
Proceedings of Machine Learning Research vol 168:1–12, 2022 4th Annual Conference on Learning for Dynamics and Control

Mixtures of Controlled Gaussian Processes for
Dynamical Modeling of Deformable Objects

Ce Xu CE.XU@ESTUDIANTAT.UPC.EDU
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Abstract
Control and manipulation of objects is a highly relevant topic in Robotics research. Although
significant advances have been made over the manipulation of rigid bodies, the manipulation of
non-rigid objects is still challenging and an open problem. Due to the uncertainty of the outcome
when applying physical actions to non-rigid objects, using prior knowledge on objects’ dynamics
can greatly improve the control performance. However, fitting such models is a challenging task
for materials such as clothing, where the state is represented by points in a mesh, resulting in very
large dimensionality that makes models difficult to learn, process and predict based on measured
data. In this paper, we expand previous work on Controlled Gaussian Process Dynamical Mod-
els (CGPDM), a method that uses a non-linear projection of the state space onto a much smaller
dimensional latent space, and learns the object dynamics in the latent space. We take advantage
of the variability in training data by employing Mixture of Experts (MoE), and we devise theory
and experimental validations that demonstrate significant improvements in training and prediction
times, plus robustness and error stability when predicting deformable objects exposed to disparate
movement ranges.
Keywords: Gaussian Processes, Learning from Demonstration, Dimensionality Reduction, Mix-
ture of Gaussian Experts, Data-driven Dynamic Model Learning

1. Introduction

Manipulation of deformable objects such as cloth is a major challenge in the field of robotics
(Sanchez et al. (2018); Garcia-Camacho et al. (2020)). Some notable approaches (Bersch et al.
(2011); Miller et al. (2012); Sun et al. (2013)) are based on planning a sequence of predefined ac-
tions, executing them and using vision after each action to assess the result and plan the next step.
However, for getting closer to human performance in cloth manipulation, the decision of which
action to take needs to be performed at the control level in order to speed up the manipulation pro-
cess. In controlling cloth garments, open-loop policies Colomé and Torras (2018) have achieved a
certain degree of success, but the uncertainty coming from the cloth’s dynamics makes model-free
approaches too vulnerable to any slight deviation from the expected initial condition, such as wind,
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MIXTURE OF CGPDM

grasping point, initial wrinkling of cloth, etc. Therefore, prior knowledge of cloth’s dynamics can
be of great help when implementing a controller. Cloth dynamics has been largely studied in litera-
ture (Terzopoulos et al. (1987); Baraff and Witkin (1998); Nealen et al. (2006)), but in controlling a
cloth garment with a model-based method, the large dimensionality of a mesh results in very large
computational costs for fitting the model to reality. Also, it makes it intractable to build control
policies in such high-dimensional spaces. Baraff and Witkin (2016) proposed a Model Predictive
Control (MPC) method for cloth manipulation, but the complexity of the cloth model resulted in
hours of computations for motions of less than a minute.

The computational costs of the dynamics of cloth, as well as other systems, require newer so-
lutions in order to have a tractable model that is not too complex computationally, and can be fit
with real data. Colomé and Torras (2018) used linear dimensionality reduction on the action space
of a robot manipulator in order to reduce the action space’s dimension, and recently, Amadio et al.
(2021) extended a previous work on Gaussian Process Dynamical Models (GPDM, Wang et al.
(2005)), which relied on a non-linear dimensionality reduction method to project the system’s state
to a much smaller dimensional space, and learn the system dynamics there. GPDM used Gaussian
Process Latent Variable Models (GPLVM) Lawrence (2005) as a dimensionality reduction method.
However, the work by Wang et al. (2005) did not consider control inputs, which were added later
in Amadio et al. (2021). The results obtained by Amadio et al. (2021) were satisfactory in learning
the dynamics – including control actions – of a cloth garment by using data from certain motions
and generalizing in a certain neighbourhood of the data, but showed vulnerability when action’s
variability was too large, or if different actions were being considered in the data. Therefore, MoE
approaches allow better computational complexity scaling due to the splitting of the data and more
flexibility to learn wider ranges of movements applied to deformable objects.

