach
feasible, it is required to have some adaptation dynamics that only depends
on the known state-estimation, x̂, and the measured output estimation error,
C(u,y)ex. A solution is achieved using the following adaptation dynamics:

˙̂
θ = φ(x̂,u)ᵀM(t,u,y)(y− ŷ), (8)

where M(t,u,y) satisfies:

M(t,u,y)C(u,y) = BᵀP(t). (9)

Although the dynamics in (8) are easy to compute and scalable to high
order regressor vectors, the equality in (9) introduces the conflict that this
paper is trying to address. Equation (9) can only be solved if each row of
BᵀP(t) lies in span of C(u,y), which is equivalent to the condition:

rank(C(u,y)B) = rank(B). (10)

Condition (10) establishes that the equality (9) can only be solved if the
relative degree between the output, y, and the unknown parameters, θ, is zero
or one. As presented in the introduction, there are significant cases where this
relative degree condition is not satisfied, which limits the applicability of this
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adaptive approach and motivates the design of a methodology to circumvent
this restriction.

This work proposes implementing an auxiliary signal, z ∈ Rm, which is
relative degree 1 with respect to the unknown parameters. Next sections will
focus on the design of such auxiliary signal, how it can be implemented in
to relax the relative degree condition and how it can be estimated through a
high-gain observer with provable convergence of the estimation.

3. Main Result

The objective is to find an adequate auxiliary signal, z = H(u,y)x, with
a bounded matrix ‖H(u,y)‖ ≤ Hmax, to be used in the observer (2) in order
to make the adaptation introduced in Section 2 computable. In this work,
an auxiliary signal can be depicted as adequate if the following conditions
are satisfied:

1. The concerned system is relative degree 1 from the auxiliary signal, z,
to the unknown parameter vector θ. Therefore, the function H(u,y)
is such that

rank(H(u,y)B) = rank(B), ∀u,y.
2. There exists an observer of the form:

˙̂x = f(x̂,u) + g2(x̂,u)ez + Bφ(x̂,u)θ̂, (11)

where ez = z −H(u,y)x̂, and g2(·) ∈ Rn×1 is a function bounded as
‖g2(·)‖ ≤ Ξmax, designed such that the Lyapunov function (3) satisfies
(4) with some positive αi for i = 1, ..., 5.

3. There exists a vector function, T(·), with a Lipschitz constant Lt inde-
pendent of u, that allows to reconstruct the auxiliary signal as follows:

z =T(u, y1, ẏ1, ..., y
(r1−1)
1 , ..., ym, ..., y

(rm−1)
m ), (12)

where ri is the relative degree index between the ith output, yi, and the
unknown parameter vector, θ.

Definition 3.1. A system depicted by (1) has a relative degree index ri from
the ith output signal, ci(u,y)x, to the unknown parameters, θ, if:

LBφ(x,u)L
k
f(x,u)ci(u,y)x = 0 ∀k < ri − 1

LBφ(x,u)L
ri−1
f(x,u)ci(u,y)x 6= 0.

9



where ci(u,y) is the ith row of the matrix C(u,y) and the factor Lf(x,u)ci(u,y)x
operation denotes the Lie derivative of the function ci(u,y)x along the vector
field f(x,u).

The first two points allow to proceed with the adaptive observer design
independently of the original relative degree of the system. Specifically, the
parameter adaptation can be designed as

˙̂
θ = φ(x̂,u)ᵀM(t,u,y)H(u,y)ex, (13)

where M(t,u,y) satisfies:

M(t,u,y)H(u,y) = BᵀP(t). (14)

Equality (14) can always be solved by means of point 1.

Remark 3.1. It should be remarked that the results presented in this work
are based on the premise that the system is persistently excited, see Definition
Appendix A.1. In the absence of this excitation, the presence of external
disturbances may make the parameter-estimation drift to infinity. In the
absence of excitation, the parameter drift can be reduced if the parameter-
adaptation dynamics (13) are modified to increase its robustness, e.g. through
the σ-modification or parameter projection [21].

It is noticeable that the auxiliary signal, z, is not directly computable as
it depends on the unknown states. Nonetheless, by means of the point (3),
there is a map that relates the auxiliary signal with the input, output and
its derivative up to the relative degree. Therefore, it is possible to design a
high-gain observer that can achieve an estimation of the auxiliary signal, ẑ,
which is robust in an ISS sense [19] with respect to the unknown parameters,
θ and states, x. This property is crucial, as it allows the high-gain observer
to be coupled with the adaptive observer and have a provable convergence.
The next section presents the insights related to the design and performance
of said high-gain observer.

3.1. Auxiliary signal estimation through a high-gain observer

This section proposes a reduced-order observer based on the high-gain
observer ideas, that is going to be used to estimate the auxiliary signal, z,
through expression (12).
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Consider a set of coordinates ξ = [ξ1, ..., ξm]ᵀ, where ξi ∈ Rri×1 is defined
∀i = 1, ...,m as:

ξi =


yi
ẏi
...

y
(ri−1)
i

 .
The dynamics of the ξ coordinates are depicted by

ξ̇
i

= Aξi + Ψi(ξi, ū,x,θ) + Bw,idi, ∀i = 1, ...,m

yi = Cξi + vi, (15)

where di are unknown disturbances upper-bounded as ‖di‖ ≤ Mi, vi is the
noise in the ith output and Ai ∈ Rri×ri ,Bw,i ∈ Rri×1 and Ci ∈ R1×ri are

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

... 0
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

 ; Bw,i =


0
0
...
1

 ; Ci =


1
0
...
0


ᵀ

Ψi(ξi, ū,x,θ) =


0
0
...

