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Perturbation-Based Stiffness Inference in Variable
Impedance Control

Edoardo Caldarelli, Adrià Colomé, and Carme Torras

Abstract—One of the major challenges in learning from
demonstration is to teach the robot a wider set of task features
than the plain trajectories to be followed. In this sense, one
key parameter is stiffness, i.e., the rigidity that the manipulator
should exhibit when performing a task. The required robot
stiffness is often not known a priori and varies along the
execution of the task, thus its profile needs to be inferred
from the demonstrations. In this work, we propose a novel,
force-based algorithm for inferring time-varying stiffness profiles,
leveraging the relationship between stiffness and tracking error,
and involving human-robot interaction. We begin by gathering a
set of demonstrations with kinesthetic teaching. Then, the robot
executes a perturbed reference, obtained from these demonstra-
tions by means of Gaussian process regression, and the human
intervenes if the perturbation makes the manipulator deviate
from its expected behaviour. Human intervention is measured
and used to infer the desired control stiffness. In the experiments
section, we show that our algorithm can be combined with
different types of force sensors, and provide suitable processing
algorithms. Our approach correctly infers the stiffness profiles
from the force and electromyography sensors, their combination
permitting also to comply with the physical constraints imposed
by the environment. This is demonstrated in three experiments of
increasing complexity: a motion in free Cartesian space, a rigid
assembly task, and bed-making.

Index Terms—Compliance and impedance control, learning
from demonstration, probabilistic inference.

I. INTRODUCTION

RECENTLY, robotic manipulation has been challenged by
increasingly complex applications that involve interac-

tion with humans outside standard industrial scenarios. In such
cases, human experts need to transfer skills to robots in a flex-
ible, yet accurate manner. One popular way of teaching these
skills is by means of learning from demonstration (LfD) [1]. In
LfD, the tasks are implicitly encoded within a set of multiple
repetitions, executed by a human. These demonstrations can be
therefore processed with learning algorithms, and reproduced
by the robot. One effective way of achieving LfD is by means
of kinesthetic teaching [2]. In this method, the human directly
moves the robot, so as to make it perform the desired task
correctly, while recording the data to be processed.
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Fig. 1. The main human-robot interaction phase involved in our learning
algorithm. The robot follows a reference subject to a perturbing force in x
(the grey curve in the plot), while the human corrects its trajectory if the task
specification is violated. The force measurements along the perturbation’s
axis, obtained with a force sensor and with an elecromyography bracelet, are
shown in blue resp. orange in the plot.

One key aspect of LfD is the algorithm that is chosen to
process the available human demonstrations, especially the
trajectories to be followed by the robot. Among the most
popular approaches, we can consider probabilistic movement
primitives (ProMPs) [3]. While largely used, these models
are parametric, and require an explicit tuning of the model’s
parameters to fit the trajectory. To alleviate the burden of
parameter tuning, other models can be used, such as Gaussian
processes (GPs) [4], which offer a flexible, non-parametric
model to be used to encode the robot’s trajectories [5].

In addition to the choice of the trajectories’ processing
algorithm, LfD poses the challenge of identifying which
information, besides the trajectory, should be taught to the
robot. In particular, one parameter that is often involved in
LfD is the stiffness, or impedance, that the robot should exhibit
while performing a task. A complex skill may require a time-
varying rigidity in the arm, that adapts to the interaction with
the environment while fulfilling the other requirements in the
task specification (i.e., precision). This leads to the so-called
variable impedance control (VIC).

