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Abstract

Parameter estimation is vital for modeling and control of fuel cell systems. However, the nonlinear parameteriza-

tion is an intrinsic characteristic in the fuel cell models such that classical parameter estimation schemes developed

for linearly parameterized systems cannot be applied. In this paper, an alternative framework of adaptive parameter

estimation is designed to address the real-time parameter estimation for fuel cell systems. The parameter estimation

can be divided into two cascaded components. First, the dynamics with the unknown parameters are estimated by

a new unknown system dynamics estimator (USDE). Inspired by an invariant manifold, this USDE is designed by

applying simple filter operations such that the information of the state derivative is not required. Secondly, an adaptive

law driven by the function approximation error is proposed for recovering unknown model parameters. Exponential

convergence of the estimated parameters to the true values can be proved under the monotonicity condition. Finally,

experimental results on a practical proton exchange membrane fuel cell system are given to verify the effectiveness

of the proposed schemes.

Index Terms
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I. INTRODUCTION

Proton exchange membrane fuel cell (PEMFC) is considered as one of the most attractive renewable energy

conversion systems due to its low or zero pollution emission and approximately 40-60% conversion efficiency [1],

[2]. Since PEMFC operates at low temperature with fast start-up properties, it has been applied in vehicle power

plants and residential power systems [1], [3]. However, the relatively fast rate of mechanical degradation limits the

practical applications of PEMFC. To address this issue, many control algorithms have been developed to improve

the system performance and ensure the PEMFC operation at safe conditions. In this line, most existing controllers
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for PEMFC systems have been designed based on accurate mathematical models. Thus, it is emerging to carry out

modeling work for PEMFC, which is attracting increasing attentions in both academic and industrial sectors [4],

[5].

For modeling fuel cell systems, the unknown parameters in the mathematical models stemming from chemical

mechanisms should be considered, since they could inevitably affect the model accuracy and even the stability of

the model-based control systems. Therefore, adaptive parameter estimation is of considerable interest in the field.

The typical adaptive estimation methods, such as gradient-descent algorithm and least-square (LS) algorithm, have

been used for specific fuel cell plants in [6]–[8]. These classical methods are limited to linearly parameterized

systems only, where the unknown parameters are in a linear form with respect to the regressors. Recently, the

adaptive recursive LS algorithm was also applied for hybrid electric trams or vehicles with energy management

strategy in [9], [10]. In [11], comparative results between the gradient-descent method and the Kalman filter for a

fuel cell stack were presented. However, all these results focus on linearly parameterized models only. In fact, the

nonlinearly parameterized function is an intrinsic characteristic in the PEMFC system [1], which makes the existing

adaptive parameter estimation unsuitable.

On the other hand, some intelligent optimization methods have been used to determine model parameters for fuel

cell systems and lithium-ion battery, such as genetic algorithm (GA) [12], particle swarm optimization (PSO) [13]

and harmony search (HS) algorithm [14]. More recently, a modified Monarch butterfly optimization algorithm [15]

was adopted to achieve the parameter identification for PEMFC. Sultan et al. [16] proposed an improved salp swarm

algorithm for PEMFC, where the search performance of the classic salp swarm method is enhanced. In [17], an

Elman neural network was used to build the PEMFC model, and a combination of the world cup optimization and

the fluid search method was applied to estimate the unknown parameters. In [18], a support vector regression with

GA was proposed to estimate the state-of-health for a battery. However, these optimization methods are all based

on the offline fitting procedures, which are dedicated to minimizing the error based on the whole batch of collected

data. Thus, they cannot be used to directly estimate the unknown model parameters in real-time.

In fact, only a few results have been reported for adaptive parameter estimation of nonlinearly parameterized

systems. To ensure the solvability of this problem, some specific conditions should be imposed on the nonlinear

functions with unknown nonlinearly embedded parameters, e.g., convex or concave constraint, monotonic condition.

It is shown that the convexity or concavity condition can ensure the parameter convergence in a local region of the

parameter set, and then a min-max algorithm was proposed for a nonlinearly parameterized system [19], [20]. To

relax the convex or concave condition, a two-step adaptive estimation was presented in [21], where the unknown

dynamics in the nonlinearly parameterized form was first obtained by a high-gain observer and then a parameter

estimation was adopted as [22]. In [23], the nonlinearity was approximated based on the Hadamard’s lemma to

obtain a linearly parametric form. Then a set-based estimation method was used to estimate the uncertainty set and

update the nominal parameter values. Recently, an adaptive parameter estimation with Taylor’s expansion based

local linearization was reported in [4], [24]. On the other hand, the monotonic nonlinearity is also beneficial to

achieve the parameter convergence. With this fact, Tyukin et al. [25] proposed a gradient-based adaptive law under

the monotone condition for the nonlinearly parameterized function. In [26], the immersion and invariance method
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was proposed by designing a free function to achieve a P-monotone condition. However, this method needs to solve

a partial differential equation, which is not a trivial task. Nevertheless, the above methods have not been exploited

for fuel cell systems. Hence, it is recognized that adaptive estimation for nonlinearly parameterized systems still

remains as a challenging problem in theory, yet a useful topic for fuel cell applications.

The aim of this paper is to develop a constructive cascaded framework for adaptive parameter estimation of a

PEMFC system with nonlinearly parameterized parameters. More precisely, the function with unknown nonlinear

parameters is first estimated by a new unknown system dynamics estimator (USDE), which can be designed by

applying simple low-pass filter operations. Furthermore, a new adaptive law is designed for estimating unknown

parameters, which is driven by the function approximation error (difference between the estimated dynamics from

USDE and the function with the online updated parameters). It is proved that the exponential convergence of the

estimated parameters to the true values can be ensured under a monotonic condition of the functions with nonlinearly

embedded parameters. Finally, the proposed schemes is validated via experiments on a practical PEMFC system to

showcase its superior performance over the gradient-descent method and the extended Kalman filter (EKF).