In this paper, we expand the theory of CGPDM Amadio et al. (2021) by devising theoretical
underpinnings to combine MoE formalism with CGPDM to take advantage of the variability in
training data, and significantly improve training and prediction times, plus robustness and error
stability when predicting deformable objects exposed to disparate movement ranges. This advance-
ment in prediction and error stability is geared toward the real time manipulation of deformable
objects where better computational complexity than the state-of-the-art is increasingly demanded.

2. Preliminaries

2.1. From Gaussian Processes to Control Gaussian Process Dynamical Models

Gaussian processes (GPs) Rasmussen and Williams (2006) are a powerful tool in machine learning
allowing designers to make predictions based on data by incorporating prior knowledge. Statisti-
cally, a GP is a stochastic process (a collection of indexed random variables), such that every finite
collection of those random variables has a multivariate normal distribution. With Gaussian pro-
cesses, we can estimate the output of a non-linear function if we consider it to be a random variable,
where the correlation between different points will be given by a kernel relating their inputs, i.e.:

f(X) ∼ N
(
µ(X), k(X,X ′)

)
,

where X ∈ RN×d is the matrix of input variables, N is the number of points, d is the dimension
of the input space, µ(X) is the expected mean values for each output point which can be computed
from a prior knowledge given system inputs, and k(X,X ′) is the kernel matrix that relates the statis-
tics of the input variables. Assuming that we know the function values at various points, f = f(X),
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we can estimate the function at new points fnew = f(Xnew) using a normal distribution where
the covariance and the mean are given by the prior knowledge of the mean and the conditioning
property:

fnew|f ∼ N (µfnew +ΣXnew,XΣ−1
X,X(f − µf ),ΣXnew,Xnew − ΣXnew,XΣ−1

X,XΣX,Xnew), (1)

where the prior mean is usually assumed to be the mean of the known data, and the values Σ
correspond to covariance matrices.

Employing GPs to estimate the dynamics of deformable objects such as clothing is unfeasible
due to the high dimensionality of the input space. The input space corresponds to the states of the
deformable object, normally a vector containing the positions of the points defining the deformable
mesh which in turn yield high computational costs when computing the correlation matrix. This
limitation points us to introduce a dimensionality reduction step to facilitate the learning of the
object dynamics. To do so, in Wang et al. (2008) the authors presented a process called Gaussian
Process Dynamical Models (GPDM) which extended previous work discussed in Lawrence (2005)
addressing the temporal series dependencies. Further on, GPDM was further extended into Control
Gaussian Process Dynamical Models (CGPDM) Amadio et al. (2021) by incorporating the control
signal of the deformable system as an input variable. The models above involve two steps: a latent
mapping that projects high dimensional observations to a low-dimensional latent space, Eq. (2), and
a discrete-time Markovian dynamic process that captures the evolution of the time series inside the
reduced latent space Eq. (3)

yt = g(xt;θ) + ny,t (2)

xt+1 = f(xt, ut;ϕ) + nx,t (3)

Where yt stands for the high dimensional observation, xt is its dimensionally reduced repre-
sentation and ut is the input control that we are exerting on the deformable object at time t. The
g and f labels correspond to non-linear functions that represent the dynamic mapping that we are
trying to learn, with θ,ϕ being their hyper-parameters, and ny,t, nx,t being zero-mean isotropic
white Gaussian noise processes.