A relevant research question in VIC is how to retrieve
a stiffness specification from the human demonstrations.
A well-established way of obtaining these profiles is by
means of the variance of the human demonstrations [6]–[9].
In principle, a high variance should correspond to a low
stiffness, and vice versa. However, as extensively discussed
in [10], a variance-based approach may be sub-optimal,
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or even harmful, in presence of environmental constraints.
In this case, a low stiffness is desirable, even though the
precision is high thanks to the constraints. Building on
these observations, [10] proposes to derive the stiffness
directly from the forces of the human controlling the learning
process, estimated by means of an electromyography (EMG)
signal. This approach introduces the fundamental concept of
force-based stiffness inference. However, directly inferring the
stiffness from force measurements may be in turn suboptimal,
e.g., when muscle contraction is due to the weight of an
object being moved by the human demonstrator. In this case,
the weight could be easily compensated by the manipulator’s
control algorithm, without the need of changing the stiffness
values. A complementary view on VIC proposes to adapt
the stiffness to the contact forces between the robot and the
environment [11]. In this case, the adaptation of the stiffness is
learnt by means of a continuous dynamic interaction between
the robot and the environment, both during the training phase
and during task execution. As discussed in [11], this might be
suboptimal in cases where the robot has small or null dynamic
interaction with the environment, e.g., in quasi-static tasks.

In this work, we propose a novel, force-based method for
stiffness inference in VIC. In particular, we achieve this by
leveraging the relationship between stiffness, perturbations
and tracking error, firstly explored in [12], [13]. After an
initial phase of kinesthetic teaching, the manipulator executes
multiple perturbed motions, and the human is required to
correct such motions if the task specification is being violated,
as shown in Fig. 1. The measured interaction forces, along
with the perturbations, are used for the stiffness’ inference. In
contrast to [12], our perturbations are generated automatically
with an optimization-based algorithm, instead of pre-defined
motions of the human supervisor. In this way, full control on
the perturbations’ profile is achieved. Moreover, the human
supervisor is only required to correct the trajectory according
to their expert knowledge of the task being considered,
rather than the actual learning algorithm used. Once the
stiffness information is collected in the form of symmetric
positive-definite matrices, further adaptation of the stiffness
profile can be performed, as discussed, e.g., in [14], where
such matrices are assumed to be known.

With our learning pipeline, the robot has full knowledge
about the stiffness profiles at each time instant, without the
need of further external stimuli. Moreover, our algorithm
performs a decoupling of the different degrees of freedom
(DOFs) considered. This choice allows to tune the stiffness
in all DOFs, or in a chosen subset only, and does not require
prior knowledge about which DOFs need to be compliant or
stiff. Furthermore, along with the GP-based encoding of the
trajectories, it reduces the number of parameters to be inferred
from data. Lastly, we test our algorithm with different force
sensory equipment, providing suitable processing algorithms
for each one of them.

This paper is structured as follows. In Sec. II, we list the
main concepts at the basis of our method. In Sec. III, we
present our novel contribution. The experiments are shown in
Sec. IV, while the conclusions are reported in Sec. V.
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ṗ

Fig. 2. The block scheme of our human-robot interaction phase, for a certain
DOF. The human is compensating the perturbations p by watching the arm
reproduce the demonstrated trajectory, with an additive perturbation.

II. PRELIMINARIES

Here, we list the main preliminaries to our work.
1) GP-Based Encoding of Trajectories: Let us consider a

1-dimensional time series, x(t). A GP [4] specifies a prior
distribution over the function x(·), depending on a mean
function µ(·) and a kernel k(·, ·). In particular, any finite
subset of the values of x(·), which we denote x(t), is a
Gaussian random vector whose mean and covariance are given
by µ(t) and k(t, t). While the mean function is commonly
assumed to be 0, the kernel function is parametrized with a set
of hyperparameters ϕ, inferred, e.g., by maximum-likelihood
estimate (MLE). We can assume that we have access to noisy
measurements of x(t), obtained with a zero-mean Gaussian
noise with constant variance. From this, we obtain a posterior
distribution of the time series at some test inputs, given the
noisy observations. In an LfD scenario, the trajectory to be
encoded consists of multiple degrees of freedom (DOFs). In
this case, assuming that all DOFs are fully observed, each of
them can be processed by fitting an independent GP [5]. In a
realistic scenario, the noise corrupting the function’s values is
time-dependent. Thus, a second GP prior can be used to model
the noise variance. The combination of the GP on the mean of
the observations, and the GP on the noise variance forms the
well-known heteroscedastic GP (HGP). These chained GPs
lead to intractable integrals, and approximate inference needs
to be done in order to fit the HGP to the data. Here, we use
the expectation-maximization (EM) based approach described
in [15]. Usually, multiple demonstrations of the same task are
performed. Here, we pre-process all the demonstrations of a
task by aligning them with dynamic time warping (DTW) [16],
and fit an HGP to the union of the demonstrations.

