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Abstract. An algorithm for the reconstruction of a surface from a point sample is pre-
sented. It proceeds directly from the point-cloud to obtain a cellular decomposition of
the surface derived from a Morse function. No intermediate triangulation or local implicit
equations are used, saving on computation time and reconstruction-induced arti�ces. No a
priori knowledge of surface topology, density or regularity of its point sample is required to
run the algorithm. The results are a piecewise parametrization of the surface as a union of
Morse cells, suitable for tasks such as noise-�ltering or mesh-independent reparametriza-
tion, and a cell complex of small rank determining the surface topology. The algorithm
can be applied to smooth surfaces with or without boundary, embedded in an ambient
space of any dimension.

Introduction

Reconstruction of a surface in space from a sample of points on it is a question to which
considerable attention has been devoted in the areas of Computational Geometry and Com-
puter Graphics ([3]). The authors' goal was a fast algorithm for topology identi�cation
and parametrization of surfaces with boundary was required. The qualities were required
for robotic handling of textiles, but are hoped to make the algorithm �t to study higher
dimensional algebraic varieties.

Di�erential Topology has tackled the piecewise parametrization problem for manifolds
through Morse functions. Applying this idea directly to the sample point cloud of a sur-
face was suggested by [8],[9], who propose an algorithm for point clouds with a known,
homogeneous density of sampling. Cazals et al ([2]) propose a Morse decomposition scheme
from point clouds sampling manifolds of any dimension. The complexity of their algorithm
preserves the interest in simpler schemes for low dimension.

The authors report in this work a complete Morse cell decomposition algorithm for sur-
faces of any topology, with or without boundary, which can be applied to sample point
clouds without a priori knowledge of sampling density or regularity, or of surface topology.
It can be applied to surfaces in any ambient dimension. We use the gradient �ows of [8],[9]
as the starting point, but then detect saddle points and their Morse cells by studying the
level sections of these �ows.
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Figure 1. A sampled knotted
torus: the black line is the di-
rection of the height function;
local maxima, resp. minima,
are painted red, resp. black;
saddle points are painted blue;
their 1�cells are outlined in blue.

1. From Morse theory for manifolds...

Let M be a smooth compact manifold. A map f : M → R is Morse if it is C2, has
only �nitely many critical points, and at all of these the Hessian d2f(P ) is nondegenerate.
Classical Morse theory (see [6]) shows that a generic Morse function f induces, through its
gradient �ow, two decompositions of the manifold M :
1. As a CW complex (see [7]): Each critical point of f , together with its unstable manifold for
the vector �eld −∇f , forms a cell which is topologically a ball, whose boundary attaches to
lower-dimensional cells. A global piecewise parametrization of M is achieved, and a Morse-
Smale complex, with the critical points of f as a basis, computing the singular homology of
M .
2. As level sets: M is foliated by the level sets f−1(c). For regular values c these level sets
are submanifolds of M with codimension 1, with f−1(c1) ∼= f−1(c2) if no critical value of f
lies between c1 and c2. The transformation of the level set when c crosses a critical value of
f is a surgery ([6]).

The success of Morse theory comes from the fact that Morse functions, and the Morse-
Smale transversality required for the above analysis, are generic among C2 maps from M to
R. For instance, the height function in a random direction in RN has probability 1 of being
a Morse-Smale function. Morse theory also extends to manifolds with boundary ([5]).

2. ...to point clouds

Let X ⊂ RN be a point cloud sampling a compact surface S, possibly with boundary.
Determine the neighbours of each point P in the sample, e.g. proceeding as outlined in
Sect. 3. Choose a unit vector v ∈ RN such that the height function f(x) = x · v has
di�erent values in all points of X, and de�ne the gradient (or upwards), resp. -gradient
(or downwards) �ows of f by sending every point P in the cloud to its neighbour which
maximizes the slope of growth of f , resp. makes f decrease with the most negative slope.
Points where f cannot grow, resp. decrease, are local maxima, resp. minima of f in X.

Interpret the downwards �ow of f on X as a graph with edges connecting each point in
the cloud to its downwards neighbour. The intersections of this graph with the hyperplane
x ·v = c are point samples for the level set f−1(c) on the original surface S, with some noise
added by the linear interpolation. This level set consists of �nitely many simple curves,
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either closed or with edges in the boundary of S. The curves can be reconstructed, e.g. as
explained in Sect. 3.

Perform these level set intersections at n equispaced levels ci = c0 + i · h ranging from
c0 = min f(X) to cn = max f(X). The number of level sections n must be selected, the idea
is that all surface handles whose range in height is h or greater will be detected. Changes
in the topology of the level set are now variations in the number of curves. Each surgery
in the level set induced by its going over a saddle point of f can be tracked by two pairs of
neighbours in the sample of a level set which end up in di�erent connected components of
the other level set after upwards or downwards �ow.