2.2. Infinite Mixture of Gaussian Experts

In traditional MoE methods, the parametric model is built without accounting for model data cor-
relations, but in the case of Gaussian processes, correlations are directly embedded into the model.
This property was used in Rasmussen and Ghahramani (2001) where they considered the likelihood
of the output given the input as the marginalization of all the possible configurations of experts, i.e.:

P (O|I, λ, γ) =
∑
z

P (O|I, z, λ)P (z|I, γ) =
∑
z

∏
j∈E

P (O{i|zi=j},:|I{i|zi=j},:, λj)

P (z|I, γ),
(4)

where I and O define the input and output variables of the mixture, z defines an indicator variable
that assigns each pair of input-output data to one specific expert. Notice that we use the subscript “:”
as a symbol indicating all the values in the dimension corresponding to its position – this is similar
to Matlab’s use of the “:”. Thus, zi = j means that the i-th pair of data is assigned to the j-th expert
in the set of experts E. In addition, λj are the parameters of the j-th expert. This approach suffers
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from the curse of dimensionality due to the combinatorics of input-output pairs, so the previous
authors proposed an algorithm to estimate the likelihood using a Markov chain, where they employ
Gibbs sampling Maklin (2020) of the indicators z given previous expert assignments:

P (zi = j|z(..,̂i,..), I, O, λ, γ) ∝ P (O|I, zi = j, z(..,̂i,..), λ)P (zi = j|z(..,̂i,..), I, γ). (5)

where î refers to all elements except the i-th element. Because the first term of the right hand side
in the above equation can be computed via multiplication of the experts’ likelihood as shown in
Eq. (4) – assuming independency–, we only need to find the second term in the right hand side.
It can be shown Rasmussen (2000), that generalizing a symmetrical Dirichlet process with an α
hyper-parameter, the conditional probability of a single indicator when the number of experts tends
to infinity is equal to:

P (zi = j|z(..,̂i,..), α) =
n̂(..,̂i,..),j

n− 1 + α
, ∀ experts with n̂(..,̂i,..),j > 0

P (zi ̸= zi′∀i′ ̸= i|z(..,̂i,..), α) =
α

n− 1 + α
, ∀ other (non assigned) experts,

(6)

where n̂(..,̂i,..),j is called the occupancy number and represents the number of data points associated
with a particular expert j excluding the i-th observation, and n is the total number of data points.
We have now determined the probability of assigning a data point to each of the existing experts
(which in turn is proportional to the occupation number), and it is now necessary to calculate the
probability to create new experts. Therefore, we introduce the dependency of this distribution on
the input by adapting the occupancy number employing a local estimator, like a kernel classifier:

n̂(..,̂i,..),j = (n− 1)

∑
i′ ̸=i kγ(Ii,:, Ii′,:)δ(zi′ , j)∑

i′ ̸=i kγ(Ii,:, Ii′,:)
, (7)

where δ(., .) is the Kronecker’s Delta function to sum up only the points corresponding to the j-th
expert. The kernel function kγ will be parametrized by γ and will be defined later. Once we have
sampled the indicators using Gibbs sampling, we can apply maximization over the likelihood using
a fixed experts assignment. Iterating over this process, we approximate the posterior likelihood of
Eq. (4) without the need to directly compute the summations.

3. Learning Mixture of CGPDMs

3.1. Combining Mixture of Experts and CGPDMs

Like in GPDMs, we will maximize the likelihood of the latent variables and the parameters of the
Gaussian model. Y and U are matrices that contain the observations of the mesh and the control
inputs in their rows, X represents the latent variables that characterize, in their lower dimensional
space, the Y observations row-wise, and α, β stand for all the parameters used in a Mapping Model
and a Latent Model, respectively, that will be described further below. As the optimization does not
depend on the variables Y, U , we can develop the following optimization problem:

argmax
X,α,β

P (X,α, β|Y,U) = argmax
X,α,β

P (Y,X, α, β, U) = argmax
X,α,β

P (Y |X,β)P (X|α,U), (8)
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where P (Y |X,β) and P (X|α,U) can be considered as two separated mixtures of GP models. For
easier identification, we will name the first of these terms as the Mapping Model – because it is
related to the ability of the model to infer the observations from the latent points – and the second
term as the Latent Dynamics Model – because it is related to the ability of the model to predict the
next point in the latent space given the previous positions and the current control. We also define
D as the total number of dimensions of the observable space and d the number of dimensions of
the latent space. The Mapping Model likelihood can be expressed by marginalizing all the possible
configurations of the experts (zmap):

