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Abstract

A new insight into vanadium redox flow batteries (VRFB) parameter estimation is
presented. Driven by the electric vehicles proliferation, a hybrid fast charging station
with grid and renewable energy connection is particularly considered. In this station-
ary application, the VRFB is operating as buffering module. This hybrid topology
could contribute to reduce the grid connection cost of the charging station. How-
ever, to make VRFB a viable technology, improvements are needed. Among these,
some of the most important are in the field of the estimation of the battery’s State of
Charge, State of Health, and internal parameters.
The proposed estimation method is based on a recursive least square (RLS) esti-
mation algorithm with forgetting factor, combined with a sliding mode finite-time
convergent differentiation algorithm. The latter provides robust exact derivatives of
both VRFB’s current and voltage with a high degree of noise rejection, required by
the RLS algorithm to perform a precise estimation. The proposed sliding mode based
estimation setup is completed with a systematic methodology to guarantee the valid-
ity of the on-line estimated values, depending on the persistence of excitation of the
measured current and voltage. Finally, the methodology is thoroughly analysed and
validated by computer simulation.

KEYWORDS:
Vanadium redox flow battery, parameter estimation, State of Charge, State of Health, sliding mode differ-

entiator.

1 INTRODUCTION

Throughout the last two centuries, economic and industrial development has relied on the massive exploitation of fossil fuels as
an energy source. However, in the course of the 21st century, renewable energies have experienced a significant growth which
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is expected to intensify during the next decades. According to a 2020 European Commission Report [1], it is expected that by
2050 at least 50% of the energy produced in Europe will come from renewable sources, while other global organisations such as
the International Energy Agency have set even more ambitious goals. The tremendous interest in the development of renewable
energies is motivated on the one hand by the growing demand for energy and the depletion of traditional non-renewable energy
sources and, on the other hand, by the need to limit and, ultimately, reverse the serious environmental damage associated with
the use of fossil fuels. In addition, renewables are of particular strategic interest to those countries that lack significant reserves
of fossil fuels and are dependent on energy imports [2].

This transition towards a new sustainable matrix based on renewable energies of unpredictable and intermittent nature (solar,
wind, marine, etc.) brings with it a set of challenges. One of them is the development of versatile energy storage systems (ESS),
capable to complement the renewables, storing the energy surplus and, timely, delivering when required [3]. Moreover, those
ESS technologies open new innovation fields, such as more efficient smart microgrids, for off-grid supply, or hybrid energy
applications, for systems weakly connected to the grid [4].

Among ESS, redox flow batteries (RFB) are one of the technologies that are receiving a great deal of attention for large-
scale energy storage in stationary applications [5][6]. Regarding the most important features of RFB it can be mentioned their
high efficiency (∼80%), simple and safe operation, rapid response time, independence between power output and capacity, long
service life and suitability for long term storage with very little self discharge [7]. In addition, they require low maintenance and,
if necessary, can be quickly refuelled by renewing the tanks content [8]. Among the different types of RFB developed so far,
all-vanadium redox flow batteries (VRFB) are the most studied and developed so that they are generally considered the closest
to reach a commercial breakthrough [9]. The main benefit of this technology is that, as vanadium is the active specie in both
half-cells, degradation problems related to the cross-contamination of the electrolytes are eliminated [3][10].

The aforementioned features make VRFB an excellent option to be used in combination with renewable energies, as a key
part in the peak shaving and load levelling processes [11]. Additionally, VRFB may be used as a backup power in those facilities
in which it is crucial to guarantee a continuous supply even if the main power fails [7]. There are also ongoing efforts to achieve
higher energy densities that would make RFB suitable to power electric vehicles [12].

One specific application in which VRFB could perform particularly well is as a buffering stationary ESS in electric vehicles
(EV) charging stations [13]. The rapid growth in the proportion of EV, in combination with the development of new fast charging
technologies of over 100 kW, may give rise to issues, such as grid stability problems and costly transformers and ancillaries,
required for interconnection with the charging station.

However, it has been found that the demand curve heavily varies throughout the day and the peak power is only reached in
relatively short periods. In this context, a proposed solution to deal with this problem is to use a suitable ESS, such as redox flow
batteries, to gradually store energy during low-demand periods, to be released during load peaks [14]. Therefore, this hybrid
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topology would contribute to reduce the grid connection cost of the EV charging station and, additionally, during low demand
it could be used to improve the grid power quality.

In spite of VRFB’s auspicious prospect, some issues of this technology have yet to be adequately addressed in order to
make them viable for widespread use. One of the most important problems that needs to be solved is the estimation of the
battery parameters, being the State of Charge (SoC) and the State of Health (SoH) two of the most relevant [6][15]. It is a
fact that at the laboratory level there are analytical techniques to determine the SoC, such as spectrophotometric studies [16]
or electrolyte conductivity [17]. However, to implement them in actual applications, expensive instrumentation is required that
would significantly increase the cost and complexity of the facilities. An alternative approach to determine the fundamental
parameters of the RFB is to develop efficient estimation systems relying on easily measurable variables, such as the cells’
terminal voltages and current [18][19].

To estimate the SoC and SoH of a variety of ESS, different topologies based on sliding mode (SM) techniques have been
proposed (e.g. [20][21][22]) to take advantage of the inherent versatility and robustness of this non-linear approach [23][24].
Amongst the most successful are the adaptive SM based observers (SMO), which include a parameters’ estimation setup to
provide the observer updated parameters of the system. However, there exists a trade-off between the utilisation of high gains,
to improve the convergence speed, and the worsening of the so-called chattering effect together with an increase in sensitivity
to noises [25][26]. Also, in high order SMO the stability and convergence of this approach is not always easy to establish [27].

Resourceful alternative solutions were developed resorting to estimation setups based on the use of SM Differentiators (SMD)
[28][29][30]. Some implementation difficulties regarding their noise sensitivity and required sampling time originally existed,
however novel high order SMD, such as the filtering differentiators (SMFD), have shown considerable improvements in that
area [31]. They provide finite-time convergence up to the n-th time derivative of a (n+1)-Lipstchizian signal. Consequently, by
describing the system in the generalised Fliess canonical form, the separation principle applies and it is possible to separately
and robustly estimate the ESS parameters and states, as introduced by the authors in [32].

On the basis of the above mentioned ideas, an on-line estimation methodology for a VRFB employed as a stationary ESS is
developed in this paper. Specifically, the VRFB is operating as buffering module of a hybrid EV charging station [13], with grid
and renewable energy connection (as presented in Figure 1).