ψri(ξ,x,θ,u, ...,u
(ri−ru,i))

 (16)

where ru,i is the relative degree between the output, yi, and the input u and
Ψi is Lipschitz.

The expression (15) is a well-known triangular structure in which a high-
gain observer can be designed [49]. Specifically,

˙̂
ξi = Aiξ̂

i
+ Ψi(ξ̂

i
, ūi, x̂, θ̂) + Eili(y

i − ξ̂i1) (17)

where ūi = [u, ...,u(ri−ru,i)]ᵀ, Ei ∈ Rri×ri and li ∈ Rri×1 are:

Ei =


1

ε
0

. . .

0
1

εri

 ; li =

 l1,i...
lri,i

 .
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Remark 3.2. The factor Ψi of the observer (17) depends on the state-
estimation, x̂, and the parameter-estimation, θ̂, of the adaptive observer.
Coupling the observers in this way allows to have provable convergence of
the state and parameter-estimation, and reduce the feedback gain of the high-
gain observer, which improves the transient performance and reduces its noise
sensitivity [50].

Remark 3.3. The factor Ψi depends on the derivative of the inputs, which,
in some cases, may be unknown. These derivatives may be robustly estimated
through a differentiator [51]. Alternatively, they may be considered as an
unknown disturbance and be appended in the factor di.

Observer (17) presents two design elements: the parameters lj,i for j =
1, ..., ri and the gain εi. First, the factors lj,i for i = 1, ...,m have to be
chosen so the polynomial

sn + l1,is
n−1 + · · ·+ ln−1,is+ ln,i

is Hurwitz. Second, there exist a positive constant ε∗1 such that, for ε <
min{1, ε∗1}, the estimation error, ξ − ξ̂, is ISS with respect to the sensor
noise, the unknown disturbances and the adaptive observer estimation errors
x− x̂ and θ − θ̂. Specifically, define the vector χ = [x− x̂,θ − θ̂]ᵀ, then, it
is well-known that for a high-gain observer tuned as specified in this section,
the estimation error converges to the following ultimate bound [50]:

‖ξ − ξ̂‖ ≤ εk1 max{M1, ...,Mm}+ εk2‖χ‖+
1

εr
k3ϑ (18)

where k1, ..., k3 are some positive constants.

Theorem 3.1. Consider the system (15) and the high-gain observer (17).
Define the estimation of the auxiliary signal as ẑ = T(u, ξ̂). Then, the
auxiliary signal estimation error is ultimately bounded as

‖z− ẑ‖ ≤ εk1LT max{M1, ...,Mm}+ εk2LT‖χ‖+
1

εr
k3LTϑ (19)

Proof 3.1. The function T(·) is assumed to be Lipschitz with a constant LT .
Therefore, the following bound holds

‖z− ẑ‖ ≤ LT‖ξ − ξ̂‖ ≤ εk1LT max{M1, ...,Mm}

+ εk2LT‖χ‖+
1

εr
k3LTϑ.
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4. Performance of the adaptive observer and high-gain observer
coupling

Section 2 has presented an adaptive redesign for nonlinear observer that
significantly improves the performance of the observer, but, can only be im-
plemented in systems with relative degree zero or one between the output
and the unknown parameters. Section 3 has presented a methodology to cir-
cumvent this relative degree restriction through the use of an auxiliary signal.
Such signal is not directly measurable, however, can be estimated through a
high-gain observer. Now it is crucial to analyze under which conditions the
adaptive observer and the high-gain observer coupling is stable and which is
its performance in the presence of sensor noise and uncertainty.

The Barbalat’s lemma argument (see Appendix A) is the common ap-
proach to prove the parameter-estimation convergence of adaptive observers
[24][31]. Nonetheless, such argument gives no insights of the parameter-
estimation performance in presence of sensor noise and/or uncertainty. Con-
sequently, even though the design of adaptive observers has been studied in
previous works, very few results relative to the parameter-estimation per-
formance have been provided in the considered case. Moreover, even if we
consider the simpler case of noise/uncertainty absence, v = w = 0, the Bar-
balat’s argument is insufficient to prove the stability of the high-gain observer
and adaptive observer coupling.

For this reason, it is convenient to substitute the weak (weak in the sense
that its derivative is only negative semidefinite) Lyapunov function (5) for
a strict Lyapunov function that can be used to proceed with the analysis.
In this work, it is proposed to use the Mazenc construction [52] to derive a
strict Lyapunov function from (5), which will allows to define the accuracy
and convergence rate of the adaptive observer through standard Lyapunov
arguments. This approach has proved to be successful in multiple adaptive
control problems [53][54].