2) Impedance Control of Manipulators: Several control
schemes can be used to control the manipulator executing
the task. In particular, we consider control in Cartesian space,
as it is particularly suitable for the LfD scenario [17]. One
popular control scheme leverages the well-known relationship
between the generalized forces applied to the end-effector (EE)
of a manipulator (fm), and the resulting joint torques (τ ).
Let J be the Jacobian matrix of the robot. We can use an
impedance control scheme, to obtain the following control law,
for stiffness and damping matrices K and D, reference xr and
measured EE position and velocity x, ẋ:

τ = JT [K(xr − x) +D(ẋr − ẋ)]. (1)

If K and D are diagonal, the manipulator is controlled by
means of diagonal control. This approach assumes no coupling
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Fig. 3. The flow chart describing the steps of our algorithm for stiffness inference. In the chart, we can identify the two main phases that compose our
pipeline. In red, we report the standard kinesthetic teaching steps. Then, the blocks within the solid black contour represent the interactive learning phase,
where the human-robot interaction forces are measured. The forces can be measured with different sensors (force sensor, EMG bracelet).

between the DOFs of the manipulator [10].
3) Bayesian Optimization: Bayesian optimization (BO) is

a gradient-free optimization technique that can be used to find
the extrema of non-convex functions. In this work, we use BO
with expected improvement, as presented in [18].

III. PROPOSED METHOD

In this section, we present our pipeline for learning the time-
varying stiffness profiles of a robotic manipulator from human
demonstrations. We begin by recording multiple demonstra-
tions of a task, from which we obtain a reference. Then, as a
second phase of the algorithm, the robot executes a perturbed
version of the reference. A human supervises the motion
and counteracts the perturbations, if the task specification is
violated. The interaction force is measured and used to infer
the stiffness. As we will discuss in Sec. IV, several options
exist to measure this force. In particular, we consider using a
force sensor on the robot’s EE, and an EMG bracelet on the
supervisor’s forearm. If the robot is moving in free Cartesian
space, then the two sensors are equivalent. However, the EMG
signal needs a heavier processing, as we shall discuss in
Sec. IV. Thus, if available, the force sensor is preferable.
If the robot’s motion is constrained by the environment,
we must combine the two sensors, to differentiate between
the environment’s and the human forces. Note that, in the
following, we consider one DOF at a time, i.e., the quantities
involved are scalars, in line with diagonal control. Thus, we
drop the bold notation used in Eq. (1) for vectors and matrices.
Furthermore, we assume that a minimal representation of the
orientation is used (e.g., with Euler angles). If this is not the
case, we can refer to the processing described in appendix.
To lighten the notation, in the following parts, the DOF index
which all quantities depend on is omitted. The forces shown
are generalized forces, i.e., forces for the position, and torques
for the orientation DOFs.

A. Stiffness and Perturbations

As a start, let us consider the impedance control scheme
presented in Sec. II. In such a control scheme, the stiffness
relates the error in the EE’s pose, caused by a perturbation
along a certain axis, and the force exerted on the EE, along
the same axis of the error. Thus, if we want to measure the
stiffness of a human demonstration, we might perturb it with
a known disturbance, and measure the human force reacting
to it. However, applying such perturbations with humans only
is not straightforward, since it might prevent us from having
full control on the perturbation model. Thus, we can adopt a

framework in which both a human demonstrator and a robot
are involved, and interact, as we shall see in the following.

1) Unperturbed Trajectories: Our algorithm begins by
recording a set of trajectories for a given task, by means of
kinesthetic teaching. This constitutes a set of unperturbed
samples. Such samples are processed by means of HGP
regression as described in Sec. II, to retrieve a reference (the
posterior mean of the GP) and the posterior variance.