By combining a Recursive Least Square (RLS) estimation algorithm with forgetting factor and the SMFD, the proposed
method is capable to obtain the time-varying parameters of a VRFB’s equivalent electric circuit model (ECM), improving the
estimation results by means of a high degree of noise rejection, a reduced chattering and faster convergence rate. The SMFD
provides, in finite time, robust exact derivatives of both current and voltage of the VRFB, required by the RLS algorithm to
perform a precise estimation. The proposed SMFD-based estimation setup is completed with a systematic methodology to ensure
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FIGURE 1 Schematic of the hybrid EV charging station with VRFB as buffer.

the validity of the on-line estimated values, depending on the persistence of excitation [32] (i.e., the frequency content richness)
of the VRFB current and voltage.

2 VANADIUM REDOX FLOW BATTERY MODELLING

There exist several model approaches to characterise the VRFB depending on the level of detail required and on the targeted
objective. They can be primarily classified as distributed parameter models (DPM), if they consider a spatial distribution of
the system variables and parameters (see e.g. [10][33]), or as lumped parameter models (LPM), if they concentrate all the
information of the system into a set of discrete entities with uniform properties [3][34][35].

The former are the most accurate, and can constitute powerful tools for certain fields of R+D, but at the expense of com-
plex and cumbersome handling. On the other hand, LPM are mathematically much simpler and are successfully used for the
design of control and observation strategies. In particular, equivalent electric circuit models (ECM) are a widely used type of
LPM. Although they present some limitations to precisely reflect the details of the physic and chemical processes involved,
they demonstrate excellent adaptability and a great deal of accuracy in predicting the electric dynamic response [36][37][38].
Specifically, time-varying ECMs improve the modelling accuracy over their time-invariant counterparts. Thanks to these fea-
tures and their relative simplicity, together with fast computational time, they have proved to be well suited for on-line estimation
applications [19][26][39].

In the remainder of this section, a brief description of the VRFB operation is introduced and its ECM and fundamental
dynamic equations are presented.

2.1 Fundamentals of a Vanadium Redox Flow Battery

In VRFB, electrical energy is obtained from the electron transfer redox reaction between vanadium species with different oxida-
tion states. Vanadium ions are dissolved in sulphuric acid solutions, which are stored in two independent reservoirs. The negative
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electrolyte contains 𝑉 2+ and 𝑉 3+, while the positive one contains 𝑉 4+ and 𝑉 5+ (the latter in the form of the oxides 𝑉 𝑂2+ and
𝑉 𝑂+

2 , respectively) [34].
When the battery is operating, the electrolytes contained in the tanks are pumped through a stack of cells, where the chemical

reaction takes place. Inside the stack, both solutions are kept separated by a proton exchange membrane, which allows to keep
the electrical neutrality of the solutions during the processes of charge and discharge. Since the fluids go through a closed circuit,
once they leave the stack, they are returned to their respective tanks.

The reactions that take place at the surface of the electrodes of the cells are the following:

𝑉 2+ 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
⇌

𝑐ℎ𝑎𝑟𝑔𝑒
𝑉 3+ + 𝑒−

𝑉 𝑂+
2 + 2𝐻+ + 𝑒−

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
⇌

𝑐ℎ𝑎𝑟𝑔𝑒
𝑉 𝑂2+ +𝐻2𝑂

The concentration in the tanks of the vanadium “charged species” (𝑉 2+ and 𝑉 5+) is directly related to the energy stored in
the system. Evidently, charged species concentrations will increase during charge operation and decrease during discharge.
Normally, VRFB are balanced, i.e., the fluid volume in both tanks is the same and the concentrations of 𝑉 2+ and 𝑉 3+ in the
negative electrolyte are equal to the concentrations of 𝑉 5+ and 𝑉 4+ in the positive electrolyte, respectively.

As a consequence of the previous analysis, the SoC, typically defined as the ratio of the charge stored in the battery (𝑄)
and its total capacity (𝑄𝑀 ), can also be expressed as the quotient between the concentration of the active species and the total
concentration of vanadium [37][38].

𝑆𝑜𝐶 = 𝑄
𝑄𝑀

=
𝑐2

𝑐2 + 𝑐3
=

𝑐5
𝑐4 + 𝑐5

(1)

with 𝑐2, 𝑐3, 𝑐4 and 𝑐5, the vanadium species concentrations.
The equilibrium voltage generated by the chemical reaction at open circuit, can be calculated by means of the Nernst equation

[38]:
𝑣𝑐𝑒𝑙𝑙𝑜𝑐 = 𝐸0 + 𝑅𝑇

𝐹
𝑙𝑛
[

(
𝑐2𝑐5𝑐2𝐻
𝑐3𝑐4

)(
𝛾2𝛾5𝛾2𝐻
𝛾3𝛾4

)
]

(2)

where 𝐸0 is the standard cell voltage, 𝐹 is the Faraday constant, 𝑐𝐻 is the 𝐻+ concentration and 𝛾𝑖 are the activity coefficients
of the species involved in the reaction.

In practice, Eq. (2) can be reduced assuming that the activity coefficients and 𝑐𝐻 remain approximately constant throughout
operation [34][38]. Then, 𝐸0 can be replaced by a nominal voltage (𝐸𝜃) that groups all the constant terms in Eq. (2) whose
value is approximately 1.35V and represents the 𝑣𝑐𝑒𝑙𝑙𝑜𝑐 when SoC=50%. Under these assumptions, and substituting Eq. (1) in Eq.
(2), a simplified expression for the Nernst equation is obtained:

𝑣𝑐𝑒𝑙𝑙𝑜𝑐 = 𝐸𝜃 + 2𝑅𝑇
𝐹

𝑙𝑛
(

𝑆𝑜𝐶
1 − 𝑆𝑜𝐶

)

(3)
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Eq. (3) provides a sufficiently accurate description of the open-circuit voltage within a maximum and minimum SoC, 𝑆𝑜𝐶𝑚𝑖𝑛

and 𝑆𝑜𝐶𝑚𝑎𝑥 respectively, that fully covers an extended operating range of the battery. Typically, VRFB operate between SOC
limits of 10% and 90%, that correspond to a 𝑣𝑐𝑒𝑙𝑙𝑜𝑐 of 1.24V and 1.46V, respectively.

In applications that require stacks of 𝑁 cells in series, the open-circuit voltage of the stack is straightforwardly given by:

𝑣𝑜𝑐 = 𝑁 𝑣𝑐𝑒𝑙𝑙𝑜𝑐 = 𝑁
[

𝐸𝜃 + 2𝑅𝑇
𝑧𝐹

𝑙𝑛
(

𝑆𝑜𝐶
1 − 𝑆𝑜𝐶

)]

(4)

2.2 Equivalent electric circuit model of the vanadium redox flow battery

The electrical equivalent circuit used in this paper to represent the VRFB, is displayed in Figure 2. Note that all the parameters
are assumed to be time-varying, with a slow rate of variation with respect to the estimation algorithm computation time.