4.1. Strict Lyapunov function design

This section considers an observer of the form (11), the parameter adap-
tation (13) and the auxiliary signal estimated through a high-gain observer
as presented in Section 3, which has an estimation error defined by (19). The
objective is to design a strict Lyapunov function for the mentioned adaptive
observer.
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First, define the following locally Lipschitz time-varying function

Λ ,
√
λmin(φ(t)ᵀBᵀBφ(t)). (20)

As the function Bφ is Lipschitz and bounded, it can be shown that func-
tion (20) is also bounded with a bounded derivative. As consequence, there
is a value Λ̄ such that

max{‖Λ‖, ‖Λ̇‖} ≤ Λ̄.

Moreover, define the following signal:

ΥΛ = 1 + 2Λ̄T0 −
2

T0

∫ t+T0

t

∫ m

t

Λ(s)2ds dm. (21)

If we assume that the system is persistently excited, as defined in Appendix
A, function (21) is bounded as follows [52]

1 ≤ ΥΛ ≤ 1 + 2Λ̄T0.

Furthermore, there exists an upper bound for the derivative of (21) [52],

Υ̇Λ ≤ −
2µ2

T0

+ 2Λ2.

Theorem 4.1. Consider system (1) and the observer (11). Assume that the
system is persistently excited as defined in Appendix A. Then, the system
admits the following Lyapunov function

V1 = −eᵀxBφ(x̂,u)eθ +
1

2
(ΥΛ + α)(eᵀxP(t)ex + eᵀθeθ), (22)

which satisfies the following

V̇1 ≤ −
µ2

T0

λmin(P(t))‖ex‖2 − µ2

2T0

‖eθ‖2 + k4‖eθ‖‖z− ẑ‖

+ k5‖ex‖‖z− ẑ‖+ k6‖eθ‖w2 + k7‖ex‖w2 (23)

where ki for i = 4, ..., 7 are some positive constants to be defined, provided
that

α ≥ max{α−1
3

(T0

µ2

(Lf + ‖B‖Lφθ +Hmax)
2‖B2‖φmax‖2

+
T0

µ2

‖B‖2‖φ̇(x̂,u)‖2
)
, 2‖B‖2φ2

maxλmin(P(t))−1, 1}. (24)
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Proof 4.1. Let χ = [ex, eθ]ᵀ. Then, in view of (24), the Lyapunov function
(22) is positive definite and radially unbounded. Specifically, there exists some
constants V1,min, V1,max > 0, such that

V1,min‖χ‖2 ≤ V1 ≤ V1,max‖χ‖2 (25)

where

V1,min = min{1

2
(1 + α)λmin(P(t))− ‖B‖2φ2

max,
1

2
(1 + α)− 1} (26)

V1,max = max{‖B‖2φ2
max + (

1

2
+ Λ̄T0 +

α

2
)λmax(P(t)),

1 + (
1

2
+ Λ̄T0 +

α

2
)}. (27)

Notice that, by considering the auxiliary signal, z, the derivative of the
function (6) becomes:

∂Vx,θ
∂t

+
∂Vx,θ
∂ex

ėx ≤ −α3‖ex‖2 + α4‖ex‖‖w‖

+ ‖ex‖λmax(P(t))Ξmax‖z− ẑ‖
+ ‖eθ‖φmax‖M‖‖z− ẑ‖.

The derivative of (22) satisfies the following:

V̇1 ≤ −
[
f(x,u)− f(x̂,u)− g2(x̂,u)ez

Bφ(x,u)θ −Bφ(x̂,u)θ̂ + w
]ᵀ
Bφ(x̂,u)eθ

− eᵀxBφ̇(x̂,u)eθ − eᵀxBφ(x̂,u)φ(x̂,u)ᵀBᵀP(t)ex

+ (ΥΛ + α)

(
∂Vx,θ
∂t

+
∂Vx,θ
∂ex

ėx

)
+

1

2
Υ̇Λ(eᵀxP(t)ex + eᵀθeθ)

≤ ‖ex‖(Lf + ‖B‖Lφθ +Hmax)‖B‖φmax‖eθ‖
+ (Ξmax‖z− ẑ‖+ w2)‖B‖φmax‖eθ‖
+ ‖ex‖‖B‖‖φ̇(x̂,u)‖‖eθ‖ − α3α‖ex‖2

+ (α + 1 + 2Λ̄T0)‖ex‖λmax(P(t))Ξmax‖z− ẑ‖
+ (α + 1 + 2Λ̄T0)‖eθ‖φmax‖M‖‖z− ẑ‖
+ (α + 1 + 2Λ̄T0)‖ex‖α4w2

− µ2

T0

‖eθ‖2 − µ2

T0

λmin(P(t))‖ex‖2. (28)
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Then, if one applies Young’s inequality to (28) as follows:

‖ex‖(Lf + ‖B‖Lφθ +Hmax)‖B‖φmax‖eθ‖

≤ ε

2
(Lf + ‖B‖Lφθ +Hmax)

2‖B2‖φmax‖2‖ex‖2

+
1

2ε
‖eθ‖2

‖ex‖‖B‖‖φ̇(x̂,u)‖‖eθ‖

≤ ε

2
‖B‖2‖φ̇(x̂,u)‖2‖ex‖2 +

1

2ε
‖eθ‖2,

defines ε =
2T0

µ2

and considers the relation (24), the bound depicted in (23)

can be deduced, where

k4 = ‖B‖φmaxΞmax + (α + 1 + 2Λ̄T0)φmax‖M‖
k5 = (α + 1 + 2Λ̄T0)λmax(P(t))Ξmax

k6 = ‖B‖φmax
k7 = (α + 1 + 2Λ̄T0)α4.

