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Abstract— In this work we present a novel attention deep
learning model that uses context and human intention for
3D human body motion prediction in hand-over human-robot
tasks. This model uses a multi-head attention architecture which
incorporates as inputs the human motion, the robot end effector
and the position of the obstacles. The outputs of the model are
the predicted motion of the human body and the predicted
human intention. We use this model to analyze a hand-over
collaborative task with a robot where the robot is able to predict
the future motion of the human and use this information in it’s
planner. We perform several experiments and ask the human
volunteers to fill a standard poll to rate different features of
the task when the robot uses the prediction versus when the
robot doesn’t use the prediction.

I. INTRODUCTION

Most collaborative tasks between humans require a certain
degree of prediction to be properly finished. Some tasks, like
hand-overs, have clearly defined roles, such as master-slave,
collaborative or adversary. In this kind of tasks, usually the
agent acting as slave can predict the future motion of the
other agent acting as master and take advantage to solve the
task.

Two humans collaboratively moving a table might be an
example of this, where the human leading the way is the
master and the human following the leader is the slave. In
this example, the slave can take advantage by predicting the
path of the leader.

Some other interactions doesn’t have strongly defined
roles. Take a soccer game as example: the player with the
ball will move based on his predictions of the opposing team,
but also the predictions of his own teammates. At the same
time, the rest of the players will predict the motion of the rest
of the players. In this case, roles are not as clearly defined,
but prediction of the human’s body motions can severely
improve the outcome of the game.

We argue that, by allowing robots to predict what humans
will do in the future, robots will be able to improve the qual-
ity of human-robot interaction (HRI) tasks. We designed in
this work a human motion prediction model and implemented
in one of our robots (see Fig. 1). We integrated the model in
the robot and use it to test how humans perceive the quality
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Fig. 1. We use the IVO robot to study how the human motion prediction
can help during the hand-over collaborative task.

of a hand-over task when the robot is predicting the human
body motion.

A hand-over task is defined as the action between two
entities, in our case a human and a robot. The human is
holding an certain object and his goal is to place this object
in the robot’s hand/end effector.

A hand-over task is a joint action between two agents, the
giver and the receiver. The giver (in our case, the human)
goal is to physically place a certain object in the receiver (in
our case, the robot) hand [10].

In the reminder of the paper, in Section II we first give a
short review of the related work, in Section III we explain
our 3D human motion prediction model, in Section IV we
describe the dataset that we created to do the validation of the
model, in section V we explain the experiments, in section
VI we present the user study and finally in section VII we
show the conclusions.

II. RELATED WORK

The model proposed by [3] has some similarities to ours,
since the model predictions are conditioned on the objects
around the humans, such as tables or doors. The model uses
a GAN architecture to exploit this added information.

Another interesting work is the one presented by [11],
where they use a Transformer Variational Autoencoder
(VAE) with attention architecture to predict the human
motion, but the predictions are conditioned by the human
action, which may be considered as context.



If we look at the human motion prediction field in a wider
sense, we can find different approaches that take advantage
of diverse model architectures.

In [9] by Martinez et al., the problem is approached as
a time series algorithm, proposing a RNN architecture able
to generate a predicted human motion sequence given a real
3D joint input sequence. Although the results obtained in
this model are quite interesting, the work raises attention
in a very particular case: a non-moving skeleton can often
improve results in a L2 based metric.

The most relevant work for our proposal is Mao et
al. [8], where the temporal joint information is encoded
using a discrete cosine transformation (DCT). This approach
mitigates the problems related to auto-regressive models, and
has yield to very good results in other works such as [1] by
Aksan et al.

The work proposed by [2] really lies between the purely
motion prediction side and the HRI side. Butepage et al.
present an unsupervised approach using VAEs to predict
human motion up to 1660 ms. The work is aimed towards
HRI, but the prediction model wasn’t tested on a real robot.

The work of [4] presents a user study that is similar to
ours, but they are focus the user study on user’s security and
comfort. The work also explores the prediction idea, but on
the robot side. They study how to generate predictable robot
trajectories (also know as ”legible” trajectories) in order to
improve the user experience during the collaborative task.