FIGURE 2 Equivalent electric circuit model of the VRFB.

The 𝑣𝑜𝑐 = 𝑣𝑏𝑎𝑡 + 𝑉0 is modelled with the series of a constant source, that corresponds to the minimum open-circuit voltage
(𝑉0 = 𝑣𝑜𝑐(𝑆𝑜𝐶𝑚𝑖𝑛)) and a capacitor 𝐶𝑏𝑎𝑡, whose electrical charge accounts for the available charge stored in the VRFB. The
capacitor varies in accordance with the non linear function 𝜕𝑄∕𝜕𝑣𝑜𝑐 , defined by the Nernst equation (Eq. (4)). Consequently, it
varies over time as the battery is charged and discharged and it is modelled with a time-varying capacitor 𝐶𝑏𝑎𝑡(𝑡).

The series resistance𝑅𝑜ℎ𝑚 stands for the ohmic losses due to the resistance of the porous electrodes, electrolyte, membrane and
bipolar plates [40][41]. As for the parallel𝑅𝑝𝑜𝑙𝐶𝑝𝑜𝑙 network, it represents transient dynamics, such as activation and concentration
polarisation [19][37][38][39].

Finally, a parallel resistance 𝑅𝑠𝑑 is included to model the self-discharge of the VRFB. The reasons of this phenomenon are
twofold. On the one hand, the shunt currents caused by a potential gradient between cells. On the other, undesired diffusion of
vanadium ions through the membrane [37]. Note that during normal healthy operation of the VRFB, the incorporation of 𝑅𝑠𝑑

may just incrementally improve the model’s accuracy, due to its (typically) high value. However, taking into account the self-
discharge phenomenon in the model is of special interest for the proposed method, allowing to detect possible malfunctions,
such as membrane degradation or electrolyte leak.



P. Fornaro ET AL 7

2.3 Dynamic equations and Fliess Canonical Form

The linear time-varying description of the VRFB is given by:
⎧
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⎦
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𝐱̇
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⎡

⎢

⎢
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⎣

−1
𝑅𝑠𝑑𝐶𝑏𝑎𝑡
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𝐃

𝐼

(5a)

(5b)

where the state variables
[

𝑣𝑜𝑐 𝑣𝑝𝑜𝑙

]⊺

are the open-circuit voltage and the 𝐶𝑝𝑜𝑙 voltage. 𝐼 and 𝑣𝑜𝑢𝑡 are the current and the output
voltage of the VRFB, respectively. The argument 𝑡 in the parameters has been omitted for the sake of conciseness.

For the estimation method the system must be transformed into the generalised Fliess canonical form, obtained by defining
the transformed states 𝐳 as the system’s output and its consecutive time derivatives, i.e. 𝑧1 = 𝑣𝑜𝑢𝑡, 𝑧2 = 𝑧̇1 = 𝑣̇𝑜𝑢𝑡. Accordingly,
the transformation diffeomorphism is defined as:

𝐳=𝚽(𝐱, 𝐼, 𝐼̇) =
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⎢

⎢
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⎣

𝑧1

𝑧2
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⎣

𝑣𝑜𝑐

𝑣𝑝𝑜𝑙

⎤

⎥
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𝟎
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⎤

⎥

⎥

⎥

⎦

𝐼̇ (6)

and the linear time-varying system described in Fliess canonical form results:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧̇1 = 𝑧2

𝑧̇2 = 𝑚1𝐼 + 𝑚2𝐼̇ + 𝑚3𝐼 + 𝑚4𝑧2 + 𝑚5𝑧1

𝑦 = 𝑧1

(7a)
(7b)
(7c)
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where 𝑚1 to 𝑚5 are algebraic combinations of the ECM resistances and capacitances. Assuming that the electric elements of the
ECM are slowly time varying for almost all 𝑡 then:

𝑚1 = 𝑅𝑜ℎ𝑚 (8a)
𝑚2 =

1
𝐶𝑏𝑎𝑡

+ 1
𝐶𝑝𝑜𝑙

+ 𝑅𝑜ℎ𝑚

(

1
𝐶𝑝𝑜𝑙𝑅𝑝𝑜𝑙

+ 1
𝐶𝑏𝑎𝑡𝑅𝑠𝑑

)

(8b)

𝑚3 =
𝑅𝑠𝑑 + 𝑅𝑝𝑜𝑙 + 𝑅𝑜ℎ𝑚

𝐶𝑏𝑎𝑡𝑅𝑠𝑑 ⋅ 𝐶𝑝𝑜𝑙𝑅𝑝𝑜𝑙
(8c)

𝑚4 = −
𝐶𝑏𝑎𝑡𝑅𝑠𝑑 + 𝐶𝑝𝑜𝑙𝑅𝑝𝑜𝑙

𝐶𝑏𝑎𝑡𝑅𝑠𝑑 ⋅ 𝐶𝑝𝑜𝑙𝑅𝑝𝑜𝑙
(8d)

𝑚5 = − 1
𝐶𝑏𝑎𝑡𝑅𝑠𝑑 ⋅ 𝐶𝑝𝑜𝑙𝑅𝑝𝑜𝑙

(8e)

Observe that Eq. (7b) is linear in the unknown parameters 𝑚1 to 𝑚5, and therefore it is possible to perform a linear regression
to obtain the ECM time-varying parameters, as described in the following section.

3 VRFB ON-LINE ESTIMATOR BASED ON SLIDING MODE FILTERING

DIFFERENTIATION

The proposed methodology for on-line estimation of VRFB is laid out in this section. This proposal is capable to provide in a
prescribed fixed time, with robust noise rejection and known error upper bound, the parameters of the VRFB. To achieve this,
a recursive least squares (RLS) with forgetting factor algorithm in combination with a SMFD algorithm is employed. To the
interested reader, further details about RLS-SMFD estimation can be found in [32].

The primal groundwork introduced in [32] was intended for an electric vehicle application with Li-ion battery/Supercapacitor.
Therefore, diverse aspects need to be considered and several modifications are required to develop a novel methodology capable
to deal with a VRFB stationary energy storage application. Firstly, due to the inherent differences between the nature and
constitution of the former ESSs and these flowing electrolyte batteries. And secondly, but not least important, because of the
power regime in VRFB stationary applications, where the existence of periods of steady current is not infrequent.

Effectively, in many VRFB applications, particularly in EV charging stations, the current demand intermittently lacks of
enough persistence of excitation (PE). In the case under study, for instance, this may happen during intervals with low contri-
bution from the wind energy conversion system. Then, to conduct the estimation with favourable PE conditions, the proposed
methodology contemplates, if required, the injection of an appropriate persistent signal to the VRFB current profile (based on,
for instance, multisine or filtered PRBS signals).