4.2. Stability conditions for the observer

The aim of this subsection is to develop the conditions in which the high-
gain observer and adaptive observer coupling is stable. In this subsection, it
will be considered the case without uncertainty/noise, i.e. w = v = 0. The
effect of these disturbances on the stability and performance will be analyzed
in the next subsection.

Theorem 4.1 establishes that the proposed adaptive observer with the
estimated auxiliary signal is stable in a ISS sense taking the auxiliary signal
estimation error, ‖z− ẑ‖, as an input. This fact can be formalized through
the following theorem.

Theorem 4.2. Consider the Lyapunov function (22), which satisfies (28).
Then, if w = v = 0, the estimation error ‖χ‖ is ultimately bounded as

‖χ‖ ≤ k8‖z− ẑ‖, (29)

where k8 is a positive constant.
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Proof 4.2. Considering v = w = 0, the bound (23) reduces to:

V̇1 ≤ −
µ2

T0

λmin(P(t))‖ex‖2 − µ2

2T0

‖eθ‖2 + k4‖eθ‖‖z− ẑ‖

+ k5‖ex‖‖z− ẑ‖

≤ −µ2

T0

min{λmin(P(t)),
1

2
}‖χ‖2 + max{k4, k5}‖χ‖‖z− ẑ‖. (30)

It can be seen that for the region:

‖χ‖ ≥ 2
max{k4, k5}

µ2

T0

min{λmin(P(t)),
1

2
}
‖z− ẑ‖.

The derivative (30) is bounded as:

V̇1 ≤ −
1

2
‖χ‖2.

Then, from the comparison lemma and input to state stability theory [19],
it is possible to deduce the following ultimate bound for the adaptive observer
state and parameter-estimation:

‖χ‖ ≤ 2

√
V1,max

V1,min

max{k4, k5}
µ2

T0

min{λmin(P(t)),
1

2
}
‖z− ẑ‖.

In parallel, from the bound (19), it can be seen that the auxiliary signal
is stable in an ISS sense [19] taking the adaptive estimation error, χ, as
an input. The definition of these ultimate bounds (19) and (29) makes the
small-gain theorem [19] a convenient method to prove the stability of the
observer coupling.

Theorem 4.3. Consider the system (15), the high-gain observer depicted in
(17) tuned to ensure the bound (19) and the adaptive observer (11) and (13),
which satisfies the bound (29). Assume that v = w = 0, then, the auxiliary
signal estimation error, ‖z− ẑ‖, and the adaptive observer estimation error,
‖χ‖, converges to zero provided that

εk2LTk8 < 1. (31)
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Proof 4.3. If condition (31) is satisfied, the ultimate bounds (19) and (29)
define a contraction. Therefore, by the small-gain theorem [19] it can be
shown that ‖z−ẑ‖, and the adaptive observer estimation error, ‖χ‖ converges
to zero.

Remark 4.1. Notice that condition (31) can be rearranged as:

ε <
1

k2LTk8

, ε∗2.

Therefore, in the conditions where (19) and (29) are satisfied, the stability
of the observer coupling can be ensured by reducing enough the high-gain
observer parameter ε.

Remark 4.2. As it will be seen in the next subsection, it may be convenient
to increase ε∗2 in order to reduce the noise sensitivity of the observer scheme.
This can be achieved by reducing either k2 or k8. The factor k2 can be reduced
by the proper tuning of the parameters li for i = 1, ...,m. The factor k8

can be reduced by increasing the excitation of the system, which implies an

increment of the factor
µ2

T0

and a reduction of the constants k4 and k5.

4.3. Performance of the observer under sensor noise and model uncertainty

Last section has established, in the absence of uncertainty/noise, w =
v = 0, the conditions in which the high-gain observer and adaptive observer
coupling estimation converges to the states and parameters true value. This
subsection will extend these results to the case where w 6= 0 and v 6= 0 and
will show that the estimation converges to a bounded error in the presence
of this uncertainty.

Theorem 4.4. Consider the system (15), the high-gain observer depicted
in (17) tuned to ensure the bound (19) and the adaptive observer (11) and
(13) which satisfies the bound (29). Assume that the condition (31) is satis-
fied. Then, the adaptive observer estimation, ‖χ‖, converges to the following
ultimate bound:

‖χ‖ ≤ max{εk8 max{M1, ...,Mm},
1

εr
k9ϑ, k10w2} (32)

where k8, ..., k10 are some positive constant to be defined.
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Proof 4.4. By substituting the bound (19) in (28), one obtains:

V̇1 ≤ −Q‖χ‖2

+ εmax{k4, k5}‖χ‖k1LT max{M1, ...,Mm}

+
1

εr
max{k4, k5}‖χ‖k3LTϑ

+max{k6, k7}‖χ‖w2. (33)

where Q is a positive constant defined as

Q =
(µ2

T0

min{λmin(P(t)),
1

2
} − εk2LTmax{k4, k5}

)
.