2) Introducing Perturbations: Once the unperturbed trajec-
tories have been collected and processed, the robot executes
a trajectory where the reference is spoiled by an additive
perturbation. Naturally, the robot would follow the spoiled path
and thus would move away from the true desired trajectory.
A human supervising the execution corrects the trajectory by
dragging the robot’s EE, if the task specification is being
violated1. Note that, if the task is already constrained by
the environment, the human does not need to interact with
the robot. Once the interaction force is measured, a newly
perturbed trajectory is executed.

3) Perturbations and Variance: Intuitively, the perturba-
tions should affect different parts of the trajectory, to fully ex-
plore the stiffness profile. However, we do not need to perturb
where the posterior variance of the unperturbed trajectories
is large. Intuitively, a large variance means that the human
demonstrator was not caring about precision in this part of
the trajectory, fully exploring the space of available positions
of the EE. On the other hand, a small variance at a certain part
of the trajectory might correspond to three different scenarios:

• a disturbance does not affect that portion of the trajectory
because the stiffness is high;

• a disturbance does not affect that portion of the trajectory
thanks to environmental constraints;

• that portion of the trajectory has not been perturbed yet,
so we cannot know whether the stiffness needs to be high
or low.

4) Knowledge Function: It is clear from the observations
above that the variance and the disturbances contribute to our
knowledge of the stiffness profiles. In particular, we should
place the new disturbance at a point in time where we have a
small variance and we have not registered a relevant perturba-
tion yet. We can therefore introduce the notion of knowledge
function, that will be the key of our perturbation algorithm.

Definition III.1. Let Ip be the number of perturbed trajectories
already executed, and σ(t) be the posterior standard deviation

1The stiffness of the robot in this phase should be small enough to allow
the human to correct the robot’s trajectory. In turn, the tracking needs to be
performed slowly.
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(a) Reference signal (GPs) (b) Force sensor (c) EMG bracelet

Fig. 4. Fig. 4(a): reference trajectory in our PoC experiment, with standard deviation. The posterior mean is slightly curved, since only a few demonstrations
are used, and the demonstrator was trying to explore the EE positions while remaining within the admissible bounds. In Figs. 4(b) & 4(c): the corresponding
estimated stiffness profile, obtained by means of HGP regression. In blue, we show the empirical profile obtained after merging the different perturbed samples,
while in green we show the posterior mean (with standard deviation) of the GP. The force measurements are obtained with a force sensor on the WAM’s EE
(left) resp. an EMG bracelet on the supervisor’s forearm (right). Furthermore, the orange curve shows the stiffness profile obtained from the variance of the
DOF. Here, our algorithm and its variance-based counterpart lead to similar results, due to: the absence of environmental constraints; the human demonstrations
fully exploring the WAM’s configurations. Nonetheless, our approach leads to a clearer separation between the different stiffness regions, being also able to
infer intermediate stiffness values (such as between 5s and 10s).

(a) Trial 1 (b) Trial 3 (c) Trial 5

Fig. 5. The x-forces involved in our PoC experiment, in the most illustrative perturbed trials. The force has been estimated both from a force sensor
(fSENSOR

human ) and from an EMG bracelet (fEMG
human). We further show the unperturbed reference, the perturbed one, and the actual EE position along the x

axis. As expected, the human tries to steer the manipulator to the correct position if needed, compensating the force induced by the perturbation injected in
the reference signal, fm,p. Although more noisy, the EMG force profiles match the ones obtained when using an EE force sensor, i.e., muscle activity is
detected in presence of a relevant perturbation only. The perturbations are constrained to keep the WAM within its workspace.

at time step t of the GP trained on the unperturbed human
demonstrations. Let pi(·) be the perturbation corresponding
to the i-th perturbed demonstration. This will be defined
as the standard deviation of the unperturbed demonstrations,
weighted with a Gaussian curve with an optimal center. We
define the knowledge function u(·) as

u(t) = σ(t) + p̄(t), (2)

where

p̄(t) =
∑

i∈{1,...,Ip}

pi(t). (3)

We can observe that this choice for u(·) leads to a
continuous and differentiable (provided that we use a
differentiable kernel for the GP) knowledge function, where
the standard deviation and the cumulative perturbations are
equally weighted. Furthermore, if the perturbations are sharp
enough around a certain time step, summing their tails does
not hallucinate overly large values for p̄(t), and this in turn
does not spoil the knowledge profile.