In addition, the VRFB parameter estimation methodology incorporates a simultaneous dual estimation setup. A 4th-order
reduced estimation is run, to rapidly estimate the parameters, during VRFB healthy operation when the self-discharge resistance
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𝑅𝑠𝑑 is high, hence negligible. In parallel, a 5th-order complete estimation is conducted at a lower rate, to monitor the SoH by
detecting if the self-discharge losses reach a critical inadmissible value.

3.1 Dual on-line parameter estimation algorithm

In this subsection the RLS with forgetting factor algorithm is presented. It is constructed assuming that robust estimations for
the first and second order derivatives of both current and voltage of the VRFB are available (this issue will be addressed in
Subsection 3.3).

∙ 4th-order reduced estimation regression equation

During normal functioning, particularly when the VRFB’s membrane is healthy, the value of the self-discharge resistance
𝑅𝑠𝑑 is high, thus its effect in the ECM (Figure 2) is negligible. Therefore, in practice, the implementation of a more
convenient faster reduced-order estimator is recommended, to obtain the significant elements 𝐶𝑏𝑎𝑡, 𝑅𝑜ℎ𝑚, 𝐶𝑝𝑜𝑙 and 𝑅𝑝𝑜𝑙.

Considering that under normal operation 𝑅𝑠𝑑 >> 𝑅𝑜ℎ𝑚 +𝑅𝑝𝑜𝑙 and 𝐶𝑏𝑎𝑡𝑅𝑠𝑑 >> 𝐶𝑝𝑜𝑙𝑅𝑝𝑜𝑙 hold, parameters 𝑚2 to 𝑚4 can be
straightforwardly reduced and, more importantly, parameter 𝑚5 can be neglected.

Consequently, from Eq. (7b) the reduced-order regression equation is obtained:

𝜂(𝑡) = 𝑧̇2 = 𝑦̈ = 𝜽4(𝑡)⊺𝝋4(𝑡) =

=
[

𝑚1 𝑚2 𝑚3 𝑚4

][

𝐼 𝐼̇ 𝐼 𝑧2

]⊺

(9)

where 𝝋4(𝑡) ∈ ℝ4 is the linear regressor and 𝜽4 ∈ ℝ4 is the unknown ECM parameters vector.

∙ 5th-order complete estimation regression equation

As previously stated, a five-parameter estimation results in detriment of the convergence estimation time bound. However,
this slower estimation is still very useful to monitor the SoH of the exchange membrane, by checking the evolution of
parameter 𝑅𝑠𝑑 (as will be shown in Subsection 4.2).

Then, the 5th-order estimation regression equation is directly given by Eq. (7b):

𝜂(𝑡) = 𝑧̇2 = 𝑦̈ = 𝜽5(𝑡)⊺𝝋5(𝑡) =

=
[

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5

][

𝐼 𝐼̇ 𝐼 𝑧2 𝑧1

]⊺

(10)

where 𝝋5(𝑡) ∈ ℝ5 is the full-order linear regressor and vector 𝜽5 ∈ ℝ5 contains the complete unknown parameters
presented in Eq. (8).
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To conduct both estimations (employing either Eq. (9) or Eq. (10)) a similar procedure is followed. A recursive expression to
obtain the ECM parameters estimates, 𝜽̂(𝑡), is proposed as in [32]:

̇̂𝜽(𝑡) = −𝐆
[

𝐑(𝑡)𝜽̂(𝑡) + 𝐫(𝑡)
] (11a)

𝐑̇(𝑡) = −𝑞𝐑(𝑡) + 𝝋(𝑡)𝝋𝑇 (𝑡) (11b)
𝐫̇(𝑡) = −𝑞𝐫(𝑡) − 𝝋(𝑡)𝜂(𝑡) (11c)

where vector 𝐫(𝑡) and positive semi-definite matrix 𝐑(𝑡) are auxiliary variables, initialised in zero: 𝐫(𝑡0) = 0 ∈ ℝ𝑘, and 𝐑(𝑡0) =

0 ∈ ℝ𝑘 with 𝑘 = 4, 5 as applicable. The gain matrix 𝐆 and the forgetting factor 𝑞 are design parameters, such that:

• The forgetting factor 𝑞 exponentially weights with a time constant 𝜏 = 1∕𝑞 the measured data used in the estimation.

• G is a symmetric positive definite gain matrix, designed to determine the algorithm convergence rate, which depends
directly on its minimum eigenvalue (𝜆𝑚𝑖𝑛(𝐆)).

For the estimation algorithm to work, it is required the input signals to posses sufficient persistence of excitation. In this
proposal, such PE condition is verified on-line by computing the minimum eigenvalue of 𝐑(𝑡), 𝜆𝑚𝑖𝑛(𝐑(𝑡)). Effectively, it has been
proved in [32] that if 𝜆𝑚𝑖𝑛(𝐑(𝑡)) is large enough (i.e, if it exceeds an appropriate threshold), then the excitation is sufficiently
persistent to ensure estimation convergence in a desired time.

Specifically, with an adequate selection of parameters 𝑞 and G, an exponential upper bound for the error convergence time 𝑡𝑒
is 𝑇𝑒:

𝑡𝑒 ⩽
𝑛𝜏

2 ⋅ 𝜆𝑚𝑖𝑛(G) ⋅ 𝜆𝑚𝑖𝑛(𝐑(𝑡))
⩽

⩽
𝑛𝜏

2 ⋅ 𝜆𝑚𝑖𝑛(G) ⋅ 𝜆𝑇ℎ
= 𝑇𝑒 (12)

with 𝜆𝑇ℎ>0 and 𝑛𝜏 >0 as design constants. 𝜆𝑇ℎ is the threshold in the so called Estimation Condition:

𝜆𝑚𝑖𝑛(𝐑(𝑡)) ⩾ 𝜆𝑇ℎ (13)

When Eq. (13) holds, the parameters convergence is ensured in a prescribed 𝑇𝑒. The threshold 𝜆𝑇ℎ is set empirically in accordance
with the PE of the characteristic power demand profile of each type of application.

For its part, the design value 𝑛𝜏 is the number of time constants of the exponential convergence bound Eq. (12), therefore
it determines the estimation accuracy. For instance, selecting 𝑛𝜏 = 2.5 ensures that, at least, a 91% accuracy in the parameter
estimation can be achieved within time 𝑇𝑒.
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3.2 Estimation methodology based on persistence of excitation analysis

The proposed estimation methodology, designed to guarantee the estimation accuracy in a prescribed convergence time 𝑇𝑒,
comprises the following steps (an associated flow chart can be seen in Fig. 3):

1. FSMD Initialisation.

The estimation is initially disabled, by zeroing the gain matrix 𝐆 in Eq. (11a). In parallel, a finite time differentiation
process based on SMFD is triggered (see details in 3.3). Once the SMFD algorithms converge, robust computations for
the VRFB voltage, current, and its derivatives are available to proceed with the estimation process.