III. MODEL

We have developed a new attention deep learning model
based on the Mao et al. [8], which is conditioned by the
obstacles, the Robot End Effector (REE) and the human
intention. The outputs of the model are the future 3D human
motion and future human intention.

A. Problem definition

Let us consider Xp
1:N = [x1, x2, x3, ..., xN ] as the human

motion history, where xi ∈ RK , being K the number of
features describing each pose, in our case the 3D coordinates
of each joint.

Our goal is to predict the T future poses Xp
N+1:N+T

and the intention of the human for each predicted frame
îN+1:N+T .

Furthermore, we want to include also contextual infor-
mation related to the specific task of hand-over. The first
contextual information we considered is the REE, since
the human goal in the task is to place the object in the
robot end effector. In consequence, we add a new queue
Xr

1:N = [xr
1, x

r
2, x

r
3, ..., x

r
N ] encoding the 3D motion history

of the REE, being xr
i ∈ R3.

The second contextual information is the 3D position of
the scenario obstacles. We encode the obstacles position
Xo

1:N = [xo
1, x

o
2, x

o
3, ..., x

o
N ], where each xo

i ∈ R3,3 contains
the 3D coordinates of the N obstacles. The 3D position is
the obstacle centroid.

For each input sequence Xp
1:N we also define a goal

intention i ⊂ [0, c− 1] where i ∈ N and c is the number of

defined intention classes. This value defines the intention that
the human will express in the predicted frame îN+1:N+T .
The intention classes are defined in section IV.

B. Architecture

1) Attention channels: The first modification consists on
the introduction of multiple information channels as our
model input. Whereas the original model only considered
the human 3D skeleton data as input, we consider multiple
contextual information too. Thus, we created an attention
channel for each one of the contextual queues.

In order to compute the attention scores, we divide each
input sequence Xp

1:N ], X
r
1:N , Xo

1:N into N − M − T + 1

sub-sequences Xj
i:i+M+T−1, being i the time-step index of

the sub-sequence and j the reference to the corresponding
information channel. By creating this division, we ensure that
each sub-sequence is composed by M+T frames, being our
goal to predict these T frames given the M previous frames.
This data structure concurred with the classical attention
formulation of keys, values and query.

We define all the possible M length segments of the sub-
sequence Xj

i:i+M−1 as the keys. The whole sub-sequence
Xj

i:i+M+T−1 is transformed to the frequency domain using
a discrete cosine transform (DCT), which output is treated
as the value for each key. Finally, we take the last M frames
of the sub-sequence Xj

N−M+1:N as the query.
Before computing the attention scores, the keys and query

are processed respectively by the mapping functions f j
k :

RKxM → Rd and f j
q : RKxM → Rd, which encode the

input data into vectors of dimension d. Both functions are
modeled using neural networks.

kji = f j
k(X

j
i:i+M−1), q

j = f j
q (X

j
N−M+1:N ) (1)

2) Multi-headed Attention: In order to compute the at-
tention scores we use multi-head attention, inspired by
[12]. Basically, the same attention operation is computed in
parallel inside each defined head, which enhances the model
learning capabilities. Each attention head receives as input a
different embedding kh,ji and qh,j for each head h ⊂ [1, H].
The attention scores for each information channel and head
are then computed as follows,

ah,ji =
qh,jkh,j

T

i∑N−M−T+1
i=1 qh,jkh,j

T

i

(2)

3) Information fusion: The output of each attention chan-
nel is then computed:

Uh,j =

N−M−T+1∑
i=1

ah,ji V h,j
i (3)

Where each Uh,j ∈ RK×(M+T ). This output is then
concatenated with the rest of heads and fed into a linear
function fh:

U j = fh(U
1,j ∥ U2,j ∥ ... ∥ UH,j) (4)



Fig. 2. Layout of the model. The left-side module corresponds to the attention architecture. The attention scores of the human motion, REE and obstacles
positions are computed. An additional input representing the human intention is integrated in the module. The predictor generates both the future human
motion and classifies each predicted skeleton intention.