5) Optimization: At each iteration of the algorithm, we
solve the following optimization problem, to retrieve the point

TABLE I
AVERAGE PEAK OF EACH COMPONENT OF fhuman(t), ACROSS THE

PERTURBED SAMPLES OF OUR POC EXPERIMENT.

Axis: x y z
Average

∥∥faxis
human(t)

∥∥
∞ [N]: 12.0± 8.6 2.7± 1.5 3.2± 1.7

t∗ of minimum knowledge, with a time horizon T :

t∗ = arg min
t∈[0,T ]

u(t). (4)

This optimization problem has a scalar domain. Furthermore,
the objective function is costly to evaluate (due to the poor
scaling of GPs to large datasets), and non-convex. Thus, it is
optimized by means of BO.

6) Perturbation Profile: Once we have found t∗ as in the
previous paragraph, we can design a suitable perturbation
profile. In particular, from the scheme in Fig. 2, it is clear
that the perturbation is the difference between the actual
reference sent to the controller, and the true posterior mean
of the unperturbed GP. If we rescale this deviation by the
posterior standard deviation σ(·), we obtain the well-known
Mahalanobis distance Dm(·) [19] between the perturbed tra-
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Fig. 6. The six stiffness profiles inferred in our assembly task, processed both without and with a combination of sensed EE forces and EMG signals. As
expected, if we use the forces only, we obtain hallucinated stiffness profiles (in pink), that do not correspond to an optimal choice of the stiffness values.
Conversely, the EMG helps the algorithm filtering out the forces exerted by the environment. The trajectory is unconstrained when the WAM is approaching
the trail (at approximately 8s). Once inside the trail, the EE pose is constrained, and the stiffness can (and should) be low. Again, we show in orange the
profile obtained from each DOF’s variance. This approach is indeed suboptimal, as the stiffness is overestimated.

jectory sample and the posterior unperturbed distribution at
the same time instant:

Dm(t) = p(t)/σ(t). (5)

Ideally, we want Dm to have a known profile, so that it reaches
a maximum at the point of minimum knowledge, t∗. This
guarantees that, at such a point, we have a large perturbation
that moves the robot far from the desired trajectory. This can
be achieved by setting Dm to be a Gaussian, sg(w, c, t), where
g(w, c, t) ∈ (0, 1], ∀t. Such a curve is parameterized with a
width w, that identifies the interval around t∗ in which we
have a relevant deviation, a center c = t∗, and a scale s > 1,
that modulates the magnitude of the perturbation2. Thus, we
obtain the following:

p(t) = sσ(t)g(w, c, t). (6)

This model guarantees that the disturbance is pushing the
reference trajectory at most s standard deviations away from
the reference. This has two beneficial effects. On one hand,
we are exploring by making the robot deviate from the true
reference. On the other hand, we take into account the pre-
cision information coming from the demonstrations, to avoid
overly large perturbations that may damage the robot and/or
the environment. To make the perturbations clearly visible
to the human supervising the learning process, we slightly
modify Eq. (6) by setting a minimum offset on the posterior
unperturbed standard deviation. This offset can be computed
as the standard deviation between the real trajectory executed
by the robot and the unperturbed reference, which we denote
by σ̂. Therefore, we obtain

p(t) = s [σ(t) + σ̂] g(w, c, t). (7)

Our perturbation model is a generalization of a simpler per-
turbation policy, that would consist of applying a perturbation
proportional to σ(·) (i.e., w → ∞). This approach, however,
might be harmful for the robot, in presence of environmental
constraints, as a prolonged pressure might damage the EE. For
this reason, a limited bandwidth is advisable, in compliance
with the experimental setup available. Likewise, s needs to be

2To ensure variability across the perturbations, these parameters are sampled
independently from suitable Gaussian distributions. To ensure symmetry of the
perturbations, their sign follows a Bernoulli distribution with probability 0.5.