P (Y |X,β) =
∑
zmap

 ∏
j∈Emap

P (Y∗|X∗, θ
map
j )

P (zmap|X,ϕmap), (9)

where we define the subscript ∗ := {i|zmap
i = j}, : , zmap is the expert identifier used for

assigning experts to Mapping Model. In addition we split β into two additional parameters dubbed,
θmap
j and ϕmap, which correspond to specific parameters for the j-th expert, and to gating parame-

ters, respectively.
For the Latent Dynamics Model, we can proceed similarly, but with some new subtleties. The

likelihood of the latent variables given the control input and the model parameters should be written
in terms of the input and output variables of the dynamical function that we want to estimate. To
estimate the dynamics of clothing, we use as inputs to the describing function of the model the last
two latent states in time and the control input. The output of the function is the difference between
the previous and the current latent states. Using the previously described mixture of Gaussian
experts we define the following model:

P (X|α,U) = P (∆|X̂, α) =
∑
zlat

∏
j∈E

P (∆⋆|X̂⋆, θ
lat
j )

P (zlat|X̂, ϕlat), (10)

where we define the subscript ⋆ := {i|zlati = j}, : , ∆ is the matrix of latent state increments
(X2:n,:−X1:n−1,:), and X̂ represents various latent variables and input states concatenated horizontal-
wise as follows: (X0:n−2,:, X1:n−1,:, U1:n−1,:). The equality P (X|α,U) = P (∆|X̂, α) can be
demonstrated thanks to the properties of the conditioned probability. We have, once more, split
the model parameters α into experts parameters θlatj and gating parameters ϕlat. Finally, we re-
formulate Eq. (8) as follows:

argmax
X,α,β

P (Y |X,β)P (X|α,U) =

argmax
X,θmap

j ,ϕmap,θlatj ,ϕlat

(∑
zmap

∏
j∈E

P (Y∗|X∗, θ
map
j )

P (zmap|X,ϕmap)


·

∑
zlat

∏
j∈E

P (∆⋆|X̂⋆, θ
lat
j )

P (zlat|X̂, ϕlat)
 ,

(11)

which allows us to compute an estimate of the total likelihood of the latent model and maximize it
without computing expensive summations of likelihoods for all possible configurations.
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Note that in case that we provide more than one trajectory as a training reference, we only need
to join all the observable Y matrices and their corresponding latent states X . As for the Latent
Dynamics Model we need to join the increment matrices for all the trajectories, i.e. ∆ = (X1

2:n,: −
X1

1:n−1,:;X
2
2:n,: − X2

1:n−1,:; . . .) for the output, and X̂ = (X1
0:n−2,:, X

1
1:n−1,:, U

1
1:n−1,:;X

2
0:n−2,:,

X2
1:n−1,:, U

2
1:n−1,:; . . .) for the input, where the superscripts indicate the trajectory index.

3.2. Design Choices

To characterize the Gaussian experts used in the Mapping Model, we consider that each of the D
dimensions of the output space is independent of each other and has a base kernel ky(., .) scaled
with a factor (ωmap)−2. The kernel chosen is a Radial Basis Function (RBF) with a Gaussian noise:

ky(Xi,:, Xj,:) = exp (−∥Xi,: −Xj,:∥Λmap) + (σmap)2 δ (Xi,:, Xj,:) , (12)

where ∥Xi,: − Xj,:∥Λmap =
[∑d

k=1(λ
map
k )2(Xi,k − Xj,k)

2
]1/2, and δ(., .) is the Kronecker delta

function. The likelihood for each expert is the multiplication of the likelihood of each column of
Y∗, yielding the following expression:

P (Y∗|X∗, θ
map
j ) =

|Wmap
j |N exp

[
−1

2 tr
(
Ky(X∗)

−1Y∗

(
Wmap

j

)2
Y T
∗

)]
√
(2π)(N ·D) |Ky(X∗)|D

, (13)

where θmap
j = (ωmap

j,1 , ..., ωmap
j,D , λmap

j,1 , ..., λmap
j,d , σmap

j ), N is the number of data points assigned to
the j-th expert, Wmap

j := diag(ωmap
j,1 , ..., ωmap

j,D ), and Ky(X∗) is the covariance matrix built with
the previously defined kernel function.

