
User Modeling and User-Adapted Interaction
https://doi.org/10.1007/s11257-022-09327-w

Generating predicate suggestions based on the space of
plans: an example of planning with preferences

Gerard Canal1 · Carme Torras2 · Guillem Alenyà2

Received: 12 December 2020 / Accepted in revised form: 23 April 2022
© The Author(s) 2022

Abstract
Task planning in human–robot environments tends to be particularly complex as it
involves additional uncertainty introduced by the human user. Several plans, entailing
few or various differences, can be obtained to solve the same given task. To choose
among them, the usual least-cost plan criteria is not necessarily the best option, because
here, human constraints and preferences come into play. Knowing these user prefer-
ences is very valuable to select an appropriate plan, but the preference values are
usually hard to obtain. In this context, we propose the Space-of-Plans-based Sugges-
tions (SoPS) algorithms that can provide suggestions for some planning predicates,
which are used to define the state of the environment in a task planning problemwhere
actions modify the predicates. We denote these predicates as suggestible predicates,
of which user preferences are a particular case. The first algorithm is able to analyze
the potential effect of the unknown predicates and provide suggestions to values for
these unknown predicates that may produce better plans. The second algorithm is
able to suggest changes to already known values that potentially improve the obtained

This work has been partially supported by the ERC project Clothilde (ERC-2016-ADG-741930); by
MCIN/AEI/10.13039/501100011033 under the project CHLOE-GRAPH (PID2020-118649RB-l00); by
the European Union NextGenerationEU/PRTR under the project ROB-IN (PLEC2021-007859); and by
the CHIST-ERA project COHERENT (EPSRC EP/V062506/1). Gerard Canal has also been supported by
the Spanish Ministry of Education, Culture and Sport by the FPU15/00504 doctoral grant and by the
Royal Academy of Engineering and the Office of the Chief Science Adviser for National Security under
the UK Intelligence Community Postdoctoral Research Fellowship programme.

B Gerard Canal
gerard.canal@kcl.ac.uk; gcanal@iri.upc.edu

Carme Torras
torras@iri.upc.edu

Guillem Alenyà
galenya@iri.upc.edu

1 Department of Informatics, King’s College London, London, United Kingdom

2 Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona,
Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11257-022-09327-w&domain=pdf
http://orcid.org/0000-0002-6718-1198

G. Canal et al.

reward. The proposed approach utilizes a Space of Plans Tree structure to represent a
subset of the space of plans. The tree is traversed to find the predicates and the values
that would most increase the reward, and output them as a suggestion to the user.
Our evaluation in three preference-based assistive robotics domains shows how the
proposed algorithms can improve task performance by suggesting the most effective
predicate values first.

Keywords Planning suggestions · Preference-based planning · Space of plans tree
search

1 Introduction

Artificial intelligenceplanninghas proveduseful to solvedifferent problems in robotics
and computer science. Planning systems were traditionally handled by experts in the
field, but this trend is now changing as technology evolves and gets closer to lay users.
Therefore, as robots and complex decision-making systems enter our homes, a need for
communication and explanation of the reasons behind the system’s decisions arises.

Suggestions are an example of this kind of communication. A non-expert user may
not know all the possible configurations the systemmay have. Hence, the system itself
may suggest potential configurations that could improve its performance, taking into
account the configuration values that have already been set (user-provided).

Such suggestions can also be used for explanation purposes. In this case, the system
could use suggestions that improve the performance to explain why the performance
of the system was not good. Or it can use such elements to show why a specific
configuration is better than a different one, which would perform worse.

In this paper,we analyze the case of providing suggestions for predicates in planning
domains. A predicate is an assertion that may be true or false depending on the values
of the variables that occur in it. In a planning problem, predicates are used to describe
the domain, and the values assigned to them define the state at any given moment. This
state can then be modified by applying actions, which have effects that modify the
values of these predicates of the state. We define suggestions as predicate assignments
that improve the plan’s reward, such as preferences over the task execution. As an
example, such predicates can be the desired speed in a robotics task. We propose
two algorithms capable of providing suggestions. The first one finds out values for
unassigned predicates that produce better plans; the second one proposes reasonable
changes to already assigned predicates by suggesting values close to the current ones.
To do so, our algorithms process a portion of the Space of Plans in search of the best
assignment of values to predicates. A Space of Plans is a set of possible plans that
bring the system from a start state to a goal state. This subset of the Space of Plans is
expressed as a Space of Plans Tree structure that provides a compact representation
very convenient for searching and traversing. Then, we demonstrate the ability of
the proposed methods to improve the reward obtained by the planner, even when
low-performance configurations are initially provided. The methods are evaluated in
three simulated robotic-assistive tasks, namely shoe-fitting, user feeding and assisted
dressing, where the suggestions relate to user preferences that the planner uses to guide

123

Generating predicate suggestions…

the search. To perform an extensive evaluation, user-specified preference values have
also been simulated.

These kinds of robot-assistive tasks are particularly complex as they usually involve
close contact with human users. Therefore, there is an inherent danger for the user, and
planning the task beforehand permits coping with unexpected behaviors (Canal et al.
2018). Allowing the robot to modify its behavior to adapt to the user can improve the
performance of the task when assisting a user (Gao et al. 2015; Andriella et al. 2020;
Rossi et al. 2017). Preferences have been used to modify the robot behavior through
planning (Canal et al. 2019a), and their usefulness has been evaluated by Canal et al.
(2021). However, the acquisition of user preferences has proven difficult. Themethods
we propose in this paper can amend this shortcoming by initializing the user model
based on a few preferences and then improving this model by employing the suggested
values.

The paper is organized as follows. Section 2 reviews related work in the field,
and Sect. 3 analyzes further the motivation behind this work. In Sect. 4 the proposed
algorithms are described, while Sect. 5 evaluates their performance. Finally, Sect. 6
provides conclusions of this work and envisaged further research.

2 Related work

Our proposed work is closely related to and inspired by different topics. We build on
top of the concept of planning “excuses” (Göbelbecker et al. 2010), which are defined
as the changes needed in the state to find a solution when no plan could be found.
This concept was explored by Martínez et al. (2017) to guide a human teacher when
the plan could not be solved. These excuses were also used to find alternative models
to explain unexpected states. Similarly, we seek the predicates that can improve the
planning performance and provide them as suggestions to the user.We do so by finding
the differences between planning states that may cause the largest differences in the
plan’s reward.

Therefore, our proposed methods are related to the concept of human-aware task
planning and human-in-the-loop planning, where the planner takes into account both
the human and the robot’s actions and abilities to improve task performance. Alami
et al. (2006) proposed a scheme to integrate humans in the robot control architecture.
In it, the abilities and constraints from the users, their needs and their preferences are
taken into account in the planning process. The preferences are defined over states,
resulting in some states being preferred to others, or as preferred and disliked action
sequences along with costs. The authors do not specify how are such preferences rep-
resented. In contrast, our approach specifies concrete preference values that are used
by the planner to adapt the action selection to them based on the expected produced
reward. Cirillo et al. (2010) proposed a planner able to take into account forecasted
human actions that constrain the planner allocation of tasks to the robot, but also create
new robot goals. Other examples include the Hierarchical Agent-based Task Planner
(HATP) (De Silva et al. 2015), where agents are taken into account as first-class entities
and user-defined social rules describe the acceptable behaviors of the agents, allowing
the creation of plans that take the user safety and comfort into consideration. Fiore et al.