Finally, we perform a weighted sum of all the attention
channels to obtain to obtain the attention module output:

U = αpUp + αrUrαoUo (5)

4) Intention conditioning: The output U is then combined
with the intention conditioning module. The desired human
intention is represented by i. This functionality will allow
us to select the desired intention of the prediction that we
generate each time. A function fi : N → RK×(M+T ) is
defined to map the intention information:

U ′ = U + i′, i′ = fi(i) (6)

5) Motion and intention prediction: The output U’ is used
by the graph convolution network (GCN) to reconstruct the
predicted motion of the skeleton X̂N+1:N+T in the same
way than [8]. Additionally, we generate another output for
the GCN: the predicted intention of the human for each
predicted frame îN+1:N+T using additional layers at the end
of the GCN. These layers consist on two one-dimensional
convolution layers with a ReLU activation function between
them. By adding a Softmax layer at the end, we then solve
a multi-class classification problem for each frame.

6) Loss function: In order to optimize our model and
obtain feasible human motions, we implement several loss
terms.

The main loss component is the L2 distance between the
predicted motion joints position and the ground truth position
Lxyz .

We wanted to penalize predictions where the human hand
last position is too far away from the REE since the human
should try to deliver the object, thus we added LREE

consisting on the L2 distance between the human right hand
and the REE.

The predictions shouldn’t be allowed to predict that the
human will cross the obstacles of the scenario, so we added
Lo as the loss that heavily penalize predictions when the
human hips crossed an obstacle.

Finally, we predict the human intention in each predicted
frame, so we have included a cross-entropy loss Li in order
to tackle the multi-class classification problem.

L = Lxyz + LREE + Lo + Li (7)

IV. DATASET

Similarly than in our previous work [6], we created a
dataset using the anthropomorphic robot IVO (Fig. 1) and
human volunteers performing a hand-over task where the
human is the giver and the robot the receiver (see Fig. 3).
In this case, the human takes the role of master and the
robot takes the role of slave, because the robot has to follow
human movements to reach the position of the object. The
human and the robot approach towards each other avoiding
the obstacles and extend its arm to reach the partner. At the
end of this experiment, the human places the object in the
robot end effector (REE). The delivered object is a 10 cm
long cylinder handled by the human to the robot using always
the right arm.

A video of each sequence is recorded using the Intel
RealSense D534i camera placed inside the robot’s head. The
videos are recorded at 10 fps. The recording is finished when
the human places the object in the REE.

The skeleton of the human is extracted from each sequence
using Mediapipe [7] to extract the 2D joint locations on the



Fig. 3. Overview of the three scenarios defined in the dataset from a top-side view. For each scenario, the human is represented by the right figure, the
robot is represented by the left figure and obstacles are represented by the red squares. The paths represented correspond to the human, the robot moves
towards the corresponding point in each sequence.

image. These 2D joints and the camera depth map data are
used to obtain the 3D coordinates of each joint.

Only the upper body (from the hips to the head) of the
human is used to avoid occlusions of the legs when the
human is close to the robot.

The volunteer delivers a cylindrical object to the robot
in 3 different scenarios: the first scenario has no obstacles,
the second scenario incorporates one obstacle between the
human and the robot and in the last scenario there are 3
obstacles. Since we wanted to have enough data representing
all the different approaches that the human could take to
move towards the robot, we defined different approaching
paths for the humans (see Fig. 3). In the end, we defined 3
paths for the first scenario, 4 paths for the second scenario
and another 4 paths for the last scenario. By creating all
these situations, we can analyze two separate aspects: how
would our model responds to the human lateral movement
(in our previous work we only considered straight trajectories
between the human and the robot) and how would the
obstacles affect our predictions.

Moreover, we ask the human volunteers to repeat three
times each trajectory: the first time they are asked to perform
the task in a natural way (they perform the master - slave
behavior as expected), the second time they are asked to
perform a random gesture during the task (such as waving
their hands, scratch their heads, checking their smartphones,
...), although they finally deliver the object as expected, and
finally they are asked to walk towards the robot and then not
deliver the object (this is denominated adversarial behavior).
These different behaviors were defined to allow us to study
how different human intentions interfere with the motion
prediction.