To this end, the main contributions of this paper are:

1) A constructive cascaded parameter estimation framework is proposed for nonlinearly parameterized systems.

A simple USDE is first used to reconstruct the functions with unknown parameters via the measurable input

and output, then an adaptive law is designed to estimate the unknown parameters under a monotonic condition.

2) The proposed method is applied to solve the parameter estimation problem for a PEMFC plant, showing

superior performance over the gradient-descent method and the extended Kalman filter (EKF).

The paper is organised as follows: The PEMFC model and the problem formulation are given in Section II. In

Section III, the parameter estimation method is proposed together with convergence analysis. Practical experiments

on a PEMFC system are presented in Section V. Several conclusions are drawn in Section VI.

II. PEMFC MODEL AND PROBLEM STATEMENT

A. Description of PEMFC

In this section, a ZBT1 closed-cathode PEMFC stack with 8 cells and 130 W rated power is considered. The

practical PEMFC test-rig is depicted in Fig. 1. The input mass flows of hydrogen and synthetic air are controlled by

EL-FLOW®F-201C and F-201AC, respectively. Two Cellkraft®P-10 humidifiers are used to add the water stream

into the input gases such that the required humidity for the PEMFC stack can be guaranteed. Furthermore, an

external fan under on/off mode is used to regulate the temperature of PEMFC stack at the low-power operation

condition. Finally, the data acquisition system is built by the LabView®real-time system.

B. Mathematical Model of PEMFC

The modelling of PEMFC system includes dynamics of voltage balance, thermal energy balance and mass balance.

Due to the limited space, only a brief description about the voltage balance and thermal energy balance that are

1Zentrum für BrennstoffzellenTechnik GmbH
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figure2/lab_zbt-eps-converted-to.pdf

Fig. 1. The PEMFC test facility.

related to the parameter estimation is introduced in this section. More detailed modelling of mass balance for the

PEMFC system can be found in [1], [27], which will not be repeated here.

In order to obtain the average temperature of whole PEMFC stack, we assume that the gases channels, anode,

cathode and electrolyte layers in the stack are with the same temperature [28]. Based on this assumption, the thermal

energy balance is calculated via the energy conservation principle [28], [29] as

mfcCp,fc
dT

dt
=
∑
ca

wini
Mi

∫ Tca,in

Tref

Cp,i (T ) dT

+
∑
an

wini
Mi

∫ Tan,in

Tref

Cp,i (T ) dT −
wrH2

MH2

∆Ho
r

−
∑
ca+an

wouti

Mi

∫ T

Tref

Cp,i (T ) dT − Vfc · I −Hl

(1)

where mfc and Cp,fc are the stack’s mass and average specific heat capacity of PEMFC stack, respectively; T

denotes the PEMFC stack temperature; I represents the current; i represents each species of gases in the stack

channel; Cp,i = ai + biT + ciT
2 + diT

3 is the specific heat of i gas; ai, bi, ci and di are the heat capacity

coefficients [30]; ∆Ho
r represents the specific heat of chemical reaction; Tan,in and Tca,in denote the input gas

temperature for anode and cathode layers; The input and output gas flow rates are wini and wouti , respectively;

And the reacted flow rate of hydrogen is wrH2
. For computing the flow rate of each gas, the detailed modelling is
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explained in [27], [31]. Mi is the molar mass of i gas and MH2 denotes the molar mass of hydrogen. Moreover,

there is the heat transfer phenomenon between the PEMFC stack and environment temperature through the external

fan. Hl is the convection loss by the external fan under the on/off mode, which is expressed as

Hl =

KlA(T − Tref ), T > Tset

0, T ≤ Tset

where Kl is the heat transfer constant; A is the surface area of PEMFC; and Tset is the desired temperature of the

stack; Tref is the ambient temperature.

The PEMFC voltage Vfc is modelled as [27]:

Vfc = n · (Vner − Vact − Vohm − Vcon) (2)

where n denotes the number of cells; Vner represents the theoretical voltage or Nernst voltage, which is expressed

as

Vner = ∆V0 +
∆s

2F
(T − Tref ) +

RT

2F

[
ln(PH2) +

1

2
ln(PO2)

]
where R denotes the gas constant; F is the Faraday’s constant; The standard cell potential is ∆V0; PH2

and PO2
are

the partial pressure of hydrogen and oxygen, respectively. ∆s is the empirical correction factor, which is dependent

on the change of reaction heat. Furthermore, there are three irreversible voltage losses during operation, such as

activation losses Vact, ohmic losses Vohm and concentration losses Vcon, which are calculated by

Vohm =
δmI

ηmA
, Vcon =

I

A
(c2

I

Il
)c3

Vact = Vact,0 +Kact

(
1− e−c1 I

A

)
where the membrane thickness is denoted as δm; Vact,0 is the initial activation potential at zero current condition;

Kact, c1, c2 and c3 are empirical constants, which depend on gas partial pressure and temperature; Il represents

the limiting current; ηm denotes the membrane conductivity represented as

ηm = (b11λm − b12)e−b2( 1
T0
− 1

T )

where the reference temperature for membrane conductivity test is at T0 = 303 K; b11, b12 and b2 are empirical

values related to the membrane water content λm and fuel cell temperature T .

C. Problem Formulation

In the mathematical model of PEMFC, there are some empirical parameters, which determine the behavior of

PEMFC and affect the model accuracy. It is generally difficult to determine the most proper parameters to cover

different operation regions. In general, ∆Ho
r in the thermal energy model (1) is computed by the specific enthalpy

of each gas under the standard temperature and pressure condition [32]. Moreover, ∆s can affect the Nernst voltage

Vner, which is usually set as the standard value of entropy change [27]. Besides, the empirical value b2 is related

to the membrane water content λm while the membrane water content is determined by water transport in the

practical PEMFC [33]. In the realistic operations, those parameters may not be precisely determined based on the
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configurations such that the derived model cannot accurately present the system performance. Hence, we choose

the following empirical parameters to be estimated

θ =
[
∆Ho

r ,∆s, b2

]T
. (3)

It should be noted that the selection of PEMFC model and the model parameters for parameter estimation is

to seek for a trade-off between the model accuracy and the required persistent excitation (PE) condition for this

nonlinear parameterization systems. Hence, only three critical parameters defined in (3) are considered in this study.

