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Abstract Kazuki Abe and his collaborators have recently presented an actuated

gear-based spherical mechanism called ABENICS. It has received a lot of attention,

not only because of its eye-catching motions during operation, but also and mostly,

because it can successfully be used when large motion ranges and a high stiffness

are required. Nevertheless, the main disadvantage of Abe et al.’s design is that it is

an over-actuated mechanism: it requires four instead of only three actuators. In this

paper, we propose a variation on this mechanism which requires three actuators, thus

simplifying its control and its potential cost. The kinematics of this new mechanism

is studied in detail, including its forward and inverse kinematics, as well as its

singularities.

1 Introduction

Many different parallel spherical mechanisms have been proposed in the past. The

mechanism proposed in [3] is probably the most famous one within this category.

For more recent alternative designs, see [4] and the references therein. These mech-

anisms provide high positioning accuracy and excellent dynamic characteristics.

Nevertheless, achieving both a large motion range and a high stiffness is a chal-

lenging goal for them [2]. A gear-based mechanism might be a good alternative to

alleviate these limitations, however it is not obvious how to design a spherical gear

to attain arbitrary spherical motions. Although the idea of engraving tooth patterns

on a sphere has long been proposed as an improvement for universal joints (see, for

example, [5]), it seems that the use of a cross gear engraved over the full surface of

a sphere to accomplish general spherical motions has only been recently proposed

in [1] under the name of ABENICS. This design consists of a cross spherical gear
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Fig. 1 The cross spherical

gear is made by cutting two

axisymmetric teeth patterns

on a sphere. In this case, the

G− and the H− axes.
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Fig. 2 The monopoles are

made by cutting a teeth

pattern on a cylinder that can

mesh with the cross spherical

gear.
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and two monopole gears. The main drawback of the ABENICS design is that it is an

over-actuated parallel mechanism: it uses four actuators to control the three degrees

of freedom of the moving sphere. The two orientation angles of each monopole are

actuated, thus leading to a dependency between them which increases their control

complexity. In this paper, we explore the possibility of using three monopoles in

such a way that only one orientation angle of each monopole is actuated and the

order is left free.

The cross spherical gear is made by cutting two axisymmetric teeth patterns on

a sphere. According to Fig. 1, the sphere is first cut around the G-axis following the

profile of an ordinary involute gear, and then this operation is repeated around the

H-axis. The resulting cross spherical gear has four poles located at p1 = (', 0, 0),
p2 = (0, ', 0), p3 = (−', 0, 0), and p4 = (0,−', 0).

The monopole gears have a simpler teeth pattern which can mesh with the cross

spherical gear. Their radii are half that of the sphere. As shown in Fig. 2, when their

I− and G− axes are aligned with the rotational axis and the pole, respectively, their

cross-sections with the GH−plane also have the typical involute gear profile. The

monopoles have only one pole, and hence their name. In their local reference frames,

this pole is located, according to Fig. 2, at q = ('/2, 0, 0).
When meshing a monopole with the spherical gear, we have to previously match

its pole with one of the four poles of the sphere. Nevertheless, due to the symmetry

of the sphere, observe that it is equivalent to match a monopole with p1 or p2, or

with p3 or p4. Thus, it can simply be said that the monopoles have to be matched

with either the G− or the H− axis.

The ABENICS mechanism consists of a cross spherical gear and two monopoles

located at a right angle on a maximum circle of the sphere. The orientation of each
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Fig. 3 Arrangement of a cross spherical gear and three monopoles in the proposed new mechanism.

The definition of their local reference frames and associated monopoles orientation angles are also

shown. While \1, \2, and \3 are actuated, q1, q2, and q3 are passive.

monopoles is controlled by two actuators. This arrangement of the monopoles, and

the fact that their locations are fully controlled, make the kinematics analysis of the

mechanism rather trivial. Apparently, there was no simple way to avoid the over-

actuation and to keep the kinematics of the mechanism simple at the same time. This

is the problem essentially treated in this paper.

This paper is structured as follows. Section 2 presents the proposed variation on

the ABENICS mechanism. Section 3 deals with its inverse kinematics. The main

challenge imposed by the new design is the resolution of its forward kinematics for

which we found a particularly elegant closed-form formula presented in Section 4.

The mechanism singularities are deduced in Section 5. The correctness of the pre-

sented formulas is verified for an example in Section 6. This paper is concluded in

Section 7 with some final considerations.