Similarly, we assume independence in all the d dimensions of the Latent Dynamics Model and
employ the same base kernel function kx(., .) across them, scaled with a factor (ωlat)−2. As such,
we design the following RBF kernel with a quadratic component and a noise term:

kx(X̂i,:, X̂j,:) = exp
(
−∥X̂i,: − X̂j,:∥Λlat

)
+ [X̂i,:, 1]Ψ

lat[X̂j,:, 1]
T +

(
σlat

)2
δ(X̂i,:, X̂j,:), (14)

where ∥X̂i,:− X̂j,:∥Λlat =
[∑2d+dim(u)

k=1 (λmap
k )2(X̂i,k − X̂j,k)

2
]1/2, dim(u) is the number of hori-

zontal dimensions of the control variables, and Ψlat = diag(ψ2
1, . . . , ψ

2
2d+dim(u)+1). The likelihood

for each expert is the multiplication of the likelihood of each column of ∆∗, yielding the following
expression:

P (∆⋆|X̂⋆, θ
lat
j ) =

|W lat
j |Nexp

[
−1

2 tr
(
Kx(X̂⋆)

−1∆⋆

(
W lat

j

)2
∆T

⋆

)]
√
(2π)(N ·d)|Kx(X̂⋆)|D

, (15)

where θlatj := (ωlat
j,1 , ... , ωlat

j,d , λlatj,1, ... , λlatj,d, ψj,1, ..., ψj,2d+dim(u)+1, σlatj ),W lat
j := diag(ωlat

j,1 , ..., ω
lat
j,d),

and Kx(X̂) is the covariance matrix built with the kernel function that we described further above.
The reason to choose these types of likelihoods is due to their good performance previously

shown in single expert systems as described in Amadio et al. (2021). For the Mapping and Latent
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Dynamics gating models – P (zmap|X,ϕmap) and P (zlat|X,ϕlat) respetively –, we have chosen a
simple exponential distance of the scaled square distance kernel as follows:

kmap
ϕ (Xi,:, Xj,:) = exp

(
−1

2

d∑
k=1

(Xi,k −Xj,k)
2/(ϕmap

k )2

)
, (16)

klatϕ (X̂i,:, X̂j,:) = exp

−1

2

dim(u)+2d∑
k=1

(X̂i,k − X̂j,k)
2/(ϕlatk )2

 . (17)

To decide the number of latent dimensions that we are going to employ, we have to find a balance
between the precision that we want to get in the reconstruction of the observed data, and the com-
putational cost for having a large number of latent dimensions. In our case, we have chosen d = 5
as a result of computing the variance ratio of the Principal Component Analysis (PCA) applied to
the observation space and selecting the most significant dimensions.

3.3. Training Procedure

Our training procedure consists of several steps where we optimize and sample different parts of the
models sequentially, always trying to maximize the final likelihood of the complete model:

Parameter initialization: As mentioned before, we obtain the latent space using PCA. To initial-
ize the configuration of the Mapping Model, we initialize its experts using a k-means clustering
algorithm over the observation space. Regarding the Latent Dynamics Model, we assign all points
belonging to a given trajectory to the same expert. First, we initialize X̂ as defined in Eq.(10) using
all the training trajectories combined. We then assign the portions of X̂ corresponding to a single
trajectory, {Xk

0:n−2,:, X
k
1:n−1,:, U

k
1:n−1,:}, to a random expert for each of them, where k is the index

of the trajectory. We initialize the expert parameters θmap
j , θlatj using a UNIFORM(0.5, 1), as such

distribution has been empirically shown to yield well-conditioned correlation matrices for optimiza-
tion. Finally, to initialize the gating parameters we pre-train them as explained further below under
the label: Maximize the log-likelihood of the predictions.