2. Persistence of Excitation Checking.

To evaluate the PE on-line, 𝜆𝑚𝑖𝑛(𝐑(𝑡)) is continuously computed, by solving Eq. (11b). Simultaneously, a timer starts to
count the Inactive Estimation Time (𝑇𝑖). For a given application, a maximum admissible 𝑇𝑖𝑀𝑎𝑥 is set (e.g., for the VRFB
under study 𝑇𝑖𝑀𝑎𝑥 = 200𝑠).

3. Estimation Pause. When the estimation enters in this step, the matrix 𝐆 is set equal to zero (𝐆 = 0). Additionally, a
Triggering Condition is defined as 𝜆𝑚𝑖𝑛(𝐑(𝑡)) ⩾ 𝑘𝜆𝑇ℎ, (𝑘 > 1). If the Triggering Condition is satisfied, then proceed
to Step 4. Else, the process continues in the Step 3, if 𝑇𝑖 < 𝑇𝑖𝑀𝑎𝑥, or goes forward to Step 5, if the maximum Inactive

Estimation Time is reached, i.e., 𝑇𝑖 ⩾ 𝑇𝑖𝑀𝑎𝑥. Remark: with 𝐆 = 0, the estimates are held constant.

4. Estimation Active.

The estimation process is enabled by restoring the gain matrix 𝐆 to its designed value (and the Inactive Estimation Time

𝑇𝑖 is set equal to zero). The estimation process continues as long as the Estimation Condition 𝜆𝑚𝑖𝑛(𝐑(𝑡)) ⩾ 𝜆𝑇ℎ holds.
Else, i.e., 𝜆𝑚𝑖𝑛(𝐑(𝑡)) falls below 𝜆𝑇ℎ, the estimation must be paused, so it goes back to Step 3.

5. Small-magnitude persistent signal injection.

To avoid inadmissible long periods (𝑇𝑖 > 𝑇𝑖𝑀𝑎𝑥) without valid estimates due to lack of PE, a small-magnitude persis-
tent signal is added to the VRFB current demand profile, sufficient to fulfil the Triggering Condition. Then, the process
goes back to Step 4. Note that the persistently exciting signal should be injected over a time 𝑇𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 longer than 𝑇𝑒, in
accordance with the prescribed convergence time (a suggested value is 𝑇𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑇𝑒 + 1∕𝑞).

3.3 Sliding mode based differentiation algorithm

The success of the proposed estimation methodology heavily relies on the accuracy of the first and second time derivatives of
both current and voltage of the VRFB, that conform the linear regressor 𝝋(𝑡) required in the computation of Eq. (11). Therefore,
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FIGURE 3 Estimation methodology flow chart.

a centrepiece of the proposal is the design of an advanced differentiation algorithm, equipped to compute robust exact derivatives
of such VRFB electric variables in the presence of noise.

To this end, a SMFD [31] is incorporated in the estimation setup. In general terms, these differentiators are capable to provide
in finite time up to the 𝑛𝑡ℎ time derivative of an unknown input signal provided the following conditions [31]:

• With positive 𝜀1,2, the noise 𝜂 contained in the signal to differentiate is locally bounded, i.e. |𝜖| ⩽ 𝜀1, or possibly unbounded
with a small local average value e.g. ∫ |𝜖|𝑑𝑡 ⩽ 𝜀2.
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• There exists a known Lipschitz constant 𝐿 > 0 for the 𝑛𝑡ℎ time derivative of the signal to differentiate.

Then, the SMFD structure to compute in finite time the first and second time derivatives of a given signal 𝑓 (𝑡) is:

𝑤̇1 = −𝜆4𝐿1∕5
|𝑤1|

4∕5𝑠𝑖𝑔𝑛(𝑤1) +𝑤2 (14a)
𝑤̇2 = −𝜆3𝐿2∕5

|𝑤1|
3∕5𝑠𝑖𝑔𝑛(𝑤1) + (𝜇1 − 𝑓 (𝑡)) (14b)

𝜇̇1 = −𝜆2𝐿3∕5
|𝑤1|

2∕5𝑠𝑖𝑔𝑛(𝑤1) + 𝜇2 (14c)
𝜇̇2 = −𝜆1𝐿4∕5

|𝑤1|
1∕5𝑠𝑖𝑔𝑛(𝑤1) + 𝜇3 (14d)

𝜇̇3 = −𝜆0𝐿𝑠𝑖𝑔𝑛(𝑤1) (14e)

The outputs of the SMDF are 𝜇1, 𝜇2 and 𝜇3, which tend to the input signal and its derivatives, respectively (i.e., 𝜇1 → 𝑓 (𝑡),
𝜇2 → ̇𝑓 (𝑡) and 𝜇3 → 𝑓 (𝑡)). While𝑤1 and𝑤2 are auxiliary variables, and the constants 𝜆0 to 𝜆4 are design parameters, empirically
adjusted to guarantee the algorithms convergence within a small error bound [30]. Following these recommendations the gains
are set as: 𝜆0 = 1.1, 𝜆1 = 4.57, 𝜆2 = 9.3, 𝜆3 = 10.03, 𝜆4 = 5.

Note that the SMFD is composed of two connected algorithms. The first one, comprising Eq. (14a) and Eq. (14b), is a second
order SM based filter, responsible for rejecting of unbounded noises by filtering the error (𝜇1 − 𝑓 (𝑡)). The second algorithm
comprises Eq. (14c) to Eq. (14e) and it is in charge of the differentiation task.

In the application under study, the first and second order derivatives of the VRFB current and voltage are required. Therefore
two second order SMFD, each one in accordance with Eq. (14a) to Eq. (14e), are designed. For the current SMFD [𝑓 (𝑡) =

𝐼 ;𝐿 = 450𝐴∕𝑠2] are used. On the other hand, for the output voltage SMFD [𝑓 (𝑡) = 𝑣𝑜𝑢𝑡;𝐿 = 300𝑉 ∕𝑠2] are employed.