Fig. 7. The position stiffness inferred in our bed-making experiment. At the
beginning, the manipulator can be compliant. Once the bed sheet has been
stretched, it needs to be pulled firmly to remove the wrinkles from the surface.
Thus, the WAM needs to stiffen up along all axes of motion. Then, the WAM
lowers the sheet’s corner, so that the it lays on the mattress completely. The
contact forces between the mattress and the sheet guarantee that no wrinkles
appear, in case of perturbations acting on the EE along the x and y axes
(environmental constraints). A non-minimum z-gain between 20s and 25s
guarantees that the corner is lowered enough.

heuristically tuned, by performing some preliminary trials. In
our experiments, we kept it constant.

B. Stiffness Inference

Having outlined the two phases of our algorithm and
defined a suitable model of the perturbations, we can move
on to derive the equations used to infer the stiffness. Let
us first consider the execution of a single perturbed trial,
summarized by the control scheme in Fig. 2. From this
control scheme, we observe that the overall force being
exerted on the EE in this phase is given by:

fm = K

xr−x︷︸︸︷
e +D

ẋr−ẋ︷︸︸︷
ė︸ ︷︷ ︸

:=fm,e

+Kp+Dṗ︸ ︷︷ ︸
:=fm,p

+

External forces︷ ︸︸ ︷
fenv + fhuman . (8)

The perturbation p creates a hallucinated pose error, e+∆e,
driving the robot to a wrong position. In particular, this error
offset is equal to p, and is responsible for generating the
force fm,p compensated by fhuman, if needed.

1) Stiffness Calculation: Once fhuman is measured, we
can consider a standard impedance control scheme. Now, the
robot should be able to follow the reference trajectory, and the
stiffness of the controller, which we denote by K̃, should be
time-varying and tuned according to the data gathered before.
In this standard configuration, the perturbation p affects the
pose and velocity of the robot’s EE, as in standard control, and
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is compensated by the feedback loop of the impedance control
scheme (i.e., the reference trajectory will not be perturbed any
more). Let D̃ be the final damping. The controller now reacts
to p by exerting a force

f̃m,p = −K̃p− D̃ṗ. (9)

From the observations in the previous paragraph, we know
that the human-in-the-loop has provided a force profile that
represents the desired reaction to the perturbation p. Thus,

fhuman = −K̃p− D̃ṗ. (10)

2) Damping Calculation: The damping D̃ in Eq. (10) can
be retrieved by enforcing that the system

ẍ+ D̃ẋ+ K̃x = 0 (11)

is stable and critically damped. Conditions on stability and
critical damping lead to

D̃ = 2
√
K̃ > 0. (12)

Combining this result with Eq. (10), we get that the desired
stiffness is a solution of the equation

pK̃ + 2ṗ
√
K̃ + fhuman = 0. (13)

In particular, we get that, whenever fhuman ̸= 03,

√
K̃ =


[
−ṗ+

√
ṗ2 − pfhuman

]
/p if p ≥ 0,[

−ṗ−
√
ṗ2 − pfhuman

]
/p if p < 0.

(14)

C. Final Processing

Having run multiple perturbed trials as described in the
previous section, we can solve Eq. 13 at each time-step,
and retrieve several stiffness profiles. From these, we can
retrieve a global, noisy stiffness profile as the element-wise
maximum stiffness across all perturbed samples. This series
is then smoothed by means of HGP regression (a logarithmic
link function is used to ensure positivity of the stiffness).
Our algorithm returns stiffness values in the range [0, K̂],
according to the actual stiffness and damping employed when
the perturbed samples are executed. Each value can be re-
scaled in the user-defined range [Kmin,Kmax] as

K̃final = K̃(Kmax −Kmin)/K̂ +Kmin. (15)

To summarize, Fig. 3 reports the steps involved in our in-
teractive learning pipeline. The initial values of the inferred
stiffness are all equal to Kmin. Then, the repeated perturbed
trials refine this estimate.

3If fhuman = 0 and sign{p} ̸= sign{ṗ},
√

K̃ ̸= 0. This hallucinated
stiffness value is actually induced by the perturbation fading, and is zeroed.