Figure 2. Change in level set when crossing a critical value in a surface
(left) and point cloud (right): note the change in neighbours among the 4
marked points after the �ow.

Following the 4 points in these 2 pairs in the downwards �ow, and their pairing according
to closeness, the level at which the pairing changes marks the position of the saddle point.
The unstable variety of this saddle point for the �ow of −∇f is approximated by taking the
two pairs of neighbouring points at the level of f immediately below the saddle point, and
averaging the downward orbits of each pair. These computations have a margin of error
O(d), where d is the local variation of height among neighbouring cloud points.

3. Implementation

The �rst step is the identi�cation of a set of neighbours of each point in the cloud.
Merging usual criteria, we take 2 points as neighbours when (i) their Voronoï cells in the
decomposition of ambient space RN induced by X are adjoining, and (ii) each point is
among the k nearest neighbours of the other in the cloud, with k ∈ [6, 12] as suggested by
sphere packing on surfaces.

The boundary is identi�ed in the point cloud by PCA analysis of tangent spaces at each
point cloud using its neighbours (as in [1]). Neighbours of a boundary point cluster in a
semispace.

Curve reconstruction is used for boundary parametrization, and later for level set recon-
struction when we intersect the gradient �ow graph with level hyperplanes. A variant of
the NN-Crust algorithm of T. Dey ([3]) is used.

Once the saddle points of the height function and their (un)stable varieties have been
found, the piecewise parametrization for the entire surface follows: 0-cells are the local
minima, 1-cells have been parametrized at saddle point detection, and each 2-cell can be
parametrized from the tree formed in it by the upwards �ow to its unique maximum, e.g.
with the shape-preserving algorithm of Floater ([4]).
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Finally, the boundary relations given by the downwards �ow on the cells give us the
Morse-Smale complex and singular homology of the surface S.

Figure 1 shows our algorithm applied to a point sample from a torus, embedded in R3

along a (2,3)-toric knot. The algorithm correctly detects 2 local maxima, 2 local minima
and 4 saddle points for the height function. Out of a point cloud of 30.000 points, a
parametrization of the surface into 8 cells is found, and from this its topology.

4. Conclusions

The algorithm presented in this work successfully reconstructs a surface S by �nding
a Morse cellular decomposition from a cloud of sampled points. The advantages of this
approach are:

• A global piecewise parametrization of the surface is found, with number of pieces
O(1000) times smaller than that of sample points in typical examples.

• The topology of the surface can be deduced immediately from the cellular decom-
position.

• The algorithm is robust: it always produces a surface, and it captures the topological
features of the sampled surface with a size greater than the typical distance between
sample points.

• In presence of noise in the sample points position, the parametrization allows the
use of a range of �ltering techniques while preserving the surface topology.

• The algorithm can be applied to surfaces in space RN for any ambient dimension
N .

The authors expect to extend this algorithm to the reconstruction of higher dimensional
manifolds by iterating the hyperplane sections, reconstructing the manifold from lower di-
mensional slices. A further extension would be to the study of real algebraic varieties of
any dimension, where point cloud samples can be obtained from their equations and re�ned
where necessary. This is hoped to lead our method to detect a Whitney strati�cation, and
the Morse cellular decomposition after [5] of the variety, by purely numeric methods.

References

[1] Cao, Li, Sun, Azadi, Zhang, E�cient Curvature Estimation for Oriented Point Clouds.
arxiv.stat.ML.1905.10725

[2] Cazals, Roth, Robert, Christian, Towards Morse Theory for Point Cloud Data, Research Report RR-
8331, INRIA. 2013, pp.37.

[3] T. Dey, Curve and surface reconstruction. Algorithms with mathematical analysis. CUP, 2006.
[4] M. Floater, Parametrization and smooth approximation of surface triangulations, Computer Aided

Geometric Design 14 (1997) 231�250.
[5] Goresky, MacPherson, Strati�ed Morse Theory. Springer Verlag, 1988.
[6] M. Hirsch, Di�erential Topology. Springer Verlag, 1976.
[7] J. Munkres, Elements of Algebraic Topology. Addison-Wesley, 1984.
[8] Gao, Sarkar, Zhu, Morse-Smale Decomposition, Cut Locus and Applications in Wireless Sensor Net-

works, 2008.
[9] Zhu, Sarkar, Gao, Topological Data Processing for Distributed Sensor Networks with Morse-Smale De-

composition, IEEE INFOCOM 2009 (pp. 2911-2915).

Institut de Robòtica i Informàtica Industrial, CSIC-UPC. Barcelona, Spain
Email address: fcoltraro@iri.upc.edu