4 RESULTS AND DISCUSSIONS

In this section, the performance of the proposed estimation methodology is thoroughly assessed and analysed via computer
simulations. To facilitate comprehension, the results have been organised into two sets, covering appropriate time spans, respec-
tively. The first set, denoted Case Study A, is intended to demonstrate the estimation efficiency of the proposed methodology
during realistic normal operation, assuming a VRFB healthy state conditions (particularly, a negligible self-discharge rate). The
second set, namely Case Study B, is designed to illustrate the capacity of the proposal to asses the VRFB SoH, computing three
SoH indicators. To this end, a longer time span is considered and accelerated ageing/degradation factors are incorporated, to
reduce the required simulation time.

For the tests, the VRFB is functioning as a stationary buffer energy storage system in an EV charging station (as introduced
in Figure 1). In this hybrid system, it is assumed that the power required to charge the VRFB (𝑃𝐵𝑎𝑡) is obtained from a 150KW
wind energy conversion system (𝑃𝑊 ) together with the electrical grid (𝑃𝐺).
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FIGURE 4 (a) EV power demand, (b) combined grid and wind energy system power, (c) resultant charge/discharge VRFB
current profile.

Without loss of generality, a generic 24 hours EV charging power demand profile, suitable to illustrate the proposed method-
ology performance, is used (see Figure 4). The average charging time is assumed to be 20 minutes and power demand variations,
ranging from 20kW to 220kW, are set. Accordingly, the VRFB’s specifications are as follows:

• The rated capacity is 850Ah.

• The nominal voltage is 500V, fitting a nominal voltage of approximately 420V for the commonly employed EV Lithium-
Ion batteries.

• The maximum power is 250kW, with a limit of a maximum discharge current of 500A.

The nominal values for the parameters of the ECM are: 𝑉0 = 390𝑉 , 𝑅𝑜ℎ𝑚 = 0.05Ω , 𝑅𝑝𝑜𝑙 = 0.1Ω , 𝐶𝑝𝑜𝑙 = 250𝐹 and
𝑅𝑠𝑑 = 560Ω. With regard to 𝐶𝑏𝑎𝑡, its nominal value at 𝑆𝑂𝐶 = 50% is 28.5𝑘𝐹 (its variation is modelled with the expression
𝐶𝑏𝑎𝑡 = 𝜕𝑄∕𝜕𝑣𝑜𝑐 = 114 𝑒(450−𝑣𝑜𝑐 )∕27.12∕(1+𝑒(450−𝑣𝑜𝑐 )∕27.12)2 [𝑘𝐹 ], derived from Eq. 4 and Eq. 1). Those values have been set taking
as a basis technical data reported in previous works in the field [35][36][37][38], and adapting them in accordance with the
size of the VRFB under consideration [13]. Besides, to allow the illustration of the estimator tracking capability, low frequency
variations were added to such nominal values to emulate realistic changes that the parameters may suffer.
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4.1 Case Study A: parameter estimation during healthy operation

In this case study, normal operation of a healthy VRFB is addressed. Therefore the self-discharge resistance 𝑅𝑠𝑑 is negligible
and, consequently, the proposed 4th-order parameter estimation is utilised.

To analyse the performance of the proposed estimation methodology, a representative interval (420min to 500min) is chosen
from the 24hs time-frame and is presented in Figure 5. The current and voltage profiles can be appreciated in Figure 5a and
5c. For illustrative purposes, the time-window is selected comprising periods with sufficient PE and others when it is almost
nonexistent or weak. Note that, as expected, the periods with contribution of the wind turbine, result in sufficient persistence
of excitation, whereas during the flat intervals (minutes 420 to 430 and 470 to 500) the methodology detects that in order to
estimate, the injection of a persistent signal is required (see figures 5b and 5d). In the case under study, the injected persistent
signal was generated using a PRBS appropriately filtered, to fulfil the differentiability conditions of the SMFD specified in 3.3
(see Figure 5b).

In Figure 5.d the resultant PE evaluation is shown and the 𝜆𝑚𝑖𝑛(𝐑(𝑡)) is presented together with the estimation thresholds.
Subsequently, in Figure 5.e, the periods in which the estimation algorithm is active (i.e., when the PE conditions hold) are
depicted. To visualise the accuracy of the estimated parameters, the bound for the estimation error is also displayed in the figure
(orange line).

As for the values of the estimator parameters, i.e., the gain matrix 𝐺 and the forgetting factor 𝑞 = 1∕𝜏, they are designed
by assessing the VRFB parameter variations. The forgetting factor is selected analysing the trade-off between a lengthy 𝜏, to
increase the computable data for the RLS algorithm, and a shorter one, to enhance the capability to track the VRFB time-varying
parameters. For its part, the gain matrix 𝐺 is designed by setting its minimum eigenvalue in accordance with the desired conver-
gence speed, using the elements of the diagonal as weighting values. Then, after an empirical analysis based on comprehensive
simulations, considering several typical current demand profiles, the following estimator parameters are chosen:

G = 7.8

⎡
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• Parameter estimation

The results for the electrical parameter estimation are shown in Figure 6. In order to demonstrate the robustness of the proposed
methodology, additive noise was included in both, voltage and current, from minute 450 on. For the 4-th order parameter
estimation, a desired precision of at least 95% is attained after a 𝑇𝑒 = 160𝑠, employing 𝑛𝜏 = 3, 𝜆𝑚𝑖𝑛(𝐆) = 1.87 and 𝜆𝑇ℎ = 0.005.
The maximum Inactive Estimation Time is empirically selected considering the maximum variation rate of the ECM parameters
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FIGURE 5 (a) VRFB current demand profile. (b) Injected persistent current. (c) VRFB output voltage. (d) 𝜆𝑚𝑖𝑛(𝐑) for the 4-th
order parameter estimation. (e) Active estimation periods and estimation precision lower bound.

and the aforementioned 95% precision. 𝑇𝑖𝑀𝑎𝑥 is computed to guarantee that the estimations will not surpass the desired 5% error
bound, by avoiding inadmissible long periods without PE, resulting in 𝑇𝑖𝑀𝑎𝑥 = 200𝑠. It can be observed in Figure 6 that the
selected 𝑇𝑖𝑀𝑎𝑥 fulfils the desired precision even in the presence of measuring noise (see, for instance, minute 490: with no PE
and consequently no estimation, the parameters do not escape the depicted error bound zones). Moreover, comparing figures 6
and 5e, it is possible to verify that the precision is always higher than the theoretical lower bound.

• SoC computation

To obtain the SoC of the VRFB, a procedure based on the estimation of the system’s open circuit voltage 𝑣𝑜𝑐 is proposed. Since
the system’s description in the Fliess canonical form in Eq. (7) is known, 𝑣𝑜𝑐 can be straightforwardly inferred by computing
on-line the inverse diffeomorphism from Eq. (6). Then, it is simple to solve Eq. (4) for the SoC.