123

G. Canal et al.

(2016) presented a system designed to consider human preferences in human–robot
collaboration tasks. In it, the robot can assume different roles and plan the actions for
the human, to which it suggests which actions to perform, and also acts as a human
assistant. The system can compute a plan for the robot while taking the human into
account, but preferences and adaptation are not considered. Chakraborti et al. (2018)
show how to project robot intentions during plan executions to assist human–robot
interactions using an augmented reality system. The proposed system can reduce the
ambiguity over possible plans during task execution and plan generation. In this sys-
tem, the robot can combine the plan cost with the ability to reveal intentions to improve
interaction and task performance. Their goal is to reduce ambiguity over a plan. In
contrast, we aim to provide suggestions of preference values that would improve plan
performance. Theworks abovemainly assume that the values of the user preferences, if
present, are known. Contrarily, in this workwe use the concept of suggestions to assess
how the task performance could be improved when there are unassigned predicates,
such as preferences, which may be unknown. Users are fully modeled by Umbrico
et al. (2020), where a user profile is built into an ontology that includes semantics for
representing the physical and cognitive capabilities of a person. The proposed system
is able to adapt the robot behavior to the user profile in socially assistive robotics sce-
narios. This work describes a wide framework composed of several modules including
planning for action selection based on user need. Conversely, our proposal focuses on
the planning part and deals with specific tasks where the preferences help to select
how is the task performed, and in discovering what preference values improve the
task’s performance.

Our algorithms are based on analyzing the Space of Plans in search of general
predicate suggestions, that is, predicates that are missing but that knowing themwould
help produce better plans. In this paper, we use the example of preference predicates in
assistive scenarios. This could also be seen as a preference elicitation process, where
we obtain preference suggestions based on already known values. Das et al. (2019)
propose a method for eliciting preferences from a human expert while planning. Their
approach uses hierarchical task network (HTN) planning to identify when and where
the expert guidance will be useful and seek expert preferences to improve the planner
decisions. In our case, we similarly suggest user preferences based on the planner
reward function without the need of recurring to the human expert during the planning
process. However, in our approach, the expert is the one generating the reward function
that uses the preferences. Similar to our approach, Kim et al. (2018) perform a search
in the space of possible plans to learn to infer final plans in human team planning. They
the cost of plan candidates as the reinforcement learning signal, while we perform a
search on the space of plans itself to find suggestions to planning predicate values
that improve plan’s reward. Another example of the use of plan trees is the one by
Shmaryahu et al. (2016), where those are employed for network penetration testing.

The use of preferences to guide search has been investigated by other authors too.
Domshlak et al. (2011) review the use of preferences in AI. In the case of planning,
PDDL3 (Gerevini and Long 2005) explicitly integrated preferences in the language.
They are represented as conditions that do not need to be true to achieve a goal or
precondition, but achieving them is desirable. In contrast, we do not use preferences
as conditions but we see them as predicates that guide the search by modifying the

123

Generating predicate suggestions…

associated costs and rewards, allowing the use of general purpose planners. Baier
and McIlraith review preference-based planning (PBP) in Baier and McIlraith (2008),
where preferences are used to distinguish plans by quality and argue for the need for
reasoning over preferences when generating a plan, obtaining the most preferred plan.
In this case, preferences are specified by an ordering function over the space of plans,
where some plans are preferred to others. In our case, preferences are explicit and
modify the plan, representing preferences over the task rather than on the plan. We
do not use the concept of preferred plan, but the one of preferences that affect the
resulting plan. Bidoux et al. (2019) use the PDDL3 language to model preferences
over the plans, like in PBP. They use multi-attribute utility criteria (MAUT) to then
plan with these preferences using a multiple criteria decision analysis (MCDA). More
examples of uses of preferences include another method proposed by Sohrabi et al.
(2011),which generates preferred explanations for the observed behavior of the system
using planning. A survey on preference-based reinforcement learning by Wirth et al.
(2017) reviews works using preference-based reward functions obtained from experts.
Monte Carlo Tree Search algorithm using preferences to guide search can be found in
Joppen et al. (2018). In this case, an ordinal MDP is solved where the reward function
is defined on a qualitative scale, where states can only be compared preference-wise
(i.e., one state is preferred to another). Therefore, here the preferences are over states
and allow them to be compared, similarly to the concept of preferences in PBP.Another
reinforcement learning algorithm that benefits from the use of preferences is presented
by Pinsler et al. (2018). Their method learns the reward functions from the robot
and human perspectives (user preferences). Preference feedback is used instead of
absolute feedback, where preferences are stated over the space of outcomes. Besides
planning, preferences have been also used for different applications such as themeeting
scheduling problem. An example of this problem can be found in BenHassine and
Ho (2007), where a multi-agent approach is used to solve the meeting scheduling
with conflicting preferences by allowing the relaxation of some of these preferences.
Preferences are represented as soft constraints, in the form of weights reporting the
degree of preference of having a meeting on a specific date. Preferences are also used
to guide search in BDI agents by Visser et al. (2016). In this case, the preferences
are specified in terms of properties of goals and resource usage, allowing users to
choose between different plans and determine the order in which to pursue different
goals. Preferences specify values that must appear in the plan. In the case of this
work, preferences affect the types of actions that are selected by the planner, but the
planner does not compute the values of such variables. Behnke et al. (2017) present
a mixed-initiative planning approach where the interaction between the user and the
planner as a process to determine user preferences toward the plan. The proposed idea
is to use the interaction to elicit the preferences of the user while planning. In our
case, we intend to find the best values to those user preferences through exploring the
space of plans. However, using preference values may also be seen as mixed-initiative
planning where the human input is used by the planner to compute the best plan.
In robotics, (Jiang and Arkin 2015) present mixed-initiative human–robot interaction
(MI-HRI) as a collaboration strategy between humans and robots. In it, they achieve
a common goal by exploiting their complementary capabilities. Our approach does
not actively use the human but instead relies on offline data of computed plans to find

123

G. Canal et al.

the best suggestions to preferences. Similar to our idea of suggestions, (Chun et al.
2003) propose amethod for preference estimation. In them, they find optimal solutions
to the meeting scheduling problem with unknown preferences. Their method works
with analyzing responses given during negotiation to estimate the preference values,
which are values that must appear in the decision outcome, such as meeting times.
Our proposal also looks into the estimation of preference values, but focusing on the
impact of the preferences in the plan performance.

Finally, we have also found inspiration from the Explainable AI (XAI) and Explain-
able AI Planning (XAIP) communities. In XAIP (Fox et al. 2017), the goal is to present
the user with explanatory answers to questions regarding action selection, action alter-
nation, efficiency or affordability of the proposed plans. One way of answering such
questions is by proposing alternative plans, by replanning from a user-provided state.
Some works have tackled the explainability problem by analyzing the space of possi-
ble plans, such as Eifler et al. (2019) who look into explaining the space of possible
plans by using plan properties. These properties are Boolean functions that capture
the aspects of the plan the user cares about. This concept is closely related to that of
user preferences, and we find possible extensions of the proposed work to XAIP. Our
Space of Plans representation may be used to analyze the space of possible plans and
provide for quick comparisons between plans (known as contrastive explanations).
Our methods look into differences between plans to find those with maximal reward,
but this could also be applied to compare plans and find the differences that explain the
action selection to the user. We believe our algorithms can help to provide information
on why some plans may have a better performance than others, thus contributing to
plan explanations and avoiding failures.

Even though there has been a lot of research involving preferences, we believe our
proposed method is novel in the use of suggestions for improving task performance
for planning and decision making, and the use of preferences is a good example of it.