Once all the sequences were recorded, we performed a
sanity check of the data using visual inspection. We also
labeled each recorded frame with an intention class. We
considered 4 different intentions: Collaboration, Gesture,
Neutral and Adversarial. This labeling process was con-
ducted by a human watching each video frame by frame
and classifying the volunteer’s intention in each frame.

• Collaboration: the human is willing to deliver the object
to the robot.

• Gesture: the human is performing a gesture (we do
not differentiate between communicative and non-
communicative gestures).

• Neutral: the human does not raise the right hand towards

Fig. 4. Last frame of predicted sequences (green-orange) given the
same input sequence using different intention goals, ground truth skeleton
(red-blue) for comparison. Collaborative (top-left), gesture (top-right),
neutral(bottom-left) and adversarial (bottom-right). The collaborative pre-
diction is the one where the predicted right hand position is closer to the
REE (blue dot)

the robot, but will not make any movement to oppose
the robot.

• Adversarial: the human moves the right hand away from
the robot.

We also record the REE position and the robot odometry
during all the sequences.

We used ten volunteers (5 women and 5 men, ages ranging
from 25 to 60 years old) to perform the recordings. Each
volunteer records all the possible scenarios, totaling 33
sequences for each volunteer. We end up with 330 sequences
in our dataset, each sequence ranging from 4 to 15 seconds,
with an average length of 10.18 seconds and a standard
deviation of 1.51 seconds.

The human and the robot start each sequence 6 meter away
from each other.

V. DATASET EXPERIMENTS

A. Training details

Since our dataset isn’t very long, we decided to evaluate
our model using the leave one out technique: we first train
the model with subjects 2 to 10 and consider the human 1 as
test and evaluate the accuracy of the model on the human 1
sequences, then we repeat the same but considering human 2
as test. This is repeated for all 10 humans, and we consider
the average accuracy as the result.



Fig. 5. Sample sequence of an experiment. The upper sequence is the RGB view of the experiment, the bottom sequence is the Rviz visualization from
ROS, blue dots are the current position of the human (used in Phase B) and the green dots represent the predicted position of the human (used in Phase
A).

For training, we used 50 frames (5 seconds) as input and
output 25 frames (2.5 seconds). We fixed the number of
heads to 10, and we used an Adam optimizer. We performed
an ablation study considering each single feature of the
model separately, more the number of attention heads, the
attention channels and the intention condition.

In order to compare with other methods, we trained and
validated other human motion prediction models in our
dataset. Since we tested these models in our own dataset, the
results obtained might be different to the results provided in
their respective papers, where they usually train their models
with bigger datasets such as H3.6M and AMASS.

B. 3D Human motion prediction experiments

We computed the L2 distance in Cartesian coordinates
between our predicted sequences and the ground truth se-
quences for the same input sequence. Table I contains the
computed errors along the test dataset before overfitting over
the training dataset.

Finally, we checked the L2 error for the right hand of
the human (HEE), since it is the most important joint in the
handover task.

As we can see in Table I, adding context into our
predictions improve the accuracy of the model. Using the
REE position information reduces the computed error of the
human right hand (used to deliver the object). On top of that,
adding the REE information also improves the accuracy of
the whole upper body.

Adding the intention conditioning clearly improves the
predicted intention accuracy, but the interpretation of these
result can be misleading. By adding the intention condition-
ing in the model, we are ”warning” the model with the inten-
tion of the ground truth sequence. Thus, this improvement
in accuracy must be carefully considered.

Actually, by conditioning the model with the human
intention we are able to generate different predicted motion
based on the desired intention. Thus, given the same input
sequence, we can generate one predicted motion for each
human intention, as can be seen in Fig. 4.