For simplicity of notation, the PEMFC models of (1) and (2) with nonlinearly embedded unknown parameters given

in (3) are rewritten in a compact form:

ẋ = f1 (x, u, θ1) + g (x, u, y) (4)

y = f2 (x, u, θ2, θ3) (5)

where x ∈ R is the system state of fuel cell temperature T ; y ∈ R is the system output of voltage Vfc; u ∈ R is

the control input of current I 2; g(x, u, y) ∈ R is a smooth nonlinear function, which can be computed through

the measurable state x, input u and output y, f1(x, u, θ1) ∈ R and f2(x, u, θ2, θ3) ∈ R are continuous functions,

where the unknown parameters θ1 = ∆Ho
r , θ2 = ∆s, θ3 = b2 are embedded in these nonlinear functions.

The aim of this paper is to estimate the unknown parameters θ. It should be noted that as shown in (4)-(5),

the unknown parameters are in a nonlinearly parameterized form, so that the classical adaptive methods [34]–[36]

developed for linearly parameterized systems cannot be directly adopted to deal with this problem for PEMFC. In

fact, from theoretical point of view, adaptive parameter estimation of nonlinearly parameterized systems has not

been fully solved. For fuel cell application, the widely-used approaches to address this problem are the intelligent

optimization methods (e.g., PSO), which are offline metaheuristic optimization algorithms with heavy computational

costs and are dedicated to minimizing the error based on the whole batch of collected data. Hence, the time-varying

behavior may not be fully described by the determined steady-state parameters. Motivated by these discussions, the

main idea of this paper is to develop a new adaptive parameter estimation scheme for the nonlinearly parameterized

PEMFC system (4)-(5) to estimate the unknown parameters θ1 from system (4) and θ2, θ3 from system (5) separately

via the measurable state x, input u and output y.

III. ADAPTIVE PARAMETER ESTIMATION

For the adaptive parameter estimation of nonlinearly parameterized PEMFC system (4)-(5), there are two diffi-

culties to be handled: the first one is that only the input u and outputs x, y are known, while the nonlinear function

f1 (x, u, θ1) is unknown (since an unknown parameter θ1 is involved); the second one is that the unknown parameters

θi, i = 1, 2, 3 are not in a linearly parameterized form, making the classical parameter estimation methods, e.g.,

[6], [7]), unsuitable.

2In the performed experiments, the input mass flows of air and hydrogen are determined by the stoichiometric ratios and the input current.

In this case, we take the input current as the control variable.
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figure2/flow-eps-converted-to.pdf

Fig. 2. Schematic of the proposed adaptive parameter estimation method.

To tackle these problems, inspired by [21], a two-step estimation procedure is proposed. First, we let d =

f1 (x, u, θ1) be the unknown dynamics (since the parameter θ1 is unknown), and then suggest an USDE to reconstruct

this uncertainty based on the measurable state x, output y and input u only, where the information of the state

derivative ẋ is avoided. Secondly, a new parameter estimation method is developed with respect to the nonlinearly

parameterized functions f1 (x, u, θ1), f2 (x, u, θ2, θ3), which can estimate the unknown constant parameter θ1 with

the estimation d̂ from USDE and the unknown parameters θ2 and θ3 from f2 (x, u, θ2, θ3). The structure of the

proposed adaptive parameter estimation framework is shown in Fig. 2.

Before we present the parameter estimation scheme, the following assumptions are introduced for systems (4)-(5):

Assumption 1: The system state x, input u and output y are measurable and bounded.

Assumption 2: The function f1 with unknown parameter θ1 is continuous and its derivative is bounded such that

|ḟ1| ≤ η for a constant η > 0.

Remark 1: The studied PEMFC system trivially fulfills the assumptions mentioned above. In the practical PEMFC

plant with proper controllers, the stack temperature T and the input current I , input air flow winair, and input hydrogen

flow winH2
are all bounded. They can also be easily measured via the installed sensors in the PEMFC. Nevertheless,

the knowledge of time derivative ḟ1 is not required in the implementation of parameter estimation. Instead, this

boundedness condition is used for the convergence analysis of USDE only.
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A. Uncertain System Dynamics Estimator

In order to develop the USDE for estimating d = f1 (x, u, θ1) using x, y, u only, the following filtered variables

of xf and gf are defined with respect to the measured x and known g asκẋf + xf = x, xf (0) = 0

κġf + gf = g, gf (0) = 0

(6)

where κ > 0 is a filter constant.

We can construct an invariant manifold with known, filtered functions and variables to motivate the design of

USDE. Thus, the following lemma is presented:

Lemma 1: For the system (4) and filtered variables in (6), there is an implicit manifold defined by:

lim
t→∞

[
lim
κ→0

(x− xf )/κ− gf − d
]

= 0 (7)

and it is invariant and exponentially convergent for any small constant κ > 0.

Proof: We first define the off-the-manifold coordinate as

z =
x− xf
κ

− gf − d (8)

Based on (4), (6) and (8), its derivative is computed as

ż =
ẋ− ẋf
κ

− ġf − ḋ = − z
κ
− ḋ (9)

A Lyapunov function is chosen as V1 = z2/2, whose time derivative is

V̇1 = zż = −z
2

κ
− zḋ (10)

Based on the Young’s inequality and Assumption 2, we can derive that

V̇1 ≤ −
1

2κ
z2 +

κ

2
ḋ2 ≤ − 1

κ
V1 +

κ

2
η2 (11)

By integrating (11), we get that V1(t) ≤ e−t/κV1(0) + κ2η2/2. Consequently, for any constant κ > 0, z(t) will

exponentially converge to a small compact set around zero, that is

|z(t)| ≤
√
z2(0)e−t/κ + κ2η2 (12)

Since ḋ is bounded based on Assumption 2, we can derive that κḋ → 0 and κ2η2 → 0 as κ → 0. Based on this

fact and the boundedness of variable defined in (8), we can draw a conclusion that for κ→ 0 and/or η → 0, such

that

lim
t→∞

[(x− xf )/κ− gf − d] = 0 (13)

Therefore, z = 0 is an invariant manifold.