Expert likelihood optimization: We then perform likelihood optimization of the Mapping and
Latent Dynamics models for the experts as follows:

argmax
X,θmap,θlat

P (Y |X, θmap, zmap)P (X|θlat, U, zlat) =

argmax
X,θmap,θlat

∏
j∈Emap

P (Y∗|X∗, θ
map
j ) ·

∏
j∈Elat

P (∆⋆|X̂⋆, θ
lat
j ) = (18)

argmin
X,θmap,θlat

∑
j∈Emap

Lmap
j +

∑
j∈Elat

Llat
j

where the losses are described using negative log likelihood, i.e. Lmap
j = − log(P (Y∗|X∗, θ

map
j )),

and Llat
j = − log(P (∆⋆|X̂⋆, θ

lat
j )).

Gibbs sampling: We perform Gibbs sampling over the expert configuration variables using Eq.(5)
for both the Mapping and Latent Dynamics Models. For the mapping model we first remove the
input/output data points from their expert. We then compute the probabilities for each expert –fixing

7



MIXTURE OF CGPDM

the maximum number of points per expert to Nmax– and assign the probability of creating a new
expert given by α

n−1+α . For the Latent Dynamics model we prioritized assigning the input/output
data points pertaining to the same trajectory to the same expert to avoid fragmentation and sampling
whole trajectories avoiding the gating term in Eq.(5).

Gating optimization: We employ the error between gating predictions and current expert assign-
ments. The gating predictions are obtained by removing each i-th data point from its expert and
computing the gating model prediction:

argmax
ϕmap,ϕlat

∑
i

P (zmap
i |X, zmap

(..,̂i,..)
ϕmap) +

∑
i

P (zlati |X̂, zalt
(..,̂i,..)

ϕlat). (19)

We repeat these steps – parameter initialization, expert optimization, Gibbs sampling and gating
optimization – until model convergence.

Once we have performed model training, we end up with a particular configuration of the ex-
perts, (zmap, zlat). We consider the combination of the Gaussian Models described in Eqs. (13)
and (15) as a form of MoE. Instead of mixing the probability distribution of all experts weighted
with the gating model, we use the predictions of each expert as separate, uncorrelated random vari-
ables with normal distributions. As such, the MoE behaves as the weighted sum of all the random
variables. Since all the mapping and latent dynamics model predictions are uncorrelated and their
covariance matrices are diagonal, our MoE output prediction becomes:

Ymodel =
∑
j∈E

P (j)Yj ∼
∑
j∈E

P (j)N (µj , σ
2
j ) ∼ N

∑
j∈E

P (j)µj ,
∑
j∈E

P (j)2σ2j

 , (20)

where P (j) is the probability of assigning the input to the j-th expert and Yj is the prediction given
by the j-th expert.

The above choice for our model provides robustness to predictions far from the known train-
ing points and near turning points of the trajectories, where big changes of position and direction
in the latent space happen. To map new observations into latent variables we average the latent
representation of the nearest training points to the new observations 1.

4. Experiments

For evaluation we employ a physics simulation of inextensible textiles Coltraro et al. (2022) for
which the authors gave us access to the dataset described in Amadio et al. (2021). The dataset
contains data from swinging a square cloth garment grabbed and manipulated from the two upper
corners. The simulation is performed by applying forces to this two points in a pattern that resembles
a butterfly shape, performing a combination of diagonal and vertical movements, with diagonal
movements at 30, 60, 90 and 120 degrees of inclination of the applied forces with respect to the
horizontal plane. The greater the degree of inclination of the forces, the greater the variability of the
dataset, and therefore the greater need for more training for the models. We followed the procedure
in Sec.3.3 and solved Eq. (18) using ADAM optimizer Kingma and Ba (2017).