3 Motivation

There are not many examples in classical planning where the initial state can be
modified at will before starting the task. In classical planning, the planner tries to
modify the state using the available actions and operators. However, some elements
of the task may be modified when facing the real world. A clear example of it may
be that of robotics and, more specifically, collaborative and assistive robotics where
humans take part in the planning process.

In such a context where human help can be used, the system or robot can benefit
from human interactions and provide information relevant to the task. Therefore, given
a state that is not ideal, it can suggest changes or additions to the initial state that may
lead to a better performance in the task. These suggestions could be obtained either by
questioning the user, asking for a change, or just guessing the state of some unknown
predicate, knowing that such information may improve the execution performance.

A clear example, which we will use to illustrate the methods of the paper, would
be one of preference and user limitations in an assistive robotics task.

123

Generating predicate suggestions…

3.1 Planning with preferences and limitations

First, we want to ground the definition of preference in the case of our planning
domains. Preferences in planning can be defined as soft goals and conditions as in
PDDL3 (Gerevini and Long 2005), or can be related to plan ordering (Baier and
McIlraith 2008).

Definition 1 A task planning problem � = 〈S, A, T , s0, g〉 is defined by the set of
discrete states S, the set A of actions that modify the state, the state transition function
T : S × A → S, the initial state s0 ∈ S and the goal state g ∈ S. A solution to this
problem is an action sequence starting at s0 that modifies the state using the actions
in A to achieve the goal state g. Each state s ∈ S is a subset of a set of predicates P ,
and each action ai ∈ A; ai = 〈pai , eai 〉 is a pair composed of the preconditions pai ,
the predicates that must be true for the action to be applicable, and the effects eai , the
predicates that reflect the state changes produced by the execution of the action.

State predicates not appearing in the effects of an action remain unchanged by
the application of that action. This is known as the STRIPS assumption to avoid the
representational frame problem.

For more generality, we will denote the preference predicates as suggestible predi-
cates. We define a suggestible predicate or preference as a predicate that is assigned a
certain value, appears alongwith a certain action in the plan and produces some reward
when it is present in the state. Such suggestible predicates do not affect the possibility
to reach the goal but affect how the goal is reached and which actions are selected.
They are used to guide the search and, instead of being conditions that must hold or
identifying a plan as most preferred, they are predicates that may or may not hold and
as a consequence produce different rewards or costs. Our notion of preferences is the
one defined in Canal et al. (2017), where the preferences are used either to guide the
action selection process or to modify how a specific action is executed (as a parameter
to the action). We will use the example of the robot’s movement speed preference,
which may take the values of quick, slow or medium. Those three values are the
domain of the predicate. The planning domain may have some reward or penalization
when using some specific actions. For instance, using a quick movement action when
the preference is set to slow would penalize the final reward. However, the planner
may still choose that action to complete the task, and the predicate is not required
by any of the actions. Thus, speed is a suggestible predicate. Other preferences may
include but are not limited to robot proxemics and verbosity. Appendix A1 shows
further examples of the link between preferences, actions, and the obtained reward.

Definition 2 A suggestible predicate p ∈ P is a predicate such that there is no action
ai ∈ A in which p ∈ eai or p ∈ pai and p /∈ g, but it can be that p appears in R,
where R is a reward or metric function to be maximized.

The definition of preferences as suggestible predicates allows them to be used by
the planner to guide the search, without constraining or forcing the planner to choose
those actions that comply with the preferences. This also allows the use of almost any
available planner, as preferences are not represented as soft constraints. This means

123

G. Canal et al.

that the planner can use actions that may help achieve the goal even when those do not
satisfy the preferences, for instance in cases where those that satisfy them may not be
applicable or helpful to reach the goal.

4 Providing suggestions

In this section, we propose the Space of Plans Suggestions (SoPS) algorithm to provide
suggestions to a set of predicates Q ⊆ S.

Definition 3 A suggestion q = {(p, v) | p ∈ Q, v ∈ Domain(p)} is a set of value
assignments to predicates such that the reward increases when planning using them.

In our example, a suggestion may be q = {(speed, quick)}.
Definition 4 A Space of Plans is a set of valid action sequences that bring the system
from an initial state s0 to a goal state g.

The algorithm analyses a subset of the Space of Plans to provide the suggestions.
Its goal is to determine which predicates have more impact on the reward, to suggest
those first. Therefore, it needs as an input a subset of the Space of Plans corresponding
to the plans obtained by combining the different suggestible predicates and obtaining
a plan with them, along with their associated plan reward. This subset of the Space
of Plans is compiled as a tree for efficient suggestion search. In the case of the speed
preference, the Space of Plans would include all the plans achievable with all the
combinations of speed values and the values for the rest of suggestible predicates.

4.1 The space of plans tree

Wecompile the subset of the Space of Plans into a tree data structurewhere each branch
is a complete plan, similar to the policy trees used in contingent planning (Hoffmann
andBrafman 2005). Therefore, all the plans with a common prefix or starting sequence
of actions begin at the root node and branch when the plans differ. Accordingly, all
the leaves of the tree are actions that produce a goal state.

Each node of the tree keeps a list with the set of suggestible predicates that produced
the plan, along with the plan’s reward. This information is kept at each node for all the
plans that reach the node. Moreover, the maximum reachable reward is kept at each
node for efficient retrieval from the node’s branch. This ensures by construction that
the reward of all the children nodes is taken into account. An example of a Space of
Plans Tree is shown in Fig. 1. As it can be observed, each node stores the matrix of
predicates for all the plans that go through it, and the index to the maximum reward
child. For instance, for the a1 node, maxRa1 = max(maxRa4 ,maxRa5 ,maxRa6).

This representation provides a compact and efficient data structure on which we
can perform the search.

In order to populate the tree, the subset of the Space of Plans is generated by
executing the planner with changing conditions in the problem file. Therefore, for all
the combinations of suggestible predicates, we generate one or more plans (depending

123

Generating predicate suggestions…

Fig. 1 Example of a Space of Plans Tree. Each node ai represents an action of the tree. Nodes labeled as
goal are leaves whose branch is a complete plan to the goal

on whether stochastic planners are being used). In the speed predicate example, we
would obtain a plan setting the predicate to all of its possible values (quick, slow,
and medium), along with the combinations for the rest of the suggestible predicates.
Then, the list of plans is traversed to build the tree, adding new action nodes when new
branches are found. When the action node already exists in the tree, the suggestible
predicates of the plan along with their associated rewards are added to the node. The
computation subset of the Space of Plans may be computationally expensive and is
computed offline as a preprocessing step.We only consider a subset of the whole space
due to ease make its computation more feasible.

4.2 Max-reward traversal

The SoPS algorithm (see Algorithm 1) performs a maximum reward traversal of the
Space of Plans Tree to obtain a set of suggestions to unknown suggestible predicates
that improve the plan’s reward. For this reason, the alreadyknownpredicates belonging
to the suggestible set Q are fixed along the tree. To this end, all the branches belonging
to plans generated with predicates whose value is different to the fixed one are pruned,
and their rewards are discarded, keeping only the branches belonging to unknown
predicates.

To start, the algorithm searches for the promising nodes in the tree (see the Get-
PromisingNodes procedure). A promising node is a node of the tree such that it is a
child with a maximum reachable reward.