Since the manifold in (7) provides an implicit mapping from the measurable state x and the filtered variables xf

and gf to the unknown dynamics d, the USDE can be designed as:

d̂ =
x− xf )

κ
− gf (14)
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The above USDE can be implemented by applying the filter (6) and trivial calculation in (14). Another salient

feature of this USDE is that only one scalar κ used in the filter needs to be set by the designers, which will be

explained latter.

Now, we give the following theorem for the USDE (14):

Theorem 1: Consider system (4) with the time-varying dynamics d and the USDE (14), then the estimation error

d̃ = d− d̂ will exponentially converge to a small compact set around zero.

Proof: We first define the filtered variable df of d as

κḋf + df = d, df (0) = 0 (15)

Applying the filter 1/ (κs+ 1) on system (4), we have

s

κs+ 1
[x] =

1

κs+ 1
[g] +

1

κs+ 1
[d] + ξ (16)

where ξ denotes the effect of the initial condition x(0) through the low-pass filter, which can be neglected since it

is exponentially vanishing. This consideration has been widely studied in the adaptive parameter estimation [23],

[37].

Recalling (6), (15) and neglecting ξ, we can rewrite (16) in the time-domain form as

ẋf =
x− xf
κ

− gf − df (17)

By comparing (8) with (17), we can derive that d̂ = df . Hence, the derivative of estimation error d̃ is computed as

˙̃
d = ḋ− ˙̂

d = ḋ− ḋf = ḋ− d− df
κ

= − d̃
κ

+ ḋ (18)

Now, a Lyapunov function is chosen as V2 = d̃2/2 and its time derivative is derived as

V̇2 = d̃
˙̃
d = − d̃

2

κ
+ d̃ḋ (19)

According to the Young’s inequality, we get

V̇2 ≤ −
1

2κ
d̃+

κ

2
ḋ2 ≤ − 1

κ
V2 +

κ

2
η2 (20)

By integrating (20), we get V2 ≤ e−t/κV2(0) + κ2η2/2. Consequently, the estimation error d̃ will exponentially

converge to a small compact defined by

|d̃(t)| ≤
√
d̃2(0)e−t/κ + κ2η2 (21)

Clearly, one can further verify that d̃ will converge to zero if κ→ 0 and/or η → 0 (when d is constant).

Remark 2: There are several advantages of the proposed USDE in comparison to the other estimators (i.e.,

[38], [39]). The information of state derivative ẋ is not required in the USDE due to the introduced low-pass filter

operations. Moreover, the discontinuities and chattering phenomena encountered in the sliding mode-based estimator

can be avoided. In addition, since fast (exponential) guaranteed convergence of this estimator is rigorously proved,

the estimate d̂ can be used to replace f1(x, u, θ1) in system (4) for the purpose of parameter estimation.
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Remark 3: As shown in the proof of Lemma 1 and Theorem 1, the filter constant κ has an impact on the

convergence speed of z and the ultimate bound of estimation error d̃. Hence it should be set as small as possible.

On the other hand, the bandwidth of the low-pass filter 1/(κs + 1) applied on the state x and nonlinear function

g in (6) is also related to κ such that the robustness of USDE against external disturbance and noise also depends

on κ. Thus, the choice of this filter constant needs to be considered as a trade-off between the robustness and the

convergence speed.

B. Adaptive Estimation of Unknown Parameters

In what follows, the unknown parameter vector θ is estimated by using the output y in (5) and the estimated

dynamics d̂ in (14) to replace f1(x, u, θ1) in (4). Since the functions f1(x, u, θ1), f2(x, u, θ2, θ3) are available

now, we can design an adaptive law for parameter estimation. However, the nonlinearly parameterized issue of θj

(j = 1, 2, 3) should be considered specifically, leading to difficulties in the design of adaptive laws. In this line,

certain assumptions must be imposed on the functions to ensure the identifiability of these unknown parameters as

[19], [26]. Inspired by recent work [25], the monotonicity of nonlinear functions is used in this paper, which can

be fulfilled in the PEMFC application.

Assumption 3: [25] The system functions fulfills the following condition

fk (x, u, θj) = wk (x, u) fm,k (x, u, φj (x, u) θj) (22)

where k = 1, 2 denotes the number of function fk in (4) and (5); j = 1, 2, 3 is the number of unknown parameters

to be estimated. wk(x, u) ∈ R and φj(x, u) ∈ R are known nonlinear functions with respect to the measurable state

x and input u; fm,k is a smooth and continuous function, which contains the linearly parametric terms φj(x, u)θj

of unknown parameter θj and regressor function φj(x, u).

It is noted that in this PEMFC application, f2 ∈ R contains two unknown parameters. Hence, the above assumption

should be imposed to analyze the monotonicity of the nonlinearly parameterized function fm,k with respect to φjθj .