Using this technique, very good results are obtained (see Figure 7). It can be observed that despite being initialised far from
the real SoC, after a brief convergence lapse, the estimate proficiently tracks the actual value throughout the complete simulation
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FIGURE 6 Estimated electrical parameters. An error bound is included to appreciate the estimation error.

interval. The error in the SoC estimation is consistently maintained below 0.4%, even from minute 450 on, when the effect of
measuring noise can be visualised. Note that, if required, the precision of the SoC estimation could be improved if, instead of
using a theoretical equation such as Eq. (4), an accurate 𝑣𝑜𝑐–𝑆𝑜𝐶 look-up table obtained from experimental data is employed.

4.2 Case Study B: detection of SoH degradation

As mentioned, the results presented in this case study focus on the assessment of the battery SoH. The latter is a figure of merit
of the VRFB condition, referred to its manufacture nominal specifications. The SoH is not a single-source index, but the result of
the combination of indicators or criteria, that take into account different degradation phenomena, caused by ageing or damaging
events. In particular, based on the obtained estimates, three SoH indicators are considered in this paper, associated to: the charge
capacity of the battery, the increase of the battery internal resistance and the self discharge rate, linked to the value of 𝑅𝑠𝑑 .

Degradation could be a slow process, involving numerous charge/discharge cycles. Therefore, to avoid extremely long simu-
lations, degradation effects have been accelerated during Case Study B, by including in the tests abrupt (not necessarily realistic)
variations to different critical elements of the VRFB-ECM. Similarly to Case Study A, an illustrative interval is selected from
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FIGURE 7 (a) Estimated and real SoC; (b) error in [%]; (c) magnified SoC estimation error.

the 24hs time-frame (Figure 4), namely from 540min to 850min, as shown in Figure 8, where the VRFB current and its output
voltage are presented.

FIGURE 8 Employed profile for the Case Study B. In (a) the VRFB current profile is presented. In (b) the resultant VRFB
output voltage is illustrated.

4.2.1 Charge capacity fade

The charge capacity is a measure of how much energy the battery can deliver from fully charged. In VRFB, it can fade over
time as a result of side reactions (hydrogen evolution, 𝑉 2+ oxidation with atmospheric oxygen, etc.) or asymmetric diffusion of
vanadium species that lead to electrolyte imbalance. Thus, this variable is a strong indication of the battery’s SoH, which can
be quantified by [42]:

𝑆𝑜𝐻𝑄 =
𝑄𝑀 −𝑄𝑀𝑐𝑟𝑖𝑡

𝑄𝑀𝑛 −𝑄𝑀𝑐𝑟𝑖𝑡
(15)
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where 𝑄𝑀 , 𝑄𝑀𝑛, and 𝑄𝑀𝑐𝑟𝑖𝑡 are the actual, nominal and critical (or minimum acceptable) capacity of the battery, respectively.
In this work, the critical capacity is set 𝑄𝑀𝑐𝑟𝑖𝑡 = 0.8𝑄𝑀𝑛 [6]. When the charge capacity is between 0.9𝑄𝑀𝑛 > 𝑄𝑀 > 𝑄𝑀𝑐𝑟𝑖𝑡

it is considered to be in a Warning Operation Area. Below the 𝑄𝑀𝑐𝑟𝑖𝑡 threshold, the VRFB capacity health is regarded to be
compromised.

The actual capacity of the battery can be obtained from the measured current and estimated parameters of the model, as
follows [42]:

𝑄𝑀 =
∫ 𝑡2
𝑡1

𝐼(𝑡)𝑑𝑡

𝑆𝑜𝐶(𝑡2) − 𝑆𝑜𝐶(𝑡1)
(16)

Note that to increase the accuracy of the 𝑄𝑀 computation, the SoC difference Δ𝑆𝑜𝐶 = 𝑆𝑜𝐶(𝑡1) − 𝑆𝑜𝐶(𝑡2) should be set
sufficiently separated, to reduce the incidence of possible SoC estimation error. In the present application, 𝑄𝑀 is estimated using
constant intervals of Δ𝑆𝑜𝐶 = 0.1, chosen for the illustrative purpose of displaying six 𝑄𝑀 estimations in the selected time
window (where the SoC variation range is from 0.2 to 0.55). Observe in Figure 9a that the estimated SoC accurately tracks the
real SoC, which allows an adequate computation of Eq. (16).

In this case study, to evaluate the 𝑆𝑜𝐻𝑄 two sudden drops in 𝑄𝑀 are introduced around minutes 590 and 715, respectively,
as shown in Figure 9b. The resulting 𝑆𝑜𝐻𝑄 is presented in Figure 9c, along with the three operation areas that characterise the
level of degradation of the system charge capacity.

It can be seen that the proposed method can satisfactorily track the changes in 𝑄𝑀 . Note that, as this criterion employs the
current integral to compute 𝑄𝑀 , there is some delay until these variations are reflected in the estimated 𝑄𝑀 . However, since
capacity fade is typically a slow process in comparison with the simulation time window presented in Figure 9, this delay would
be nearly negligible in practice.

4.2.2 Internal resistance increase

In VRFB, the so called internal resistance 𝑅𝑖 = 𝑅𝑝𝑜𝑙 +𝑅𝑜ℎ𝑚 tends to rise as the battery ages as a consequence of the electrodes
and membrane degradation. Therefore, a SoH indicator related with the 𝑅𝑖 is defined as [43]:

𝑆𝑜𝐻𝑅 =
𝑅𝑖𝐸𝑂𝐿 − 𝑅𝑖

𝑅𝑖𝐸𝑂𝐿 − 𝑅𝑖𝑛
(17)

where 𝑅𝑖𝑛 is the nominal internal resistance, corresponding to a new battery, and 𝑅𝑖𝐸𝑂𝐿 is the end-of-life internal resistance.
For the case under study, a 60% increase of the internal resistance has been set as the end-of-life threshold, i.e., 𝑅𝑖𝐸𝑂𝐿 =

1.6𝑅𝑖𝑛. If 𝑅𝑖 deteriorates reaching 𝑅𝑖𝐸𝑂𝐿, the VRFB efficiency considerably drops. Moreover, in certain applications, the system
could even be unable to supply the requested power demand.

Figure 10 displays the evolution of the 𝑆𝑜𝐻𝑅 for the illustrated period. In this case, besides the previously described low
frequency variation, an additional abrupt step-like failure of 𝑅𝑜ℎ𝑚 is forced at minute 626, to allow visualisation of a 𝑆𝑜𝐻𝑅
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FIGURE 9 Charge capacity State of Health (𝑆𝑜𝐻𝑄) estimation. In (a) and (b) the variables required to perform the estimation
are presented, in (c) the estimated and real 𝑆𝑜𝐻𝑄 are depicted.

change in a relative brief simulation interval. It can be appreciated how the evolution of the internal resistance is rapidly detected
by the estimation method, in spite of a sudden parameter variation. After a brief transient, the estimation algorithm recovers and
provides precise values for both 𝑅𝑖 and 𝑆𝑜𝐻𝑅. Then, during the remaining of the simulation, the estimator can accurately track
the rather slow variation experienced by 𝑅𝑖.