123

G. Canal et al.

Algorithm 1: SoPS algorithm
Input: Space of Plans Tree t
Output: Set of suggestions Q
1 procedure GetSuggestions(t)
2 D := GetPromisingNodes(t);
3 m := [];
4 forall di ∈ D do
5 m.add(computeMetric(di));
6 end
7 return ComputeNodeSuggestion(Dmax(m));
8 procedure GetPromisingNodes(t)
9 children := getMaxRewardChildren(t) ; // Children with max. reward

10 d := [] ;
11 forall cmax ∈ children do
12 forall c ∈ getChildren(t) s.t. c �= cmax do
13 c_diffs := computeDiffs(cmax , c);
14 if not empty(c_diffs) then
15 d.add(c_diffs);
16 end
17 end
18 d.join(GetPromisingNodes(cmax));
19 end
20 return d
21 procedure ComputeNodeSuggestion(d)
22 u = sum_cols(d) ; // Sums the columns
23 return { j | u j = max(u)};

Definition 5 Apromising nodem is a node in the Space of Plans Tree such thatm ∈ Cn

and �ai ∈ Cn, ai .MaxR ≥ m.MaxR, where Cn is the set of children of the node n
and ai .MaxR is the reward associated to a node ai .

For each of those nodes, we compute a Boolean difference matrix Dn (line 13) such
that

Dn
i, j = (p j,m �= p j,i) ∀i ∈ Cn \ {m}, j ∈ Q, (1)

wherem denotes the childwithmaximumachievable reward, Q is the set of suggestible
predicates. With Dn we can compute a set of candidate suggestions for each node n
(see GetSuggestions procedure). To do so, we flatten the matrix into a vector d
where dnj = ∑

i D
n
i, j . With d, we can obtain the set of candidate suggestions u (see

ComputeNodeSuggestion procedure) as

u = arg max
j

d j . (2)

Therefore, the candidate suggestions are the predicates belonging to the maximal
child whose values are more different in comparison with its siblings. Those are the
predicates that have more impact on the difference of reward, and the ones that make
this reward maximal.

123

Generating predicate suggestions…

Along with the candidate suggestion, a significance metric is computed for all the
promising nodes (line 5). This metric is an indicator of how different is the maximum
reward child of the node in contrast with the other children. We propose the follow-
ing metric f , which computes the average reward difference between the child with
maximum reward m and the rest:

f (n) =
∑

i rmax − ri
N − 1

= rmax −
∑

{i∈C|i �=m} ri
N − 1

, (3)

where rmax is the maximum reward of all the children of the node n, and ri are the
other child rewards.

The rationale behind the metric in Eq. (3) is that child plans that have a greater aver-
age reward difference are better candidates at showing which suggestible predicates
can make more difference. Subsequently, the output suggestions are the candidate
suggestions of the node with the highest metric. Note that in case of a tie in Eq. (2),
more than one predicate will be suggested. Moreover, along with the predicate that
makes the difference, the algorithm provides an assignment to each of the suggested
predicates, which are the values assigned to the predicates in the selected node.

The proposed SoPS algorithm (Algorithm 1) can be executed iteratively in order
to obtain new suggestions until all the suggestible set has been determined. To do
so, the values of the known suggestible predicates1 can be fixed beforehand. More
specifically, the algorithm goes over the tree pruning the branches or discarding those
that do not satisfy the fixed predicates. The fixed predicates are then also taken into
account in Eq. (1), where the fixed predicates are ignored in the computation of the
differences matrix.

4.3 Suggesting changes to known predicates

Onceweare able to provide suggestions to unknownpredicates,we cangoa step further
and propose changes to some of the fixed (already defined) suggestible predicates. This
would provide further improvement of the plan performance, at the cost of slightly
modifying the user-defined values.

However, the system shall not completely ignore the defined predicates, as they
may be given a specific value for a reason. Therefore, we propose to only modify
the predicates when the received suggestion’s value is close to the defined value. The
notion of closeness can be left to the user to be defined. In the case of an ordinal set
of values for a predicate, this closeness can just be the arithmetic difference and a
defined value of maximum acceptable difference for a change. In the case of the speed
preference example, we could define the distance between quick and medium, and
between medium and slow to be one unit, and the distance from slow to quick to be
two units. Thus, the quick value would be closer to the medium value than to the slow
one.

1 Predicates can be known because they are provided to the algorithm or because they were obtained as
suggestions in a previous execution.

123

G. Canal et al.

Algorithm 2: SoPS-change algorithm
Input: Space of Plans Tree t

Predefined set D
Output: Set of suggestions allowing changes Q
1 Q = [];
2 q := GetSuggestions(t);
3 forall qi ∈ q do
4 if predicate(qi) ∈ D then
5 if (value(qi) �= value(Dqi)) ∧ (sim(value(qi), value(Dqi)) ≤ T) then
6 Q.add(qi);
7 D.remove(predicate(qi));
8 else
9 t.fixPredicate(Dqi); // Prunes the branches not satisfying Dqi

10 return SoPS-change(t , D); // Recursive call

11 else
12 Q.add(qi);

13 return Q

Definition 6 A change c is a suggestion such that c = {(p, v) | p ∈ Q, v, v′ ∈
Domain(p), (p, v′) ∈ D, sim(v, v′) ≤ T }, where D is the set of predefined predi-
cates, sim is a similarity function, and T a user-defined threshold.

The proposed method for changes is the following. First, we obtain the suggestions
from the whole Space of Plans Tree, ignoring the predefined predicates. If the sugges-
tions are new, we add them to the set. Otherwise, the predefined predicate will take
the suggested value if the similarity between the values is close enough, as defined
above. Algorithm 2 shows the variation of the method including changes.

5 Experimental evaluation

To evaluate the proposed algorithms, we have designed three domains in which pref-
erences can play an important role in the decision process and modify the plan to
be executed. We have focused on the evaluation of the proposed algorithm given a
preference-based reward function. The domains relate to assistive robotics scenarios,
consisting of assistive feeding, shoe-fitting and assisted jacket-dressing.

The domains have beenwritten in theRDDL language (Sanner 2010). This language
allows for richer reward function definitions, suitable for the integration of suggestible
predicates as defined above. See Appendix A1 for more details on the reward function
definition.As a plan solver,wehaveusedPROST (Keller andEyerich 2012) to compute
the Space of Plans and to execute all the experiments2. The experiments have been
run using the ROSPlan framework with the RDDL extension (Canal et al. 2019b).

2 The source code of the proposed algorithms can be found in https://github.com/gerardcanal/SoPS.

123

https://github.com/gerardcanal/SoPS

Generating predicate suggestions…

5.1 Definition of the domains and preferences

Next, we describe the implemented domains and preference options. The domains
have been defined such that there are many equivalent actions and different paths
to the same goal. For instance, there may be interchangeable actions that produce
the same effects but have different executions. Some preferences are used to aid the
selection of these alternative actions, while others such as the speed are used as an
action parameter. The preferences and suggestible predicates define the final obtained
reward and thus guide the planner toward choosing the actions that comply with them.
Although out of the scope of this paper, we show in the supplementary videos3 the
implementation in a real robot of some of the actions corresponding to the different
preferences in the three domains. A user study using the domains described in this
paper that evaluates the usefulness of the proposed preference model and the ability
of the users to recognize the preferences can be found in (Canal et al. 2021).

5.1.1 Feeding task

The feeding task completes when the user has been fed (at least N spoonfuls com-
pleted). The actions available in this domain are listed in Appendix A2.

The preferences involved in this task are head mobility, head proxemics (closeness
of the robot to the user), movement speed, applied force, feeding cadence, and robot
verbosity.

5.1.2 Shoe-fitting task

The shoe-fitting task is completed when both feet have a fitted shoe and the robot’s
gripper is empty. The actions in the shoe-fitting domain are described in Appendix A3.