Nevertheless, the above assumption can be fulfilled in the studied PEMFC model. For instance, the regressor function

can be chosen as

φ1 = 1, φ2 = 1, φ3 =
1

T0
− 1

Tfc

Then we will introduce the following assumption to analyze the monotonicity of the nonlinearly parameterized

function and design an adaptive law:

Assumption 4: [25] There exists a function Dj ∈ R such that the nonlinearly parameterized function fk fulfills

Dj (x, u) (θj − θ̂j)
(
fk (x, u, θj)− fk(x, u, θ̂j)

)
≥ 0 (23)

and

ε1j |Dj (x, u) (θj − θ̂j)| ≤ |fk (x, u, θj)− fk(x, u, θ̂j)|

≤ ε2j |Dj (x, u) (θj − θ̂j)|
(24)

where ε1j > 0 and ε2j > 0 are positive constants and Dj is bounded such that |Dj | ≤ σ for a constant σ > 0.
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Assumption 4 implies the monotonicity of nonlinear functions fk (x, u, θj) of unknown parameters θj . Similar

conditions have also been used in [25]. When the system (22) satisfies Assumption 4, the nonlinearly parameterized

function fm,k goes slower than the linearly parameterized function φjθj such that fm,k fulfills a global Lipschitz

condition. For the PEMFC system with the unknown parameter vector θ studied in this paper, we can choose the

following function Dj such that condition (24) in Assumption 4 can be guaranteed [25]:

Dj (x, u) =

−wk (x, u)φj (x, u) , fm,k is non-increasing

wk (x, u)φj (x, u) , fm,k is non-decreasing.

The function Dj with the above formulation is set to ensure that the search process of the adaptive law is in the

correct direction.

With this property, an adaptive estimation method will be proposed to estimate the unknown parameters in the

nonlinearly parameterized system. With this choice of Dj , an adaptive law can be designed based on the function

approximation error e = d̂k−fk(x, u, θ̂j) between the measured function d̂k and its estimate with the online updated

parameters θj , that is
˙̂
θj = ΓjDj (x, u)

[
d̂k − fk(x, u, θ̂j)

]
(25)

where Γj > 0 is an adaptive learning gain. Note with the proposed USDE, the estimate d̂1 = d̂ is used to estimate

the unknown parameter θ1 and the measurement d̂2 = y is used to estimate the unknown parameters θ2, θ3.

Before analyzing the convergence of adaptive law (25), the following definition is introduced.

Definition 1: [35] The function Dj(x, u) satisfies the persistent excitation (PE) condition, if there are constants

T1 > 0 and η1 > 0 such that ∫ t+T1

t

Dj(x(τ), u(τ))Dj(x(τ), u(τ))dτ ≥ η1I, ∀t ≥ 0 (26)

This PE condition has been recognized as a necessary condition to ensure the convergence of parameter estimation

[35].

Then, the following theorem can be provided:

Theorem 2: Consider systems (4) and (5) with Assumption 3 and Assumption 4, the adaptive law (25) is applied

and the function Dj satisfies the PE condition, then the estimation error θ̃j = θj − θ̂j will exponentially converge

to zero.

Proof: Based on (23) in Assumption 4, we know that θ̃jDj (x, u) ∈ R and [d̂k−fk(x, u, θ̂j)] ∈ R are with the

same sign such that θ̃jDj (x, u) [d̂k− fk(x, u, θ̂j)] = |θ̃jDj (x, u) ||d̂k− fk(x, u, θ̂j)| is fulfilled. Then we choose a

Lyapunov function as V2 = 1
2 θ̃jΓ

−1
j θ̃j . By differentiating this function V2 and recalling the adaptive law (25) with

the fact ˙̃
θj = − ˙̂

θj (Note θj is constant), we can obtain

V̇2 = θ̃jΓ
−1
j

˙̃
θj = −|θ̃jDj (x, u) ||d̂k − fk(x, u, θ̂j)|

≤ −ε1j |θ̃jDj (x, u) |2 ≤ 0
(27)

By integrating (27), then there is a constant T1 > 0 such that for t ≥ 0, it follows∫ t+T1

t

V̇2(τ)dτ ≤ −ε1j
∫ t+T1

t

|θ̃j(τ)Dj (x(τ), u(τ)) |2dτ (28)
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Recall the inequality (a+ b)2 ≥ a2/2− b2 and the fact θ̃j(τ)Dj (x(τ), u(τ)) = θ̃j(t)Dj (x(τ), u(τ)) + (θ̃j(τ)−

θ̃j(t))Dj (x(τ), u(τ)), we get∫ t+T1

t

|θ̃j(τ)Dj (x(τ), u(τ)) |2dτ ≥ 1

2

∫ t+T1

t

|θ̃j(t)Dj (x(τ), u(τ)) |2dτ

−
∫ t+T1

t

|(θ̃j(τ)− θ̃j(t))Dj (x(τ), u(τ)) |2dτ
(29)

By using the Cauchy-Schwarz inequality, we have∫ t+T1

t

|(θ̃j(τ)− θ̃j(t))Dj (x(τ), u(τ)) |2dτ

=

∫ t+T1

t

∣∣∣∣∫ τ

t

˙̃
θj(τ1)Dj (x(τ), u(τ)) dτ1

∣∣∣∣2 dτ
≤Γ2

jε
2
2j

∫ t+T1

t

∫ τ

t

|Dj (x(τ1), u(τ1))Dj (x(τ), u(τ)) |2dτ1

×
∫ τ

t

|θ̃j(τ1)Dj (x(τ1), u(τ1)) |2dτ1dτ

≤σ4Γ2
jε

2
2j

∫ t+T1

t

|θ̃j(τ1)Dj (x(τ1), u(τ1)) |2
∫ t+T1

τ1

(τ − t)dτdτ1

≤
σ4Γ2

jε
2
2jT

2
1

2

∫ t+T1

t

|θ̃j(τ1)Dj (x(τ1), u(τ1)) |2dτ1

On the other hand, we can derive the following equation based on Definition 1:∫ t+T1

t

|θ̃j(t)Dj (x(τ), u(τ)) |2dτ ≥ η1|θ̃j |2 ≥ 2η1ΓjV2

Then, Eq. (29) implies that ∫ t+T1

t

|θ̃j(τ)Dj (x(τ), u(τ)) |2dτ ≥ ψV2 (30)

where ψ = 2η1Γj/(2 + ε22jσ
4Γ2

jT
2
1 ) is a positive constant, which can be set smaller than 1. By substituting

(30) in (28), we have V2(t + T ) ≤ (1 − ε1jψ)V2(t). Based on Theorem 1.5.2 in [35], we can obtain that

V2(t) ≤ ψ1e
−µ1tV2(0), where ψ1 = 1/(1 − ε1jψ) and µ1 = ln(1/(1 − ε1jψ))/T . Then, we can get that

|θ̃j(t)| ≤
√
ψ1e
−µ2t|θ̃j(0)|, where µ2 = 1/(2µ1). Thus, the estimation error θ̃j converges to zero exponentially.