FIGURE 10 (a) Internal resistance evolution. (b) Resultant 𝑆𝑜𝐻𝑅 evaluation.
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4.2.3 Self-discharge

The self-discharge of VRFB is represented with the inclusion of the 𝑅𝑠𝑑 resistance. During VRFB healthy operation, the self-
discharge effect is negligible and 𝑅𝑠𝑑 is not taken into account. However, when self-discharge related degradation occurs, the
associated resistance value seriously drops indicating malfunctioning of the battery. Therefore, the safe operation area can be
delimited by a 𝑅𝑠𝑑 critical value, 𝑅𝑠𝑑𝐶𝑅𝐼𝑇

, obtained from a minimum acceptable Coulombic Efficiency of the battery. Assuming
the latter as 90% when the system operates with an 80kW power demand, in the system under study such delimiting value results
𝑅𝑠𝑑𝐶𝑅𝐼𝑇

= 56Ω. Subsequently, a health indicator 𝑆𝑜𝐻𝑙𝑜𝑠𝑠 is defined as follows:

𝑆𝑜𝐻𝑙𝑜𝑠𝑠 =
𝑅𝑠𝑑𝐶𝑅𝐼𝑇

𝑅̂𝑠𝑑

(18)

In the tests to reduce the simulation time, an abrupt (not realistic) self-discharge degradation is emulated in t=690 min, by
instantaneously decreasing 𝑅𝑠𝑑 to 30Ω, going below its critical value. As previously stated in subsection 3.1, note that the 5th
order estimator does not provide accurate results in brief periods, i.e. in the range of the simulation interval, when the battery
is healthy with a high 𝑅𝑠𝑑 (in any case, inconsequential for the healthy VRFB model). Conversely, when the battery degrades
and the resistance critically falls (𝑅𝑠𝑑 < 𝑅𝑠𝑑𝐶𝑅𝐼𝑇

), the precision of the estimation substantially improves, even in the short term,
turning the 5th order estimator into a proficient detector of critical self-discharge conditions (as can be appreciated in Figure 11).

In the figure, the 𝑆𝑜𝐻𝑙𝑜𝑠𝑠 evolution, together with the 𝜆𝑚𝑖𝑛(𝐑(𝑡)), the active estimation periods and the achieved estimation
precision, are presented. As expected, the abrupt degradation event causes the real 𝑆𝑜𝐻𝑙𝑜𝑠𝑠 to cross the critical limit. As soon as
the PE requisite is fulfilled and the estimator is active, the estimated 𝑆𝑜𝐻𝑙𝑜𝑠𝑠 also enters into the critical operation area, VRFB
self-discharge degradation is detected and a membrane revision is indicated.

5 CONCLUSIONS

It has been established that the Vanadium Redox Flow Battery is an energy storage technology that possesses huge potential to
be incorporated in new distributed hybrid generation systems, particularly complementing renewable energy sources. However,
to turn the VRFBs into efficient and competitive ESSs, improvements are still required in several areas, such as stack design and
materials, power electronics and control, and modelling and on-line battery parameter estimation.

In this paper, it was firstly proved that the latter issue can be successfully tackled through the proposed estimation methodology,
based on a RLS algorithm with forgetting factor in combination with sliding mode filtering differentiators. This conjunction
allowed to track the VRFB’s time-varying parameters with a prescribed degree of accuracy, robustness and noise rejection
capacity.
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FIGURE 11 Self-discharge State of Health 𝑆𝑜𝐻𝑙𝑜𝑠𝑠.

Secondly, this work was particularly focused on a topical stationary application, i.e., electric vehicles fast charging stations,
a strategic field due the proliferation of EVs. The considered charging station is powered by a hybrid topology that combines a
conventional grid with a wind turbine and incorporates the VRFB acting as a buffering ESS, allowing sustainability enhancement
and installed power reduction.

In spite of these encouraging features, this hybrid system presented a challenge from the estimation viewpoint, due to inter-
mittent lack of excitation persistence, for instance during periods of absence of wind. The proposed methodology overcame this
problem by continuously checking the VRFB’s current and voltage persistence. The goal was twofold. On the one hand, to deter-
mine the periods of sufficient PE, in order to validate the estimation. On the other hand, to detect periods of insufficient PE, hence
to inject an appropriate small-magnitude persistent current signal. In both cases, the accuracy of the estimates was ensured.

Another important outcome of this research was the capacity to on-line monitoring the battery status. Based on the accurate
time-varying parameter estimates provided by the proposed RLS-SMFD methodology, valuable information of the VRFB’s SoC
and the SoH was computed. For the SoC, a procedure based on an updated estimation of the system’s open circuit voltage was
utilised. For the SoH, three indicators were taken into account: the reduction of the battery maximum capacity (related to side
reactions or asymmetric diffusion), the increase of the internal resistance (usually due to electrodes or membrane degradation)
and the rise of the self-discharge (due to exchange membrane deficiencies). Thanks to the proposed methodology, by processing
these indicators on-line, any sign of degradation could be rapidly detected.

To conclude, as future work, four main lines are being considered by the authors:
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∙ A comparative analysis of the equivalent circuit model and the more complex electrochemical models is planned for the
next stage of this research. It is of particular interest to find relations between the parameters of both models, leading to
a fuller understanding of the VRFB behaviour and its characterisation. The combination of such comprehensive models
with the proposed estimation methodology, will result not only in the availability of additional meaningful and thorough
information of the VRFB, but also in leveraging the design of advanced controllers for the system.

∙ Efforts are undertaken to further improve the proposed estimation methodology. Encouraging results are being obtained
regarding the reduction of the estimation time 𝑇𝑒, by including a time varying adaptive gain. Besides, it is also planned
to explore other alternatives, such as RLS with variable forgetting factor methods or different Kalman-based estimation
techniques.

∙ A proficient supervisory strategy to regulate the power flows between the hybrid EV charging station modules will be
developed. This supervisory control setup will target performance optimisation of the system as a whole, increasing its
efficiency and reliability, while extending the lifetime of the VRFB and associate devices.

∙ Also, it will be assessed the convenience of expanding the proposed hybrid topology, by incorporating other sustain-
able non-conventional energy technologies, such as solar power, as an energy source, and hydrogen/fuel cells, as a
complementary storage system.
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