The factor Q is positive by means of (31).
It can be shown that in the region

‖χ‖ ≥ max{εC1 max{M1, ...,Mm},
1

εr
C2ϑ,C3w2}

where

C1 = 2
1

Q
max{k4, k5}k1LT max{M1, ...,Mm}

C2 = 2
1

Q
max{k4, k5}k3LTϑ

C3 = 2
1

Q
max{k6, k7}w2,

the derivative (30) is bounded as:

V̇1 ≤ −
1

2
‖χ‖2.

Then, from the comparison lemma and input to state stability theory [19],
it is possible to deduce the ultimate bound (32) with

k8 = 2

√
V1,max

V1,min

1

Q
max{k4, k5}k1LT

k9 = 2

√
V1,max

V1,min

1

Q
max{k4, k5}k3LT

k10 = 2

√
V1,max

V1,min

1

Q
max{k6, k7}
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Naturally, Theorem 4.4 depicts that the presence of sensor noise and
model uncertainty introduces a bias in the state and parameter-estimation
of the adaptive observer. Nonetheless, now it is possible to present some
insights on how the observer parameter tuning can reduce the effect of
noise/uncertainty on the accuracy of the estimation.

It is clear that the first term on the left-hand side in (32) can be arbitrar-
ily reduced by decreasing the high-gain observer parameter, ε. Nonetheless,
the reduction of ε increases the effect of the sensor noise, second term on the
left-hand side in (32), which limits the value of ε. This property is a conse-
quence of the well-known trade-off between noise sensitivity and disturbance
rejection of high-gain observers [50] and observers in general [20]. From (32),
it is possible to show that there is an optimal ε value, in terms of maximizing
disturbance rejection and reducing noise sensitivity, achieved in:

ε = r−1

√
k9ϑ

k8 max{M1, ...,Mm}
. (34)

Further estimation error reduction can be achieved by increasing the ex-

citation of the system, which implies an increment of the factor
µ2

T0

and a

reduction of the constants k8 and k9. Moreover, the increase in the excitation
also increases the constant Q, which reduces all the factors in left-hand side
of (32). Furthermore, the constants k8 and k9 can also be reduced by de-
creasing the constants k1 and k3, which can be achieved by the proper tuning
of the parameters li for i = 1, ...,m of the high-gain observer.

Remark 4.3. In the case of time-varying parameters, i.e. θ̇ 6= 0. There
will be a factor dependent on θ̇ in (23). This factor can be interpreted as
an unmodelled disturbance and be appended in w, which does not modify the
conclusions drawn in this section. This fact shows how the proposed Lyapunov
function can be used to analyze the performance of the observer with ”slow”
time-varying parameters.

This section has presented the mathematical formalisms that allows to
prove the performance and stability of the proposed observer scheme. Now,
it is interesting to validate this results in a practical example. Next sections
will apply the proposed technique in a synthetic system and in a compart-
mental epidemiology model. Before introducing the concerning systems, it is
convenient to establish the following result.
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Theorem 4.5. Consider a system of the form

ẋ = A(t)x + Bφ(x, t)θ + w

z = hᵀ(t)x + v, (35)

and assume that there are no unknown parameters, i.e. θ̂ = θ. Moreover,
consider the following observer:

˙̂x = A(t)x̂ + Bφ(x̂, t)θ̂ + K(t)(z − hᵀ(t)x̂) (36)

Ṗ(t) = −σP(t)−A(t)ᵀP(t)−P(t)A(t) + h(t)hᵀ(t) (37)

where P(0) = P(0)ᵀ > 0 and K(t) is a time-varying matrix defined as follows

K(t) = P(t)−1h(t). (38)

Consider the Lyapunov function (3), with the matrix P(t) computed through
(37). Then, the inequalities in (4) are satisfied if the parameter σ is designed
such that σ > max{2|λmax(A)|, σ∗}, where σ∗ is a positive constant to be de-

fined and the pair

(
A(t),h(t)

)
is uniform completely observable, as defined

in [55].

Proof 4.5. The proof has been included in Appendix B.

5. Numerical validation in a synthetic example

Consider a second order system, x = [x1, x2]ᵀ, with two unknown param-
eters, θ = [θ1, θ2]ᵀ, and the form:

ẋ = A(u)x + bφ(x)θ + bw

z = cx + v,

with:

A(u) =

[
−0.3 u

0 0

]
; b =

[
0
1

]
; c =

[
1 0

]
;

φ(x) =
[
−x1 (1− x2

1)x2

]
. (39)

The input is defined as a time-dependant signal of the form u = 0.2 sin

(
t

5

)
+

0.5. The system is disturbed with an unmodelled factor w = 0.01 sin(t). The

21



output signal is corrupted with some zero-mean high-frequency noise, v, with
variance 0.01. The value of the unknown parameters are summarized in Table
1.

The objective is to design an observer for the joint state and parameter
problem. This problem is of interest for multiple reasons. First, the system
presents singular inputs [55], e.g. the condition u = 0 drives the system un-
observable, which prevents the transformation of the system to the standard
observer canonical form [2]. Second, the relative degree between the mea-
sured output and the unknown parameters is larger than one, which prevents
the adaptive modification introduced in Section 2. To see this fact, notice
that cb = 0, therefore, the rank condition in (10) is not satisfied.