The preferences involved in this task are foot mobility (for each foot), leg mobility
(for each leg), speed, applied force, verbosity and requests (defines whether requests
to the user should be done or not).

5.1.3 Jacket-dressing task

The jacket-dressing task is completed when both sleeves have been fitted until the
shoulder and the robot’s grippers are empty. Appendix A4 lists all the actions available
in this domain.

The preferences involved in this task are armmobility (for each arm), speed, applied
force, verbosity, and the torso proxemics (how close should the robot get to the user’s
torso).

5.2 Effect of the SoPS algorithm

To demonstrate the effectiveness of the SoPS algorithm (Algorithm 1), we have com-
pared the obtained suggestions against random preference value assignments, which

3 Videos can be found in http://www.iri.upc.edu/groups/perception/preferenceSuggestionsExamples.

123

http://www.iri.upc.edu/groups/perception/preferenceSuggestionsExamples

G. Canal et al.

represent user-provided values. Note that in a real robot scenario the user would
provide these preference values. However, in the experiment of this section, these
user-provided (fixed) values will be obtained from previous executions of the algo-
rithm or set at random. To do so, we run the algorithm with random sets of fixed
preference predicates, starting with sets of size 0 (without any known predicates) and
adding one predicate each time until all the suggestible predicates are known. Thus,
the algorithm returns suggestions to the yet unassigned suggestible predicates. Each
obtained suggestion is then fixed (and assumed known), and new suggestions are fur-
ther requested until all the suggestible predicates have been assigned. In this case, the
predicates known beforehand (the random sample) were fixed in the Space of Plans
Tree and the affected branches were pruned out. Therefore, those predicates are not
taken into account by the algorithm.

For each step (new suggestion obtained), we have created 50 sets of random samples
of predicates. Afterward, the SoPS algorithm was used to obtain suggestions for the
unknown predicates, getting one suggestion at each step until the total number of
suggestible predicates was reached.

After computing each suggestion, the planner was used to obtain a new plan, and
its final reward was stored. Given that the PROST planner uses stochastic methods
and its solution is not deterministic, each plan was computed 20 times. This value was
experimentally defined as the number of executions that provided a sufficient number
of plans to capture the variability of the obtainable plans for each configuration of
the presented scenarios. The results shown in this section are the average of all the
1000 executions (including both the 20 repeated planning attempts and the 50 random
samples).

Figure 2 shows the results obtained using the explained procedure for the feeding
domain. In this domain, we consider 6 possible preferences or predicates (detailed
in Sect. 5.1.1). The SoPS line (in blue) shows the mean reward that can be obtained
when no preferences are known (0 known predicates), and the reward that can be
obtained when the most promising preferences are determined (up to 6). Note that
the videos introduced above show several examples of robot execution with different
partial assignments of the preferences.

As it can be observed, the use of the SoPS algorithm highly improves the obtainable
reward in all the cases. This is because, even when random fixed predicates don’t
give much reward, the algorithm finds suggestions for the other predicates that can
improve the total reward. The fact that the initial reward (first point in every line)
increases as more predicates are known can be explained because having an extra
predicate increments the initial reward (as the suggestible predicates provide extra
reward). Note that, as 6 predicates are the maximum, SoPS cannot be applied in the
“random 6” case and thus only the mean reward is depicted.

A similar result is can be seen for the jacket-dressing domain in Fig. 3. Interestingly,
a plateau is found between the second and third predicates for the SoPS (blue line).
This is a result of two predicates that were suggested together due to being tightly
coupled predicates that provide the reward when they are together. In the evaluation,
we keep only one of the suggested predicates at each step for easier comparison.
Therefore, when obtaining the third predicate the algorithm provides two suggestions.
After fixing the first one (predicate 3), the algorithm returns the second suggestion

123

Generating predicate suggestions…

Fig. 2 Results with different setups for the feeding domain. Observe how the suggestions provide better
rewards in all the cases, even when the system starts with random fixed values for the suggestible predicates

Fig. 3 Results with different setups for the jacket-dressing domain. In this case, there is some correlation
between some predicates, but the algorithm still produces an improved reward

123

G. Canal et al.

Fig. 4 Results with different setups for the shoe-fitting domain. This domain has some predicates that do
not improve the reward, and those are suggested at the end when the maximum reward has been obtained

for predicate 4 (which was already suggested in the previous iteration). Therefore, the
reward of both predicates is obtained when the second one is suggested.

Finally, Fig. 4 shows the same behavior regarding the random pre-assignment
of predicates and the algorithm, but plateaus can be observed at the end of the
assignments. This is due to the superfluous predicates present in the domain. These
superfluous predicates do not increase the reward. Therefore, those are obtained as a
suggestion once the useful predicates have been already suggested. A more detailed
analysis of the superfluous predicates can be found in Sect. 5.4.

5.3 Improvements by allowing changes with SoPS-change

A new experiment has been performed to analyze the effects of allowing changes
in fixed suggestible predicates with the SoPS-change algorithm. These changes are
suggestions to already assigned predicates keeping into account the current value. The
SoPS-change experiment will be performed, as in the previous section, generating
random assignments for the value of the preferences. However, this time changes will
be allowed if the suggested predicate was already assigned. In general, any change
can be allowed by specifying enough distance as a parameter. Given that our domains
include physical scenarios, we believe big changes should not be allowed. Therefore,
for this experiment suggested changes are only accepted when the suggestion obtained
is at distance one from the assigned value, so bigger changes are not allowed. In case
there is a suggested change that cannot be accepted, we fix that preference to the
already assigned value and continue with the following suggestions.

Figure 5 shows the maximum obtainable reward for the feeding case when pref-
erence values are fixed, starting with N preassigned predicates (horizontal axis) and

123

Generating predicate suggestions…

Fig. 5 Results for the feeding domain allowing changes. As the number of fixed predicates increases, the
reward decreases (as they may not be optimal). Suggesting changes close to the fixed predicates allows to
improve the obtained reward

using the suggested predicates from the algorithms to assign the rest. The figure com-
pares the changes approach to the standard SoPS version. In both cases, the reward
values are obtained from the tree, and they represent the maximum obtainable reward
as stated in the Space of Plans Tree. Therefore, no new plans are computed this time.
Observe that, as in the previous section, the higher the number of random fixed pred-
icates the lower the reward is. But, when changes are allowed, the reward decay is
much slower. Notice this happens even in a conservative approach in which only small
changes are allowed (so when the suggestion is highly different from the fixed pred-
icate, the suggestion is ignored.) The same behavior can be observed for the other
domains, in Figs. 7 and 6.

5.4 Finding superfluous suggestions

The results obtained from the shoe-fitting domain in Fig. 4 show that predicates that
do not provide much reward get suggested at the end (as the most promising ones are
suggested earlier). To confirm this and analyze its implications, we performed another
experiment where more suggestible predicates that do not help to increase the reward
were added. We will refer to these suggestible predicates as superfluous predicates.

To this end, we have run the same experimental setup of Sect. 5.2 with slightly
modified domains. In them, we added two predicates which are not taken into account
in the reward function but allow them to be suggested, being added to the Space of
Plans Tree. Later we have executed the SoPS algorithm in them, the results of which
are shown in Fig. 8.