Remark 4: The exponential convergence of estimation error depends on the PE condition of Dj . Moreover,

the boundedness of Dj can affect the convergence speed, as shown in the proof of Theorem 2. Thus, the choice

of function Dj needs to be considered in corresponding to system dynamics. In the PEMFC system, the term

wk (x, u)φj (x, u) can be set trivially to fulfill the PE condition due to the variations of temperature and voltage,

which will be shown later.

Remark 5: Since a cascaded estimation framework is suggested for the unknown parameter θ1, the convergence

of parameter error θ̃1 may be affected by the estimation error d̃ of the USDE for nonlinear function f1(x, u, θ1).

It has been shown in Theorem 1 that the estimation error d̃ will exponentially converge to a small compact set for
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any time-varying function f1(x, u, θ1), hence the convergence of θ̃1 can be retained though its transient response

may be influenced by the variation of f1, which will be shown in the experiments.

To implement the proposed parameter estimation framework for the nonlinearly parameterized PEMFC model,

we present Algorithm 1.

Algorithm 1 Implementation of the Proposed Estimation

1: Initialization: Set the initial value θ̂(0), the filter coefficient κ, and the learning gains Γj . Set the sampling

time ∆t and the stop time td.

2: Start procedure

3: while t ≤ td do

4: • Calculate d̂ via the USDE (14)

• Compute the function Dj(x, u)

• Compute the nonlinear function f1(x, u, θ̂1) and f2(x, u, θ̂2, θ̂3).

• Update the estimated parameter θ̂(t) by (25).

• Set t = t+ ∆t

5: return {t, θ̂(t)}

6: end while

7: End procedure

IV. COMPARISON WITH OTHER ESTIMATION METHODS

To show the efficacy of the proposed estimation method, we will compare it with the well-known adaptive

gradient-descent method [7], [35] and extended Kalman filter (EKF) [40].

A. Adaptive Gradient-descent Method

The adaptive gradient-descent method was originally developed for the linearly parameterized model [7], [35],

where the unknown parameters are in a linear form with respect to the regressor. In order to achieve the parameter

estimation for nonlinearly parameterized systems, we have to assume that the functions in (4) and (5) fulfill the

convex condition, and thus the Taylor’s expansion can be used to linearize the nonlinear functions around a local

set [4], [24] as

fk = fk(x, u, θ̂j) +
∑
j

(
θj − θ̂j

) ∂

∂θj
fk(x, u, θ̂j) + νk (31)

where νk denotes the higher-order residual term, which can be considered as a disturbance. We define Φj =

∂fk(x, u, θ̂j)/∂θj as the known functions since θ̂j can be updated by the adaptive law. Then, the PEMFC models

(4) and (5) are rewritten as

ẋ = Φ1θ1 + f1(x, u, θ̂1)− Φ1θ̂1 + g (x, u, y) + ν1

y = Φ2θ2 + Φ3θ3 + f2(x, u, θ̂2, θ̂3)− Φ2θ̂2 − Φ3θ̂3 + ν2

(32)
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To apply the gradient-descent algorithm, the following predictor needs to be constructed

˙̂x = f1(x, u, θ̂1) + g (x, u, y) +K1(x− x̂)

ŷ = f2(x, u, θ̂2, θ̂3)
(33)

where K1 > 0 is a predictor gain. Then, the following gradient-descent adaptive law [7], [35] can be used

˙̂
θj = ΥjΦjδj (34)

where δj is the output error (δ1 = x− x̂, δ2 = δ3 = y − ŷ); Υj > 0 denotes as the learning gain.

In the gradient-descent adaptive law (34), the used regressors for parameter estimation are derived by the Taylor’s

expansion, which is sensitive to measurement noise. In this case, the nonlinear functions fk need to be differentiable

with respect to the unknown parameters θk. Moreover, the linearization of these nonlinear functions is valid around

a local set only, while the effective range of this local set cannot be explicitly defined. Furthermore, the adopted

predictor (33) leads to increased computational costs in the practical implementation as verified in the experiments.

B. Extended Kalman Filter (EKF)

For comparison, the widely known EKF given in [40] is also considered. For this purpose, the PEMFC models

(4) and (5) are rewritten as

ż = f(z, u)

s = h(z, u)
(35)

where the extend states are defined as z =
[
x, θ1, θ2, θ3

]T
. The measurable outputs are defined as s =

[
x, y
]T

.

The nonlinear vectors are defined as f =
[
f1(x, u, θ1) + g (x, u, y) , 0, 0, 0

]T
and h =

[
x, f2(x, u, θ2, θ3)

]T
. The

EKF [40] is now given as
˙̂z =f(ẑ, u) + P

∂h

∂z
(ẑ, u)TR−1(s− h(ẑ, u))

Ṗ =
∂f

∂z
(ẑ, u)P + P

∂f

∂z
(ẑ, u)T +Q

− P ∂h
∂z

(ẑ, u)TR−1 ∂h

∂z
(ẑ, u)P

(36)

where ẑ is the estimated states; Q is the covariance matrix of the drift Gaussian noise; R is the covariance matrix

of the measurement Gaussian noise.