IV. EXPERIMENTS

In this section, we test our algorithm in three experiments,
namely a task in free Cartesian space, a task with
environmental constraints, and an application involving
cloth manipulation. As discussed in Sec. III, we measure
the human force with a force sensor and with surface EMG
sensors. In our experiments, we use a 7-DOF Barrett WAM
robotic arm, with a diagonal impedance controller as described
in Sec. II, and as done in [9]. As force sensor, we use an ATI
force and torque sensor, mounted on the EE of the WAM. For
the EMG measurements, we use the Myo Armband, a custom
bracelet originally devised for remote gesture control, and
equipped with 8 EMG channels [20]. In both cases, the EE
pose is represented by using 7-dimensional vectors (3 DOFs
for position and a quaternion for the orientation). In order to
process the orientation DOFs with HGP regression, we project
the quaternion in a 3-dimensional Euclidean space, and then
reconstruct the reference scalar as described in the appendix
of [9]. The orientation is perturbed as discussed in appendix.

A. Proof-of-Concept Experiment

We begin our experiments with a proof-of-concept (PoC)
experiment. In particular, the WAM is required to move above
a rectangular piece of steel along the y axis of the Cartesian
space, staying within varying margins around the piece, as
shown in Fig. 4(a). We are interested in tuning the stiffness
along the x axis. 6 unperturbed demonstrations are gathered,
followed by 9 perturbed samples.

1) Force sensor: We firstly consider the force sensor. As
shown in Table I, the force exerted by the human is mostly
visible along the axis of perturbation, x. Furthermore, as
shown in Fig. 5, the forces applied by the human compensate
the perturbations, whenever these make the arm exit from the
admissible task region. Small force values due to the noise
(between −0.5N and 0.5N ) were zeroed out.

2) EMG Sensor: When using the EMG bracelet, we
process the 8-dimensional EMG profile associated to each
perturbed sample as follows. We compute a series of 8 × 8
covariance matrices, using a window sliding on the data
(each window comprises 25 points), and compute the trace
of each matrix. The trace is invariant w.r.t. permutations of
the bracelet’s channels, and is therefore robust in terms of
different positions of the bracelet on the forearm. After zeroing
out negligible trace values (≤ 5% of the largest EMG value
recorded across all trials), we rescale each series in the interval
[0, f̄m,p]. f̄m,p is the maximum possible value of fm,p in
the current perturbed trial. Each positive trace value, denoted
E , is taken as an estimate of |fhuman|. This is motivated by
observing that the human compensation mainly acts along the
perturbation’s axis, as mentioned in the previous paragraph.
Again, some illustrative examples can be found in Fig. 5.

3) Stiffness Profile: Once the force measurements are avail-
able, the stiffness K̃ is computed for each perturbed sample,
as of Eq. (13). The values of fhuman in Eq. (13) are replaced
with

f ′
human = − sign{p} ∗min{|fm,p| , |fhuman|}. (16)
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This choice guarantees that the values of the force are not
overly large, while taking into account those parts of the
trajectory where the human is not interacting with the WAM
(i.e., fhuman = 0). This is useful also when considering that
the human force and the perturbing force are not perfectly
synchronized. The trajectory for the DOF of interest, and the
stiffness profiles, are shown in Fig. 4, along with the profile ob-
tained from the DOF’s variance, as proposed by [9]. Note that
our choice of HGPs for the trajectory representation resides in
their non-parametric nature. However, our inference algorithm
is agnostic to the chosen movement primitive representation,
as long as the latter provides a probabilistic distribution from
which reliable variance estimates can be obtained.

B. Assembly Task
As a next step, we apply our algorithm to a task with

environmental constraints, inspired by the experiments carried
out in [10]. In particular, we use the WAM to insert a T-shaped
piece inside a trail, and move it until it reaches the opposite
side. In this way the WAM pose is constrained as long as
the EE piece remains inside the trail, which is 37.5cm long.
Friction inside the trail was kept low with a lubricant. We
gather 7 unperturbed samples, and sample 5 perturbations per
DOF.