123

G. Canal et al.

Fig. 6 Results for the shoe-fitting domain allowing changes. This domain shows a similar trend, successfully
improving the obtained reward with the suggested changes

Fig. 7 Results for the jacket-dressing domain allowing changes. Change suggestions to the fixed values
with a distance of one are enough to improve the final reward

As it can be seen, the reward function tends to saturate around the last predicates,
while keeping the same shape as in the previous experiment. In the case of shoe-fitting,
it is clear that there are many superfluous predicates. The feeding case also shows a
third potential superfluous or less-useful predicate, while the jacket-dressing shows
that most of the predicates are useful. Slight variations of the tails of the reward plots

123

Generating predicate suggestions…

Fig. 8 Results with the different domains including superfluous predicates. Our method is able to maximize
the reward ignoring the predicates not providing more reward, which are suggested at the end

are due to the stochasticity of the results (which are again an average of all the plan
executions).

Consequently, it can be seen that the SoPS algorithm can also be used to determine
whether there are superfluous predicates in a domain, which can be used to decrease
the size of the search space. However, it can be seen that superfluous predicates cannot
usually be detected while obtaining the suggestions, but only when all the suggestible
predicates have been obtained. Even so, the computation of all the suggestions is
efficient and quick enough to be possible to pre-compute the superfluous predicates
beforehand.

6 Discussion and conclusions

In this work, we have presented an algorithm to provide suggestions for assigning
values to predicates in planning domains. We have defined the concept of suggestible
predicates, which are those predicates that help the planner by guiding the search to
obtain more reward under some circumstances. Then, we have introduced the SoPS
algorithm that uses a Space of Plans Tree built from a pre-computed subset of the
Space of Plans. The algorithm traverses the tree to obtain suggestions for predicates
such that the final plan’s reward is maximized. A variation of this algorithm (SoPS-
change) that suggests changes to already assigned predicates has also been proposed.
These changes are considered taking into account the currently assigned value to the
predicate.

The algorithms were evaluated in three assistive robotics domains in which the
suggestible predicates are preferences of the user that define the robot’s behavior.

123

G. Canal et al.

Our results show that using the values selected by the algorithms improve more the
reward in comparison with a random simulation of user selection of the values when
computing new plans. The focus of the evaluation was on the ability of the proposed
algorithm to provide suggestions to preference values given a preference-based reward
function. Amore comprehensive evaluation could also be performed by evaluating the
preference-based reward function and taking into account feedback from users. This
is left as future work.

The proposedmethods have their drawbacks.We do not consider the Space of Plans
computation as part of the algorithms but as an offline pre-computation step. However,
the algorithms need the subset of the Space of Plans as an input, we acknowledge the
fact that obtaining such Space of Plans is not computationally cheap. We want to
emphasize that we use a subset of it due to the intractability of obtaining the whole
space, and the more suggestible predicates the more costly this becomes, which is a
limiting factor. This could be partially overcome by startingwith a smaller subset of the
space and integrating new plans as they are computed during the system’s execution.
This would imply that the suggestions might not be the best ones with an incomplete
Space of Plans but could be improved over time.

Another limitation is the need for a preference-based reward function. We consider
this as an input to the system and created by experts, but the quality of the suggestions
will depend on how good is the reward function in terms of consistency between
the effect of the preferences and the related actions. If the reward function is not
appropriate, the suggestions will still maximize the reward of the system but may not
be consistent with what users might expect. Some approaches that adapt the cost or
reward function from user interaction to improve the use of preferences (Canal et al.
2019a) could reduce the impact of a poorly defined reward function, but more work
can be done in this direction.

The methods proposed in this paper can be used in many other domains apart from
those already shown here. We believe the algorithms can also be used to foster plan
explainability. For instance, the suggestions provided by our algorithms could also
be used to explain to a non-expert user why the planner took an action or another in
terms of gained reward, as well as to help the user in selecting the best configuration
based on their needs, explaining that assigning a specific value to a predicate can lead
to better plans. Although some more work shall be done in this direction, we believe
these algorithms can be useful for providing plan explanations, as well as powerful
algorithms to analyze the Space of Plans.

Acknowledgements The authors thank Mr. Alejandro Suárez and Dr. Javier Segovia-Aguas for fruitful
discussions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Generating predicate suggestions…

Appendix

A1 Preferences to guide action selection through the reward function

This section details how the reward function can be defined such that the suggestible
predicates help in the action selection process of the planner. For this, we have used
the Relational Dynamic Influence Diagram Language (RDDL) (Sanner 2010), which
allows the definition of rich reward functions. Such reward function is computed at
each time step to provide an immediate value to the metric function that is being
optimized. In the case of the reward, the goal of the planner is to maximize its value.
Therefore, actions that lead to states providing more reward will be favored. This
allows the use of suggestible predicates to appear along with actions in the reward
function, such that when the suggestible predicate is present with a specific action, it
will provide a positive or negative reward. This will encourage or penalize the use of
the action.

In RDDL, we can do this by defining an if-then-else reward function. The function
will have a case for each action and related preference value with the form
if (action ∧ (preference_name == @preference_value))

then R,

where R is the value that is obtained when the action is executed and the
preference_name predicate is present and has the @preference_value.

To ease the description of such predicates in the reward function, we defined a rule-
based format that consists of the action, the preference application and the immediate
reward value R. This is then formatted and added to the domain automatically. As an
example, one could define:
getFood , ((? speed ∼= p_speed) ∧ (p_speed ∼= @tl_unknown))

| ((? force ∼= p_force) ∧ (p_force ∼= @tl_unknown)),
-15,

which specifies that the action getFood receives a penalization with a value of 15
when either the speed or force preferences are not unknown and they have a different
value than the one provided by the preference. Another example of the jacket dressing
task is:
approachBothArms , (p_motor_rightarm == @high) ∧

(p_motor_leftarm == @high), 20,

which describes that the approachBothArms action is rewarded when the user’s
arms mobility is defined as high. This will then be converted to:4

if (exists_ {? speed: t_threelevel , ?force: t_threelevel}
[approachBothArms (?speed , ?force) ∧ ((p_motor_rightarm

== @high) ∧ (p_motor_leftarm == @high))]) then 20.

Consequently, this process simplifies the definition of the reward function, which
can become long and complex. Note that in our approach, we expect an expert in the
domain to define the rules that will be compiled into the reward function to success-
fully lead the planner to choose those actions that receive more reward thanks to the
preferences.

4 t_threelevel is defined as an enumerable type with three levels: @high, @medium and @low.

123

G. Canal et al.

A2 Actions in the feeding task domain

The feeding task domain contains the following actions:

– Get Food: uses the cutlery to get the food.
– Approach straight: approaches the food to the user frontally.
– Approach from below: approaches the food to the user from below (less intru-
sively).

– Approach from the side: approaches the food to the user sideways, being always
visible but not frontally to avoid intimidating the user.

– Feed straight: feeds the user by moving in a straight line and exiting in the same
way.

– Feed scooping: feeds the user and performs a scooping action when exiting to
ensure emptying of the cutlery.

– Wait for user feeding: waits for the user to get the food.
– Move away: the robot moves back to the starting position.

A3 Actions in the shoe-fitting task domain

The shoe-fitting task domain includes the following actions:

– Request foot reachable: requests the user to move the foot closer.
– Request foot visible: requests the user to put the foot in the robot’s sight.
– Grasp shoe: it grasps the shoe (from the user, as a handover).
– Approach from top: it approaches the user’s foot from the top.
– Approach right/left: it approaches the user from either side.
– Approach from below: approaches the user from below.
– Insert straight: inserts the shoe in a straight movement, without forcing the ankle.
– Insert curved: shoe insertion forcing a bit the ankle to fit correctly the heel.
– Insert right/left: inserts from the side following the foot’s shape.
– Release simple: releases the shoe and moves away.
– Release push: it pushes the shoe a bit before releasing it to ensure fit.