In the EKF (36), the first term is the copy of dynamics in (35). Then, the output error with a gain P (∂h(ẑ, u)/∂z)TR−1

is added in (36) to develop the observer of the EKF. This gain is similar to the Kalman-Bucy filter gain used for

linear system, where nonlinear functions f(z, u) and h(z, u) are linearized around the estimated states ẑ such that

there is a local set that can ensure the convergence of the estimation error. In this case, the EKF also requires the

convex condition for nonlinear functions as the gradient-descent algorithm. Finally, the extended stated for observer

design also impose the increased computational costs.
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figure2/current-eps-converted-to.pdf

Fig. 3. The curve profile of the input current I .

V. PRACTICAL VALIDATION

In this section, the mathematical model is first calibrated by the standard PSO method [13], [41], which can

provide the general steady-state information of unknown parameters and further provide a guideline to evaluate the

efficacy of several different estimation results. Therefore, we carried out comparative studies among the proposed

parameter estimation method (14) and (25), the adaptive gradient-descent method with the Taylor’s expansion

(31)-(34) and the EKF (36) to showcase their performance and verify the effectiveness of those estimation methods.

In the performed experiments, the input current is set as I = 5 A. The realistic current profile is depicted in

Fig. 3. It is noted that the oscillations in Fig. 3 are the measurement noise, which are less than 0.1 V. In practice,

it is trivial to apply such a constant current to the PEMFC. The stoichiometric ratios of air and hydrogen are

respectively set as 2.5 and 2, which are used to determine the input mass flows of air and hydrogen [27]. Moreover,

the temperature values of the humidifiers at the cathode and anode are set as 30oC and 40oC, respectively. The

fuel cell temperature is regulated by the cooling fan to maintain the desired temperature. The values of parameters

used in the PEMFC model are given in Table I. In order to make comparisons of different estimation methods,

experimental data of input current, output voltage and temperature is first recorded in the online experiments. Then,

these three parameter estimation schemes are implemented in Matlab/Simulink based on the same experimental

data.

The standard PSO method is first employed to seek optimum values for the unknown parameters given in (3)

for the baseline of the parameter estimation. Table II shows the search range of unknown parameters for the PSO

method in [1], [27]. The sum of root-mean-square errors with respect to the voltage and temperature is considered

April 6, 2022 DRAFT



IEEE TRANSACTIONS ON POWER ELECTRONICS 16

as the objective function, which is given by

min

√√√√t=N∆t∑
t=0

(|Vexp(t)− Vfc(θ, t)|2 + |Texp(t)− Tfc(θ, t)|2)

s.t. θmin ≤ θ ≤ θmax
where Uexp and Texp are the experimental data of voltage and temperature, respectively; ∆t is the sampling interval

and N is the sampling times determined in the experiment; θmin and θmax denote as the minimum and maximum

values of θ.

Subsequently, three above mentioned parameter estimation methods: adaptive gradient-descent method, EKF and

the proposed method are applied for the derived mathematical model with the experimental data. The learning

parameters for the proposed method (14) and (25) are set as κ = 0.7, Γ1 = 6.75 × 106, and Γ2 = 106, Γ3 =

1.45 × 106. Based on the explanations given in Section III-B, the functions Dj used in the adaptive law (25) are

chosen as

D1 = −
wrH2

MH2

, D2 =
n

2F
(Tfc − Tref )

D3 =
nδmI

(b11λm − b12)A
×
(

1

T0
− 1

Tfc

)
such that the monotonicity condition in Assumption 4 and the PE condition in Definition 1 are satisfied. Moreover,

the learning parameters for the gradient-descent method (34) are set as K1 = 5, Υ1 = 8×108, and Υ2 = 106, Υ3 =

1.45×106. For the EKF, the learning parameters are set as Q = diag{[10, 106, 10, 15]}, and R = diag{[0.09, 0.09]}.

The initial values of the estimated parameters are set as θ̂1(0) = θ̂2(0) = θ̂3(0) = 0.

In this experiment, the sampling time is set as ∆t = 1 ms. The computation time required by the proposed

method to obtain the estimated parameters at each time step is 1.266 × 10−4 s. The computation time for the

other two methods for each time step is around 1.4× 10−4 s. Fig. 4 and Fig. 5 show the profiles of the estimated

parameters by using the PSO, the gradient-descent method, the EKF, and the proposed method. It is illustrated

that the estimated results by the gradient-descent method and the proposed method are similar, while the gradient-

descent method provides more high-frequency oscillations. The estimation results of the EKF are smoother than

other schemes due to its high anti-noise property. Moreover, the estimated parameters by the gradient-descent method

and the proposed method are slowly changing around the steady-state values determined by the PSO. Moreover,

the Taylor’s expansion related to the convex condition is used to linearize the nonlinearity around a local value,

hence the estimation performance can be affected by the initial value and the operation scenarios. However, the

proposed method based on the monotonic condition can handle the nonlinearly parametric issue directly, so that it

can provide a satisfactory performance. For the parameter ∆Ho
r in (3), the unknown dynamics d containing ∆Ho

r is

first estimated by the USDE (14). The estimated profile of unknown dynamics d is depicted in Fig. 6. Different from

the gradient-descent method, the proposed method with the USDE (14) can provide a fast convergence performance
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figure2/theta1_total-eps-converted-to.pdf

Fig. 4. Parameter estimation Ho
r by the proposed method ((14), (25)), the PSO and the gradient method (34).

for the parameter ∆Ho
r as shown in Fig. 4. Moreover, there are some oscillations in the estimated results with the

gradient-descent method in Fig. 4, which may be induced by the temperature regulation affected by the cooling fan

and the noise from the sensor. However, those oscillations can be reduced by the proposed method with the help

of the USDE (14), such that those oscillations in d̂ does not influence the overall modeling accuracy.