2 The proposed mechanism

In the proposed mechanism, three monopoles are regularly distributed on the GH-

plane of the sphere. According to the reference frames in Fig. 1, Fig. 2, and Fig. 3,

their local reference frames in the mechanism will be given by the displacements
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D1 = T(' + '/2, 0, 0) RI (c)RG (c/2), (1)

D2 = RI (2c/3)D1, (2)

D3 = RI (−2c/3)D1. (3)

where the term RG (c/2) is added to simplify the inverse kinematics as we will show

later. The orientation of the sphere will be given by the proper orthogonal matrix

R = (A8 9 )1≤8, 9≤3.

Without loss of generality, it has been decided to match monopole 1 with the

sphere G-axis, and the other two monopoles with the H−axis. Matching all the

monopoles with the same axis would make any rotation of the sphere about this

axis uncontrollable, as it will become clear in the following section. In the proposed

design, the angles \1, \2, and \3 around each monopole’s I−axis are actuated, while

q1, q2, and q3 are left as passive angles (see Fig. 3).

3 Inverse kinematics
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Fig. 4 Computation of the inverse

kinematics for monopole 1 which

is matched with the sphere G-axis,

whose orientation is given by xB =

R x = (A1,1, A2,1, A3,1)) .

Observe that, if a monopole is matched with the

sphere G-axis (H−axis), its orientation is invariant

with respect to any rotation of the sphere about

this axis. Indeed, such a rotation induces a lateral

sliding of the monopole over the sphere which

does not alter its orientation. Thus, only the ori-

entation of the G−axis (H−axis) is relevant in the

computation of the monopole’s orientation.

Since the orientation of the sphere is given by

the rotation matrix R, we have that the orientation

angles of monopole 1 are given by (see Fig. 4)

q1= atan2(A2,1, A3,1) and \1=2 arccos(A1,1). (4)

In other words, the location of monopole 1 can be

expressed in the world reference frame as

M1 = D1 RG (q1) RI (\1). (5)

Now, observe that, due to the invariance of the spherical gear with respect to

rotations of ±c/2 about its I-axis, the orientation angles of monopoles 2 and 3 can

still be obtained using (4) —despite they are matched to the sphere H-axis— by

simply performing the substitutions

R← RI (−2c/3)R RI (c/2), and R← RI (2c/3)R RI (c/2), (6)

respectively. By performing these substitutions, it can be checked that the orientations

of monopoles 2 and 3 are given by the angles
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3

2
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)
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(7)

4 Forward kinematics

The set of equations in (4) and (7) can be rewritten as

A11 = cos
\1

2
, (8)

A21 = :1 sin q1, (9)

A31 = :1 cos q1, (10)

A12 =

1
√

3
(:3 sin q3 − :2 sin q4) = − cos

\2

2
− cos

\3

2
, (11)

A22 =

1
√

3

(
cos

\2

2
− cos

\3

2

)
= −:2 sin q2 − :3 sin q3, (12)

A32 = :2 cos q2 = :3 cos q3. (13)

where :1, :2, and :3 are constants that cancel when computing the arctangent in the

inverse kinematics computations.

Now, observe that using equations (8), (11), and (12), the rotation matrix repre-

senting the orientation of the sphere —in terms of the actuated angles, \1, \2, and

\3— can be expressed as

R =

©­­
«
21 −22 − 23 A13

A21
1√
3
(22 − 23) A23

A31 A32 A33

ª®®
¬
, (14)

where the boxed entries are unknown, and 28 = cos
\8
2

. Thus, the forward kinematics

problem reduces to find the different ways in which this matrix can be completed.

Since it must be proper orthogonal, the problem can be reduced to solve the system of

equations resulting from imposing the algebraic conditions RR)
= I and det(R)=1.

Nevertheless, using this approach the problem becomes quite involved. Fortunately,

a simpler and neater solution is possible by relying on Euler angles.