A4 Actions in the shoe-fitting task domain

The jacket-dressing task domain consists of the following actions:

– Approach single-arm frontal: approaches a sleeve to a single arm from the front
(visible to the user).

– Approach single-arm rear: approaches the sleeve to the arm from behind (more
comfortable as less movement is involved).

– Approach arm side: approaches a sleeve from the side (from outside the body to
the right/left arm).

– Approach both arms: approaches both sleeves together from behind.
– Insert sleeve from the front: inserts the sleeve in a frontal manner (doing so makes
it impossible to insert the other sleeve frontally).

123

Generating predicate suggestions…

– Insert sleeve straight: inserts a sleeve from the side, with the stretched arm.
– Insert both sleeves: inserts both sleeves together from behind.
– Drag forearm frontal: drags the sleeve in the forearm from the front.
– Drag forearm straight: drags the forearm sideways.
– Drag both forearms: drags both forearms together.
– Drag upper arm: drags an upper arm.
– Drag both upper arms: drags both upper arms together.
– Release: Drags the cloth to the shoulders and releases the garment.

References

Alami, R., Clodic, A., Montreuil, V., Sisbot, EA., Chatila, R.: Toward Human-Aware Robot Task Planning.
In: AAAI spring symposium, pp. 39–46 (2006)

Andriella, A., Torras, C., Alenya, G.: Cognitive system framework for brain-training exercise based on
human–robot interaction. Cognit. Comput. 12, 793–810 (2020)

Baier, J.A., McIlraith, S.: Planning with preferences. AI Mag. 29(4), 25–36 (2008)
Behnke, G., Leichtmann, B., Bercher, P., Höller, D., Nitsch, V., Baumann, M., Biundo, S.: Help me make a

dinner! Challengeswhen assisting humans in action planning. In: Proceedings of the International Con-
ference on Companion Technology, Ulm, vol. 11. https://doi.org/10.1109/ICCT42709.2017.9151907
(2017)

BenHassine, A., Ho, T.B.: An agent-based approach to solve dynamic meeting scheduling problems with
preferences. Eng. Appl. Artif. Intell. 20(6), 857–873 (2007). https://doi.org/10.1016/j.engappai.2006.
10.004

Bidoux, L., Pignon, J.P., Bénaben, F.: Planning with preferences using Multi-Attribute Utility Theory
along with a Choquet Integral. Eng. Appl. Artif. Intell. 85, 808–817 (2019). https://doi.org/10.1016/
j.engappai.2019.08.002

Canal, G., Alenyà, G., Torras, C.: A taxonomy of preferences for physically assistive robots. In: IEEE
International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 292–
297, https://doi.org/10.1109/ROMAN.2017.8172316 (2017)

Canal, G., Cashmore, M., Krivić, S., Alenyà, G., Magazzeni, D., Torras, C.: Probabilistic Planning for
Robotics with ROSPlan. In: Towards Autonomous Robotic Systems, Springer, Cham, pp. 236–250.
https://doi.org/10.1007/978-3-030-23807-0_20 (2019b)

Canal, G., Pignat, E., Alenyà, G., Calinon, S., Torras, C.: Joining high-level symbolic planning with low-
level motion primitives in adaptive HRI: application to dressing assistance. In: IEEE International
Conference onRobotics andAutomation (ICRA), pp 3273–3278, https://doi.org/10.1109/ICRA.2018.
8460606 (2018)

Canal, G.,Alenyà,G., Torras, C.:Adapting robot task planning to user preferences: an assistive shoe dressing
example. Auton. Robots 43(6), 1343–1356 (2019). https://doi.org/10.1007/s10514-018-9737-2

Canal, G., Torras, C., Alenyà, G.: Are preferences useful for better assistance?: A physically assistive
robotics user study. ACM Trans. Human–Robot Interact. (THRI) 10(4), 1–19 (2021). https://doi.org/
10.1145/3472208

Chakraborti, T., Sreedharan, S., Kulkarni, A., Kambhampati, S.: Projection-aware task planning and exe-
cution for human-in-the-loop operation of robots in a mixed-reality workspace. In: 2018 IEEE/RSJ
International conference on intelligent robots and systems (IROS), IEEE, pp. 4476–4482 (2018)

Chun, A., Wai, H., Wong, R.Y.: Optimizing agent-based meeting scheduling through preference estimation.
Eng. Appl. Artif. Intell. 16(7), 727–743 (2003). https://doi.org/10.1016/j.engappai.2003.09.009

Cirillo, M., Karlsson, L., Saffiotti, A.: Human-aware task planning: an application to mobile robots. ACM
Trans. Intell. Syst. Technol. (TIST) 1(2) (2010)

Das, M., Odom, P., Islam, M.R., Doppa, J.R.J., Roth, D., Natarajan, S.: Planning with actively eliciting
preferences. Knowl.-Based Syst. 165, 219–227 (2019). https://doi.org/10.1016/j.knosys.2018.11.028

De, Silva L., Lallement, R., Alami, R.: The HATP hierarchical planner: Formalisation and an initial study
of its usability and practicality. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 6465–6472, https://doi.org/10.1109/IROS.2015.7354301 (2015)

123

https://doi.org/10.1109/ICCT42709.2017.9151907
https://doi.org/10.1016/j.engappai.2006.10.004
https://doi.org/10.1016/j.engappai.2006.10.004
https://doi.org/10.1016/j.engappai.2019.08.002
https://doi.org/10.1016/j.engappai.2019.08.002
https://doi.org/10.1109/ROMAN.2017.8172316
https://doi.org/10.1007/978-3-030-23807-0_20
https://doi.org/10.1109/ICRA.2018.8460606
https://doi.org/10.1109/ICRA.2018.8460606
https://doi.org/10.1007/s10514-018-9737-2
https://doi.org/10.1145/3472208
https://doi.org/10.1145/3472208
https://doi.org/10.1016/j.engappai.2003.09.009
https://doi.org/10.1016/j.knosys.2018.11.028
https://doi.org/10.1109/IROS.2015.7354301

G. Canal et al.

Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an overview. Artif. Intell. 175(7),
1037–1052. https://doi.org/10.1016/j.artint.2011.03.004, representing, Processing, andLearning Pref-
erences: Theoretical and Practical Challenges (2011)

Eifler, R., Cashmore, M., Hoffmann, J., Magazzeni, D., Steinmetz, M.: Explaining the Space of Plans
through Plan-Property Dependencies. In: ICAPS-19 Workshop on Explainable Planning (2019)

Fiore, M., Clodic, A., Alami, R.: On planning and task achievement modalities for human–robot collab-
oration. In: Experimental Robotics: The 14th International Symposium on Experimental Robotics,
Springer, Cham, pp. 293–306. https://doi.org/10.1007/978-3-319-23778-7_20 (2016)

Fox, M., Long, D., Magazzeni, D.: Explainable planning. In: IJCAI-17Workshop on Explainable AI (2017)
Gao, Y., Chang, HJ., Demiris, Y.: User modelling for personalised dressing assistance by humanoid robots.