1. A further and more detailed development can be found in Xu Zheng (2021) in section 3.2.
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To evaluate our model performance, we measure the accuracy of the observable space prediction
with the relative error along one complete trajectory (or some subsequence of the trajectory):

ϵk = 100 ·
N∑
t=1

∥ykt − y∗kt ∥
∥ykt ∥

, (21)

where the k superscript indicates the k-th test trajectory, yt represents the observation at time t and
y∗t is our model prediction. This prediction is obtained by mapping from the latent trajectory x∗

using our mapping model, and the latent trajectory is obtained by compounding the predictions of
the latent dynamical model.

To avoid the bias of the model to just a few experts and improve the computation time, we
set a maximum size of each expert to Nmax. As the training time and the evaluation time for every
single Gaussian expert grows cubically with the number of points assigned, our Mixture of CGPDM
(MoCGPDM) will have better computational complexity than CGPDM Amadio et al. (2021) as the
complexity of one expert only depends on a constant Nmax cubically and linearly with the number
of experts – that contains Nmax points each at most. Nevertheless, the training time will still be
cubical due to the complexity that the Gibbs sampling carries with it, involving the computation of
a new likelihood for each one of the possible designated experts for each training points2.
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Figure 1: On the left side, we show the time needed to perform one optimization training loop as a
function of the number of data points used for training. We compare the time needed to
make one training step with CGPDM against the time that it takes with our MoCGPDM
method. On the right side, we show the average time needed to perform one prediction
step by the MoCGPDM compared to CGPDM as a function of the training dataset size.

As we can see in Fig.1 the training of MoCGPDM grows at a slower rate than CGPDM. In
addition, the prediction time for MoCGPDM grows linearly – as an increase of the number of points
will only affect to the number of experts involved– compared to cubical growth for CGPDM. Also
CGPDM requires more training loops than MoCGPDM, meaning that the needed time to training
CGPDM will surpass the total time needed to train MoCGPDM. In Fig.2 we compare the results

2. A more detailed development of the computational complexity can be found in Xu Zheng (2021), Sections 4.1.3 and
4.1.4. In this case, training and executing smaller experts results in a better computational complexity.
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of MoCGPDM and CGPDM for sequences of movements exerted at various degrees and repeated
multiple times each. We can observe that MoCGPDM significantly reduces the error variance thus
showing higher stability. MoCGPDM also outperforms CGPDM in situations with high density of
trajectories (e.g. 20 similar trajectories) showing robustness to redundancy compared to CGPDM.
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Figure 2: Mean relative errors (with 95% confidence internal) obtained in different trajectory setups
with various disparate movement ranges. Warm colors correspond to the performance of
our MoCGPDM method while cold colors correspond to CGPDM.

5. Conclusions

We have proposed a data-driven model that improves significantly the prediction time of deformable
objects as shown in Fig. 1 while improving robustness and stability as shown in Fig. 2. One
interesting remark is that it relies heavily in the choosing of hyper-parameters. The maximum size
of the experts (in terms of number of data points) will affect the sensibility of the model to sparse or
dense data points, the greater the sparsity, the more data points we will need to perform better using
each of the experts.

One of the parameters that we have found meaningful to describe the performance of the trained
model is the smoothness of the optimized latent trajectories. Because they are initialized with PCA,
they tend to yield smooth trajectories at the beginning. If we later observe saw tooth trajectories they
can be easily inspected visually to change parameters or stop optimizing thus avoiding overfitting.

We have employed the proposed model to learn the dynamics of cloth garments allowing a
very good reduction of dimensions of the used dataset, from 192 to 5. The high non-linearities
of the movement of deformable objects makes the use of Gaussian processes a good choice to
perform predictions. In the future we would like to use this predictions for online control such
as employing model predictive control for robustness during manipulation of clothes and other
deformable objects.

The code developed for the MoCGPDM is publicly available in a Github repository along with
the employed dataset 3.

3. https://github.com/cexuzheng/MoCGPDM.
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