Firstly, it is required to design an auxiliary signal, z, that satisfies the
points presented in Section 3. It can be seen that the signal z = x1 + ux2 =
hᵀ(t)x, where h(t) = [1, u], is relative degree 1 with respect to the unknown
parameters, θ. This is a result of the equality h(t)b = ux2, which satisfies

the rank condition in (10) for all u 6= 0. Furthermore, the pair

(
A(t),h(t)

)
is uniform completely observable, thus, the states can be estimated through
the observer (36)-(37). Finally, this signal can be reconstructed as z = ẏ,
thus, it satisfies condition (12) and the parameters can be adapted through
(13) that satisfies (14). Specifically, the parameter adaptation takes the form
(13) with

M(t) = bᵀ(K(t)ᵀ)† (40)

where (K(t)ᵀ)† is the left Moore-Penrose pseudo-inverse computed as

(K(t)ᵀ)† = (K(t)K(t)ᵀ)−1K(t). (41)

To better understand this design of the matrix M, notice that from (38)
it can be deduced that

P(t) = (K(t)ᵀ)†h>(t).

Then, it is direct to see that (40) solves the equation in (9).
In the concerned system, the constant σ∗ is lower than 2|λmax(A)| =

0.6, thus, the adaptive observer parameter has been tuned as σ = 1.1 >
max{σ∗, 0.6}. Applying the points deduced in Section 2, the high-gain ob-
server has been tuned to have adequate convergence rate and satisfy the
condition (31), while presenting adequate noise performance and disturbance
rejection. Specifically, the observer parameters are summarized in Table 1.
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Table 1: True model parameters and observer design parameters

Parameter Value
True Parameters

θ1 0.3
θ2 1

Observer Parameters
σ 1.1
α1 3
α2 2
ε 0.81

It should be remarked that the considered system satisfies the persistent
excitation condition defined in Appendix 1. Therefore, according to the the-
ory presented in this work, both, state and parameter-estimation converges
to a bounded error.

One of the key-points of this work is to address the relative degree lim-
itation of adaptive observers without relying on filters. For this reason, it
is convenient to compare the performance of the proposed approach with an
already existing technique that does use filters. Due to the structure of the
proposed example, it would be reasonable to use the standard filter-based
adaptive observer proposed in [35]. Therefore, the proposed technique will
be compared with the technique in [35]. To ease the readability of the section,
the details of the design of this adaptive observer will be obviated.

The evolution of the state-estimation error of both observers can be seen
in Fig. 2. Furthermore, the evolution of the parameter-estimation error
can be observed in Fig. 3. As it can be observed, the estimation of both
techniques converge to a relatively similar bounded error. Nonetheless, it
is appreciable that the convergence rate of estimation error in the proposed
approach is significantly faster in the proposed approach. The slow con-
vergence rate is a consequence of the introduction of filters, which reduces
the signals excitation levels and induces a slow parameter-estimation conver-
gence. It should be remarked, that faster convergence rate could be achieved
by increasing the gain of the observer. Nonetheless, this would significantly
increase the sensitivity to sensor noise. This result exemplifies the motivation
of avoiding filters in order to solve the relative degree restriction in adaptive
observers.
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Finally, in relation to the proposed approach, the estimation error con-
verges to a relative error below the 2%. This result validates the perfor-
mance of the proposed scheme under measurement noise and unmodelled
disturbances.

Figure 2: Evolution of the state-estimation error. Blue and orange lines depict the state-
estimation error of the proposed approach (PA). Yellow and purple lines depict the state-
estimation error of the approach in [35] (OA).

Figure 3: Evolution of the parameter-estimation error. Blue and orange lines depict the
parameter-estimation error of the proposed approach (PA). Yellow and purple lines depict
the parameter-estimation error of the approach in [35] (OA).

6. Application to a compartmental epidemiology model

Additionally, the proposed technique has been implemented in a com-
partmental model, which is one of the most used type of models in the epi-
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demiology field. The idea is to segregate the population into homogeneous
compartments, which represent the different states of the disease. The dy-
namics of these models depict the movement of individuals between disease
states.

The most used compartmental model for depicting the dynamics of a
disease is the susceptible-infected-recovered (SIR) model, which divides the
population in three types [56]:

� Susceptible (s): Individuals that are not immune to the disease.

� Infected (i): Individuals that have contracted the disease. These indi-
viduals may transmit the disease to Susceptible ones.

� Recovered (r): Individuals that have moved from the infected group.
Either, because they have recovered and are immune, or because of
death.

However, in practice, it is very difficult to have a reliable measurement
of the number of individuals in each compartment and this type of model
does not include the influence of public interventions. Consequently, some
authors [57] have proposed the inclusion of a fourth compartment generating
a susceptible-infected-recovered-quarantined (SIRQ) model:

� Quarantined (q): Individuals that have been detected and either have
been hospitalized or quarantined. This group contains infected indi-
viduals that have been diagnosed and susceptible individuals that have
voluntarily quarantined itself.