An arbitrary rotation matrix can be expressed in terms of XZY Euler angles as

R = RG (U1)RI (U2)RH (U3) =
©­­
«

�2�3 −(2 �2(3

(1(3 + �1�3(2 �1�2 �1(2(3 − �3(1

�3(1(2 − �1(3 �2(1 �1�3 + (1(2(3

ª®®
¬
, (15)
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Fig. 5 The feasible actuation region for \2 and \3 is obtained by intersecting the region in (a) with

a region that depends on \1. This latter region is shown for \1 = c/100 (b), \1 = c/4 (c), and

\1 = c (d). In all cases, the light areas represent the feasible regions.

where (8 = sin U8 and �8 = cos U8 , and

U1 = atan2(A32, A22), U2 = arcsin(−A12), and U3 = atan2(A13, A11). (16)

Since the calculation of U1, U2, and U3 does not require the values of the boxed

entries in (15), we can readily conclude from (14) that

R =RG

(
atan2

(
±
√

3 − 3(22 + 23)2 − (22 − 23)2, 22 − 23

))
RI (arcsin (22 + 23))

RH

(
atan2

(
±
√

1 − 22
1
− (22 + 23)2, 21

))
. (17)

Therefore, given the values of \1, \2, and \3, four solutions for R are obtained, one

for each combination of signs of the two square roots appearing in (17).

To finish this section, it is worth remembering that, if (U1, U2, U3) is a valid set of

XZY Euler angles, (c + U1, c − U2, c + U3) is as well a valid set. Nevertheless, this

fact is irrelevant in our case because both sets lead to the same completion of R.

5 Singularities

When the pole of monopole 8 = 1, 2, 3 is in contact with the sphere, q8 is undefined.

That is, when the orientation of the sphere is

R = RI (=c)RG (l), R = RI

(
2c

3
+ =c

)
RH (l), or R = RI

(
−2c

3
+ =c

)
RH (l),

(18)

with = ∈ Z and l ∈ R, the mechanism is in a singularity of the inverse kinematics.

The set of these singularities can algebraically identified as those cases in with the

two arguments of the atan2 functions in (4) or (7) are simultaneously zero.
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Besides these rather obvious singularities, we also have the singularities of the

forward kinematics. There are values of the actuated angles for which there is a

change in the number of forward kinematics solutions. In these cases, at least one

of the squared roots arguments in (17) are zero. Moreover, observe that the forward

kinematics problem can be solved provided that the following conditions are satisfied

(22 + 23)2 +
1

3
(22 − 23)2 ≥ 1 and 22

1 + (22 + 23)2 ≥ 1. (19)

These inequalities define a feasible region in the actuation space whose boundary

is the singular set, the set where the number of solutions of the forward kinematics

drops from 4 to 2, or 1. While the region defined by the first inequality in (19) is

independent of \1 [see Fig. 5 (a)], the second one depends on it [see the resulting

region in the \1\2 plane for different values of \1 in Fig. 5 (a), (b), and (c)]. The

feasible region obviously results from intersecting both regions.

6 Example

Let us consider the particular case in which the actuated angles are arbitrarily chosen

as \1 = 2.4093, \2 = 4.4438, and \3 = 3.4215. Given these values, the forward

kinematics of the mechanism can be solved using equation (17). The four obtained

results appear in Table 1. To verify the correctness of these results, it is possible to

compute the inverse kinematics for each solution using (4) and (7) to recover the

value of the actuated angles. Solving the inverse kinematics for each case also gives

us the corresponding values of q1, q2, and q3, that is, the passive joints angles. They

are also given in Table 1. The graphical representation of the four assembly modes

appears in Fig. 6.

Table 1 Forward kinematics solutions for \1 = 2.4093, \2 = 4.4438, and \3 = 3.4215. The

corresponding values for the passive joints angles are also included.

Assembly mode R q1 q2 q3

1

(
0.35802 0.74558 0.56208
0.93337 −0.26938 −0.23719
−0.025432 0.60954 −0.79234

)
1.5981 -0.69768 0.9077

2

(
0.35802 0.74558 0.56208
−0.60955 −0.26938 0.74558

0.7073 −0.60955 0.35802

)
-0.7113 -2.4439 2.2339

3

(
0.35802 0.74558 −0.56208
−0.60955 −0.26938 −0.74558
−0.7073 0.60954 0.35802

)
-2.4303 -0.69768 0.9077

4

(
0.35802 0.74558 −0.56208
0.93337 −0.26938 0.23719
0.025432 −0.60954 −0.79234

)
1.5436 -2.4439 2.2339
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Fig. 6 The four assembly modes given in Table 6.

7 Conclusion

We have presented a variation on the recently proposed ABENICS mechanism that

simplifies its actuation. The main challenge associated with this variation was the

resolution of its forward kinematics and the characterization of its singularities.

Curiously enough, however, the use of Euler angles have been shown to be very

convenient to complete rotation matrices in a way that allowed us to derive elegant

close-form solution formulas for these two problems.
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