In order to verify the effectiveness of the proposed method and the correctness of the estimated parameters given

above, the output voltage and temperature are reconstructed via the model with the estimated parameters. Fig. 7

and Fig. 8 show the reconstructed profiles of the fuel cell voltage and temperature in comparison to the collected

experimental data. It is shown that there is an explicit difference between the experimental data and the model

output with the estimated parameters determined by the PSO scheme. This is reasonable since the PSO scheme can

obtain the steady-state parameters only based on the whole experimental data, while the unavoidable variations in

the system may not be captured. Different to the PSO method, the proposed adaptive estimation methods can track

the varying dynamics involved in the model parameters for practical PEMFC systems such that they can achieve a

superior performance. Specifically, to compare the performance quantitatively, the mean squared error (MSE), the
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figure2/theta2_3-eps-converted-to.pdf

Fig. 5. Parameter estimation ∆s, b2 by the proposed method ((14), (25)), the PSO and the gradient method (34).

maximum absolute Error (MAE) and the standard deviation (SD) are used to assess the estimation performance of

the Taylor’s expansion-based adaptive parameter estimation method, the EKF, and the proposed method, which are

defined as follows:

MSE =

t=N∆t∑
t=t0

|ess(θ̂, t)|2

MAE = max{|ess(θ̂, t)|2}

SD =

√√√√ 1

N∆t

t=N∆t∑
t=t0

|esd(θ̂, t)|2

where ess(θ̂, t) is the output error between the collected data and the model output with the estimated parameters

θ̂ (i.e., ess = Vexp(t)−Vfc(θ̂, t) or ess = Texp(t)−Tfc(θ̂, t)); esd(θ̂, t) is the difference between the model output

and the average of the collected output data (i.e., esd = Vfc(θ̂, t)− V̄ or esd = Tfc(θ̂, t)− T̄ ); V̄ and T̄ represents

average values of collected outputs for the voltage and temperature, respectively. t0 is the starting computing time,
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figure2/UIO-eps-converted-to.pdf

Fig. 6. The profile of estimated dynamics d̂ by USDE (14).

which is set as t0 = 2 h for this comparison. Table III shows the statistical evaluation of the estimation performance

of these three methods. It is shown that the proposed method and the Taylor’s expansion-based gradient method

have similar performances with respect to the output voltage. For the performance of the temperature, the proposed

scheme provides a superior performance over the gradient-descent method, in particular for the SD index related to

the oscillations. Nevertheless, the EKF obtained worse performance than the other two schemes due to its robustness

against noise, which on the other hand makes it less sensitive to the variations involved in the unknown model

parameters. Hence, the estimated parameters have less variations as shown in Fig. 4 and Fig. 5. Consequently, the

model outputs (voltage and temperature as shown in Fig. 7 and Fig. 8) with the estimated parameters via the EKF

are also with less variations in comparison to the results obtained by the other two estimation algorithms.

VI. CONCLUSION

In this paper, a new adaptive parameter estimation method is proposed for a PEMFC system with unknown

parameters embedded in nonlinear functions. The key idea is to first estimate the unknown dynamics containing
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figure2/voltage_total-eps-converted-to.pdf

Fig. 7. Comparison of the experimental data and the model output Vfc with the estimated parameters by the proposed method ((14), (25)), the

PSO and the gradient method (34).

the unknown parameters through a USDE with one tuning parameter only. The USDE is constructed by applying

simple filter operations on the system input and output measurements, so that the requirement of the derivative of

system state is remedied. Then, an adaptive law is designed for estimating the unknown parameters via the function

approximation errors, which stem from the difference between the estimated dynamics and the function with the

online updated parameters. It is proved that when a monotonicity condition of the functions with unknown parameters

is satisfied, the exponential convergence of the estimated parameters to their true values can be guaranteed. The

proposed estimation method is evaluated via experiments on a practical PEMFC plant, which imply that the suggested

estimation scheme can achieve better responses than the gradient-descent method with Taylor’s expansion and the

EKF. In our future work, we will apply the sensitivity analysis to select the dominant parameters in the PEMFC

model and then extend the proposed method for the time-varying parameter estimation to cover wider operation

regions of fuel cells.
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figure2/temperature_total-eps-converted-to.pdf

Fig. 8. Comparison of the experimental data and the model output T with the estimated parameters by the proposed method ((14), (25)), the

PSO and the gradient method (34).
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TABLE I

THE PARAMETERS FOR THE PEMFC MODEL

Symbol Description Value

A stack area 50 cm2

Cp,fc specific heat capacity for the PEMFC 5.5 kJ/(kg ·K)

F Faraday’s constant 9.6485 × 104 C/mol

Kl heat transfer constant 2000

∆V0 standard cell potential 1.205 V

MH2
molar mass of hydrogen 2 × 10−3 kg/mol

MH2O molar mass of water 18 × 10−3 kg/mol

MN2
molar mass of nitrogen 28 × 10−3 kg/mol

MO2
molar mass of oxygen 32 × 10−3 kg/mol

R gas constant 8.3145 J/(mol ·K)

δm membrane thickness 1.275 × 10−2 cm

Il limiting current 25 A

Tref reference temperature 25oC

b11 empirical value in the membrane conductivity 0.00158

b12 empirical value in the membrane conductivity −0.0052

c1 empirical value in the activation losses 627.69

c2 empirical value in the concentration losses 0.54

c3 empirical value in the concentration losses 2

n the number of cells for the PEMFC 8

mfc stack mass 2.25 kg
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TABLE II

PSO SEARCH RANGE OF THE UNKNOWN PARAMETERS FOR PEMFC

Parameter ∆Ho
r ∆s b2

Lower −1 × 105 −10 −100

Upper 1 × 105 1000 100

TABLE III

COMPARATIVE ESTIMATION PERFORMANCE

Output Indices The proposed method The gradient method The EKF

Vfc

MSE 0.07 0.07 0.31

MAE 0.013 0.013 0.033

SD 0.13 0.13 0.27

T

MSE 4.62 × 109 4.62 × 109 4.62 × 109

MAE 546.6 547.0 547.9

SD 4.86 8.28 15.49
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