In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1840–
1845. https://doi.org/10.1109/IROS.2015.7353617 (2015)

Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3. Tech. rep., Department of Electronics
for Automation, University of Brescia (2005)

Göbelbecker, M., Keller, T., Eyerich, P., Brenner, M., Nebel, B.: Coming up with good excuses: what to do
when no plan can be found. In: Proceedings of the Twentieth International Conference on International
Conference on Automated Planning and Scheduling, AAAI Press, pp. 81–88 (2010)

Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with implicit belief states. In:
Proceedings of the 15th International Conference on Planning and Scheduling (ICAPS), vol. 15, pp.
71–88 (2005)

Jiang, S., Arkin, RC.: Mixed-initiative human–robot interaction: definition, taxonomy, and survey. In: 2015
IEEE International Conference on Systems, Man, and Cybernetics, pp. 954–961. https://doi.org/10.
1109/SMC.2015.174 (2015)

Joppen, T., Wirth, C., Fürnkranz, J.: Preference-based Monte Carlo tree search. In: KI 2018: Advances in
Artificial Intelligence. Springer, pp. 327–340 (2018)

Keller, T., Eyerich, P.: PROST: Probabilistic planning based on UCT. In: Proceedings of the 22nd Interna-
tional Conference on Planning and Scheduling (ICAPS), vol. 22, pp. 119–127 (2012)

Kim, J., Woicik, ME., Gombolay, MC., Son, SH., Shah, JA.: Learning to infer final plans in human team
planning. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI-
18, pp. 4771–4779. https://doi.org/10.24963/ijcai.2018/663 (2018)

Martínez, D., Alenyà, G., Torras, C.: Relational reinforcement learning with guided demonstrations. Artif.
Intell. 247, 295–312 (2017)

Pinsler, R., Akrour, R., Osa, T., Peters, J., Neumann, G.: Sample and feedback efficient hierarchical rein-
forcement learning from human preferences. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, pp. 596–601 (2018)

Rossi, S., Ferland, F., Tapus, A.: User profiling and behavioral adaptation for HRI: A survey. Pattern
Recognit. Lett. 99, 3–12 (2017). https://doi.org/10.1016/j.patrec.2017.06.002

Sanner, S.: Relational dynamic influence diagram language (RDDL): language description, unpublished
ms. Aust. Natl. Univ. 32, 27 (2010)

Shmaryahu, D., Shani, G., Hoffmann, J., Steinmetz, M.: Constructing plan trees for simulated penetration
testing. In: The 26th International Conference on Automated Planning and Scheduling, vol. 26 (2016)

Sohrabi, S., Baier, JA., McIlraith, SA.: Preferred explanations: Theory and generation via planning. In:
Proceedings of the 25th AAAI Conference on Artificial Intelligence, vol. 25 (2011)

Umbrico,A., Cesta,A., Cortellessa,G.,Orlandini, A.:A holistic approach to behavior adaptation for socially
assistive robots. Int. J. Soc. Robot. 12(3), 617–637 (2020)

Visser, S., Thangarajah, J., Harland, J., Dignum, F.: Preference-based reasoning in BDI agent systems.
Auton. Agents Multi-Agent Syst. 30(2), 291–330 (2016). https://doi.org/10.1007/s10458-015-9288-
2

Wirth, C., Akrour, R., Neumann, G., Fürnkranz, J.: A survey of preference-based reinforcement learning
methods. J. Mach. Learn. Res. 18(1), 4945–4990 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Gerard Canal (https://gerardcanal.github.io) is a Lecturer (Assistant Professor) in Autonomous Systems
at the Department of Informatics of King’s College London, where he also obtained a Royal Academy of

123

https://doi.org/10.1016/j.artint.2011.03.004
https://doi.org/10.1007/978-3-319-23778-7_20
https://doi.org/10.1109/IROS.2015.7353617
https://doi.org/10.1109/SMC.2015.174
https://doi.org/10.1109/SMC.2015.174
https://doi.org/10.24963/ijcai.2018/663
https://doi.org/10.1016/j.patrec.2017.06.002
https://doi.org/10.1007/s10458-015-9288-2
https://doi.org/10.1007/s10458-015-9288-2
https://gerardcanal.github.io

Generating predicate suggestions…

Engineering UK IC Postdoctoral Research Fellowship in 2021. He received a PhD degree in Robotics
from UPC in 2020, with work on adapting robot behaviour to user preferences in assistive scenarios.
Before that, he completed an MSc in Artificial Intelligence from UPC, UB, and URV, and a BSc in
Computer Science from UPC. He has participated in different international and national projects such as
I-DRESS and THuMP, and he is a Researcher Co-Investigator in the COHERENT project. His research
focuses on applying task planning to robotics, assistive robotics, robot behaviour adaptation, and explain-
ability of robot behaviour.

Carme Torras (www.iri.upc.edu/people/torras) is Research Professor at the Institut de Robótica i Infor-
mática Industrial (CSIC-UPC) in Barcelona, where she leads a research group on assistive and collab-
orative robotics. She received MSc degrees in Mathematics and Computer Science from the University
of Barcelona and the University of Massachusetts, respectively, and a PhD degree in Computer Science
from the Technical University of Catalonia (UPC). Prof. Torras has published six research books and more
than three hundred papers on robotics, machine learning, geometric reasoning, and neurocomputing. She
has supervised 19 PhD theses and led 16 European projects, the latest being her ERC Advanced Grant
project CLOTHILDE—Cloth manipulation learning from demonstrations. Prof. Torras is IEEE and EurAI
Fellow, member of Academia Europaea and the Royal Academy of Sciences and Arts of Barcelona. She
has served as Senior Editor of the IEEE Transactions on Robotics and Associate Vice-President for Pub-
lications of the IEEE Robotics and Automation Society. Currently, she is Vice-President of CSIC Ethics
Committee and a member of the Spanish Advisory Committee for AI. Convinced that science fiction can
help promote ethics in robotics and AI, one of her novels—winner of the Pedrolo and Ictineu awards— has
been translated into English with the title The Vestigial Heart (MIT Press, 2018) and published together
with online materials to teach a course on “Ethics in Social Robotics and AI”, which are being used in
several universities worldwide.

Guillem Alenyà (http://www.iri.upc.edu/people/galenya) is Researcher and Director at the Institut de
Robotica i Informática Industrial (IRI), a joint centre of the Spanish Scientific Research Council (CSIC)
and Polytechnic University of Catalonia (UPC). He received a PhD degree (Doctor Europeus) from UPC
in 2007 with a work on mobile robot navigation using active contours, which he partly developed at the
Robosoft company in France, where he was supported by a EU-FP6 Marie-Curie scholarship. He has been
visitor at KIT—Karlsruhe (2007), INRIA—Grenoble (2008), and BRL—Bristol (2016). He has partici-
pated in numerous scientific and technological transfer projects involving image understanding, next-best
view, rule learning from human examples, and planning execution tasks. He is coordinator of the SIM-
BIOTS project on cooperative robots and principal investigator of the SOCRATES project (on quality
of interaction for social robots), BURG (about textile manipulation benchmarking), and HuMoUR (on
human-to-robot skills transfer).

123

www.iri.upc.edu/people/torras
http://www.iri.upc.edu/people/galenya

	Generating predicate suggestions based on the space of plans: an example of planning with preferences
	Abstract
	1 Introduction
	2 Related work
	3 Motivation
	3.1 Planning with preferences and limitations

	4 Providing suggestions
	4.1 The space of plans tree
	4.2 Max-reward traversal
	4.3 Suggesting changes to known predicates

	5 Experimental evaluation
	5.1 Definition of the domains and preferences
	5.1.1 Feeding task
	5.1.2 Shoe-fitting task
	5.1.3 Jacket-dressing task

	5.2 Effect of the SoPS algorithm
	5.3 Improvements by allowing changes with SoPS-change
	5.4 Finding superfluous suggestions

	6 Discussion and conclusions
	Acknowledgements
	Appendix
	A1 Preferences to guide action selection through the reward function
	A2 Actions in the feeding task domain
	A3 Actions in the shoe-fitting task domain
	A4 Actions in the shoe-fitting task domain
	References