Taking into account these compartments, the dynamics of a population of
N individuals are depicted through the following ordinary differential equa-
tions [57]:

ṡ = −βsi− δ2s

i̇ = βsi− γi− δ1i (42)

ṙ = γi

q̇ = δ2s+ δ1i

where β is the transmission rate and γ is the recovery rate. The factor δ1

is the rate of infected that are being hospitalized and δ2 is the rate of sus-
ceptible individuals being quarantined, which are time varying and assumed
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to be known. It is assumed that q is measurable and the rest of states are
unmeasurable.

Remark 6.1. The following relation holds for all t:

s+ i+ r + q = N. (43)

This fact will be exploited to design an observer only considering a state space
model of s, i and q. Once s, i and q have been estimated, r can be deduced
from (43).

The parameters β and γ are of particular interest as they provide in-
formation of the transmission of the disease and can help to design public

interventions. For example, the factor
β

γ
allows to compute the basic repro-

duction number of the disease, or the ratio
γ

δ1

depicts the ratio of infected

individuals which not being detected [57]. However, these parameters are
usually unknown and the absence of data related to the states s, i and q,
makes it difficult to estimates these parameters. Consequently, it is of in-
terest to design an observer that can estimate online the states s, i and the
unknown parameters β and γ, based on the measured state q.

For convenience, the concerned SIRQ model can be rewritten as in (35)
by taking x = [s, i, q]ᵀ, θ = [β, γ]ᵀ and

A(t) =

−δ2 0 0
0 −δ1 0
δ2 δ1 0

 , B =

−1 0
1 0
0 1


φ(x) =

[
si 0
0 −i

]
, c =

[
0 0 1

]
.

From a observer design viewpoint, this problem is of particular interest
for multiple reasons. First, the system presents singular inputs [55], e.g. the
condition δ1 = δ2 drives the system unobservable, which prevents the trans-
formation of the system to the standard observer canonical form [2]. Second,
it is noticeable that the relative degree between the measured output, and
the unknown parameters is 2, which is greater than one and lower than the
system order, and motivates the implementation of the proposed technique.

The first step is to design an auxiliary signal, z, considering the insights
presented in Section 3. It can be seen that the signal z = δ2s + δ1i +
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q = hᵀ(t)x, where h(t) = [δ2, δ1, 1], is relative degree 1 with respect to
the unknown parameters, θ. Moreover, this signal can be reconstructed as
z = y+ ẏ, thus, it satisfies condition (12). Finally, as the pair (A(t),h(t)) is
uniform completely observable, it is possible to implement the state observer
(36)-(37).

Now, as the auxiliary signal has been designed taking into account the in-
sights in Section 3, its value can be estimated through the high-gain observer
proposed in the same section. Moreover, it is possible to solve equation (14)
to design the parameter dynamics (13). Specifically, the parameter adapta-
tion takes the form (13) with M defined in (40).

The validity of the proposed observer scheme has been tested in a nu-
merical simulation. It will be simulated a case where the public intervention
policies are modified over time which induces a decrease in the factor δ1 and
an increase of δ2. It is considered that the compartments are normalized to
the population total, i.e. N = 1. The parameters of the SIRQ system are
summarized in Table 2.

Table 2: SIRQ true parameters, model parameters and observer parameters

Parameter Value
True Parameters

β 0.5
γ 0.01
δ1 0.0475− 1.14 · 10−4t
δ2 0.105 + 4.2 · 10−4t
N 1

Model Parameters
δ1 0.05− 1.2 · 10−4t
δ2 0.1 + 4 · 10−4t

Observer Parameters
σ 2.2max{δ1, δ2}
α1 0.31
α2 0.019
ε 0.712

To make the simulation more realistic, it is considered that the measure-
ment of q is corrupted with high-frequency noise of mean zero and variance
9.65 ·10−5. Moreover, it is assumed that the factors δ1 and δ1 are not exactly
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Figure 4: Evolution of the state-estimation error.

known and present a significant bias with respect to the real value. The
model parameters used in the observer design are depicted in Table 2.

For these conditions, the factor σ∗ is lower than 2|λmax(A)| = 2max{δ1, δ2},
thus, the adaptive observer parameter has been tuned as σ = 2.2max{δ1, δ2},
to ensure the satisfaction of the inequality (B.2). It is assumed that the
derivative of the factors δi are unknown, and will be fixed at zero. This will
introduce a bias in the estimation as commented in Remark 3.3, which will
be reduced by a decreasing the parameter ε of the high-gain observer, as
commented in Section 4. Finally, applying the insights presented in Section
2, the high-gain observer is designed to have adequate convergence rate and
satisfy the condition (31), while presenting adequate noise performance. The
observer parameters are summarized in Table 2.

It is assumed that there is no prior information on the system. Therefore,
the observer states are initialized at the origin.

The evolution of the state-estimation errors is depicted in Fig. 4. The
unknown parameter-estimation and the true value is depicted in Fig. 5. It
can be observed that even in the presence of significant sensor noise and
uncertainty, the technique is capable of recovering the unknown states and
parameters, which validates the robustness and performance of the adaptive
observer scheme.
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Figure 5: Evolution of the parameter-estimation and true value.
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7. Conclusions and Discussion

This work has presented a methodology with provable convergence to
relax the relative degree condition in adaptive observers even in the presence
of sensor noise and uncertainty. The proposed approach is based on coupling
the adaptive observer with a certain high-gain observer.