Model L2 (m) Right Hand
L2 (m)

Intention
Accuracy

RNN [9] 0.793 0.677 -
Hist. Rep. Itself [8] 0.403 0.188 -

REE, no obstacle, no intention 0.378 0.174 56.45%
no REE, obstacle, no intention 0.444 0.187 62.02%
no REE, no obstacle, intention 0.453 0.173 86.29%

REE, obstacle, no intention 0.381 0.172 74.16
REE, no obstacle, intention 0.375 0.162 85.44%
no REE, obstacle, intention 0.387 0.17 88.69%

REE, obstacle, intention 0.355 0.151 88.90%

TABLE I
RESULTS OBTAINED ACROSS THE VALIDATION DATASET.

VI. USER STUDY

The results presented in the previous section demonstrate
that the robot is able to predict and to deliver an object
to a person. A user study was also conducted to determine
whether the prediction module enhances the usability and the
comfort of the robot from the point of view of the human.

The hypothesis we endeavored to test was as follows:
“Participants will perceive a difference between the use of
the prediction module and not using it.”

For the experiments, we selected 15 people (8 men, 7
women) on the University Campus. Participants ranged in
age from 19 to 50 years (M=29.5, SD=9.2), and represented a
variety of University majors and occupations including com-
puter science, mathematics, biology, finance and chemistry.
For each individual selected, we randomly activated one of
the two behaviors to deliver an object to the volunteer, it is,
the activation of the prediction module or the not use of it.

For this specific experiment, we tried the model not
conditioning with the REE or the obstacles position. In fact,
we did not make use of obstacles in the environment, since
we wanted to study purely the effect of using prediction
information in the hand-over task, therefore, the presence of
obstacles might interfere with the main study. Moreover, we
did condition the model with the human intention, where we
assumed that the human would have a collaborative attitude.



Fig. 6. Evaluation from 1 (low) to 7 (high) of the main aspects related to the robot behavior in handover task.

It should be mentioned that none of the participants had
previous experience working or interacting with robots.

Participants were asked to complete a variety of surveys.
Our independent variables considered whether the robot
predicts humans intention or was not computing the pre-
diction. The main dependent variables involved participants’
perceptions of the sociability, naturalness, security and
comfort characteristics. Each of these fields, was evaluated
by every participant using a questionnaire to fill out after the
experiment, based on [5].

Participants were asked to answer a questionnaire, follow-
ing their encounter with the robot in each mode of behavior.
To analyze their responses, we grouped the survey questions
into four scales: the first measured sociability robot behavior,
while the second naturalness, and third and fourth evaluated
the comfort. Both scales surpassed the commonly used 0.7
level of reliability (Cronbach’s alpha).

Each scale response was computed by averaging the results
of the survey questions comprising the scale. ANOVAs were
run on each scale to highlight differences between the three
robot behaviors.

Below, we provide the results of comparing the two
different behaviors. To analyze the source of the differ-
ence, four scores were examined: “sociability”, “natural-
ness”, “security” and “comfort”, plotted in Fig. 6. For the
sociability and security evaluation score plotted in Fig. 6,
pairwise comparison with Bonferroni demonstrate there were
no difference between the two kind of behavior approaches,
p = 0.3 and p = 0.17, respectively . In terms of robot’s
naturaless and comfort, the volunteers perceived a difference
between the two behaviors, p < 0.05 in these two cases.

Therefore, after analyzing these four components, we may
conclude that if the robot is capable of predicting the human
intention, then the acceptability of the robot increases.

VII. CONCLUSIONS

In this work, we propose a human motion prediction model
able to use contextual information related to the hand-over
task. We also condition the model with the human intention,
which allow us to modify the predicted motion accordingly.

The results show that the use of contextual information and
intention improve the precision of the handover task.

Furthermore, we used our model in a real robot to study
how do humans feel during a handover operation where the
robot can predict their motion.

The experiments we conducted yielded conclusive results.
We found that people felt their interaction with the robot
was better overall when the robot was capable of predicting
the human motion and intentions. Detailed analysis showed
that this prediction improved the human’s perception of the
robot’s naturalness, security and comfort. Hence, allowing
the robot to predict its human partner seems to be appropriate
for this type of scenario.
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