In order to analyse the convergence and accuracy of the approach, this
work has obviated the common Barbalat’s lemma argument and has proposed
a new analysis based on a strict Lyapunov function. This analysis allows
to prove the convergence of the high-gain observer and adaptive observer
coupling and allows to study its performance in presence of sensor noise and
unmodelled uncertainty. The proposed approach has been validated in a
synthetic system and in a SIRQ epidemiology model.

It is expected that future works will implement the proposed strict Lya-
punov methodology to study the performance of similar adaptive observers
in presence of disturbances and noise, which is an analysis that has eluded
the literature in adaptive observer design.

Furthermore, in future works, this approach will be implemented in other
systems with higher relative degree and significant sensor noise and uncer-
tainty, e.g. the estimation of the liquid water saturation and liquid water
transport parameters in fuel cells [26, 27].
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Appendix A. Barbalat’s lemma argument for parameter-estimation
convergence

Consider the case without noise and uncertainty, i.e. v = w = 0. Tak-
ing into account the expression (6) and the parameter adaptation (7), it is
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shown that the Lyapunov function (5) has a semidefinite derivative, thus, it
is possible to conclude that lim

t→∞
‖x − x̂‖ = 0. Then, as f,φ are Lipschitz

and ėx is uniformly continuous, it is possible to proof that lim
t→∞

ėx = 0 from

the Barbalat’s lemma. From this fact, it can be seen that the following also
holds:

lim
t→∞
‖Bφ(x,u)eθ‖ = 0. (A.1)

From the fact that (5) is non-increasing and lower bounded by zero, it has a
limit as t → ∞. Hence, θ̂ and eθ must converge to a constant. These facts
do not prove that the parameter-estimation converges to the true value, as
it still possible that lim

t→∞
‖eθ‖ = c, where c is some positive constant and

lim
t→∞
‖Bφ(x,u)‖ = 0, and condition (A.1) would still be satisfied. However, if

we assumed that the system is persistently exciting, this case is not possible
and the parameter-estimation converges to the true value.

Definition Appendix A.1. Denote X(x0, t) as the solution of (1), starting
from the initial condition x0 at time 0. The curve Bφ(X(x0, t),u(t)) is
persistently exciting if there exist some positive constants µ1, µ2 and T0 such
that ∀t:

µ1I ≥
∫ t+T0

t

φ(τ)ᵀBᵀBφ(τ)dτ ≥ µ2I. (A.2)

Appendix B. Proof of Theorem 4.5

The first step of the proof consists in proving the first two inequalities in
(4), which requires showing that the time-varying matrix P(t) is upper and
lower bounded. If the pair (A(t),h(t)) is uniform complete observable, then,
the matrix P(t) is strictly positive [55]:

0 < λmin(P(t)), ∀t. (B.1)

Moreover, it also presents the following upper bound

λmax(P(t)) ≤ ‖P(0)‖+
H2
max

σ − 2|λmax(A)|
, ∀t. (B.2)

Notice that, inequality (B.2) only holds if σ > 2|λmax(A)|.
The second part of the proof consists in proving that the derivative of the

Lyapunov function (3) satisfies the third inequality in (4) for some positive
constants α3, α4 and α5.
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The state-estimation error dynamics between the adaptive observer equa-
tion (36) and the structure (35), ex = x − x̂, are depicted by the following
expression

ėx =(A(t)−P(t)−1h(t)hᵀ(t))ex

+ Bφ(x, t)θ −Bφ(x̂, t)θ̂ + K(t)v + w. (B.3)

where v is the sensor noise and w are the unmodelled process disturbances.
Consider the Lyapunov function candidate (3), then,

V̇x = eᵀ
x(Ṗ(t) + A(t)ᵀP(t) + P(t)A(t)− 2h(t)hᵀ(t))ex

+ 2(Bφ(x, t)θ −Bφ(x̂, t)θ̂)ᵀP(t)ex

+ eᵀ
xP(t)K(t)v + eᵀ

xP(t)w

≤ eᵀ
x(−σP(t))ex + 2φmaxθ‖B‖‖ex‖‖P(t)ex‖

+ ‖ex‖‖P(t)K(t)‖ϑ+ ‖ex‖‖P(t)‖w2

≤ (−σλmin(P(t)) + 2λmax(P(t))φmaxθ‖B‖)‖ex‖2

+ ‖ex‖λmax(P(t))‖K(t)‖ϑ+ ‖ex‖λmax(P(t))w2. (B.4)

From (B.4) it can be deduced that the Lyapunov function (3) satisfies (4)
with:

α3 = σλmin(P(t))− 2λmax(P(t))φmaxθ‖B‖
α4 = λmax(P(t))

α5 = λmax(P(t))‖K(t)‖

Finally, it is necessary to show the conditions in which the factor α3 is strictly
positive. It can be seen that for a value σ that satisfies:

σ >
2λmax(P(t))

λmin(P(t))
φmaxθ‖B‖ , σ∗,

the constant α3 is strictly positive. As the matrix P(t) is upper and lower
bounded, the factor σ∗ is also upper bounded.
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