1) Combining sensors: Here, we measure both the EE
force, fEE , and the EMG, processed as described in Sec. IV-A
to retrieve the scalar signal E . We propose to combine both
quantities so that

|fhuman| = sign {E} |fEE |. (17)

This model has the benefit of filtering out those EE-forces that
are due to environmental constraints, and are consequently
not associated to the forearm’s muscle activation. Without
considering the EMG signal, it would be impossible for the
algorithm to discriminate between human and environmental
forces acting on the EE, as shown in Fig. 6.

C. Bed-Making Experiment
As a final experiment, we use the WAM in the task of

bed-making, and we aim at tuning the position gains. In
this task, the EE holds one corner of a folded bed sheet,
and is required to move it so that the bed is covered and
no wrinkles appear on the surface of the sheet. As in a
realistic scenario, the sheet is partially blocked under the
bed’s mattress. A priori, it is not straightforward to identify
how the constraints imposed by the mattress would affect
the stiffness. Furthermore, due to the deformable and slightly
elastic nature of cloth, the WAM must pull the sheet firmly
once it has been stretched, in order to remove the wrinkles,
even though, at that point, the sheet tends to oppose the
EE motion. The force sensor was combined with the EMG
sensor as described in the previous subsection, since we have
environmental constraints. 5 unperturbed demonstrations were
used, along with 5 perturbed samples per DOF. As shown in
Fig. 7, our algorithm is able to retrieve meaningful stiffness
profiles, that correspond to the different phases of the motion.4

4In the supplementary video, we show the robot performing the task with
the inferred stiffness profiles, without and with disturbances on the EE.

TABLE II
COVERAGE Cα [%] ACHIEVED IN OUR EXPERIMENTS, FOR α = {1, 2, 3}.
OUR KNOWLEDGE-BASED PLACEMENT APPROACH IS COMPARED WITH A

UNIFORMLY RANDOM PLACEMENT OF THE PERTURBATIONS (MEAN ±
99% CONFIDENCE INTERVAL WITH 5 SEEDS).

Experiment Knowledge-based Random
C1 C2 C3 C1 C2 C3

PoC 100± 0 100± 0 100± 0 100± 0 99± 2 98± 3
Assembly 89± 0.2 62± 0.9 55± 1 84± 3 57± 3 49± 5
Bed-making 99± 0.2 99± 2 96± 2 92± 4 85± 4 80± 4

TABLE III
NUMBER OF PERTURBED TRIALS PER DOF, NC , AND TOTAL NUMBER

NC,tot OF PERTURBED TRIALS, TO ACHIEVE A RANDOM-BASED AVERAGE
COVERAGE C1 GREATER OR EQUAL TO THE ONE OBTAINED WITH OUR

KNOWLEDGE-BASED METHOD (MEAN COMPUTED WITH 5 SEEDS).

Experiment Knowledge-based Random
NC NC,tot NC NC,tot

Assembly 5 30 10 60
Bed-making 5 15 9 27

D. Validating the Perturbation Policy

As outlined in Sec. III, we use a knowledge-based policy to
place the perturbations within the domain of the trajectory. To
validate if we are properly reducing the ambiguity associated
to the regions with low variance, we introduce the following
coverage Cα, that counts the number of time-steps at which
either the variance or a perturbation are larger than an
arbitrary threshold.

Definition IV.1. Let I(·) be the indicator function, ∆ the
number of DOFs, M the number of time-steps, σd(·) the
posterior standard deviation of DOF d, and pdj (·) the j-th
perturbation applied to DOF d. Furthermore, let σ̂d be the
controller tracking error of the d-th DOF as of Sec. III, and
α ∈ R+. We define the coverage as

Cα =
1

M∆

∑
i,d

I

σd(ti) ≥ ασ̂d ∨

∨
j

pdj (ti) ≥ ασ̂d

 .

(18)

Table II reports the coverage achieved in the tasks we
described before. To show the robustness of our evaluation
scheme, different values of α are used. The coverage is a
good indicator for quantifying the improvement associated to
one perturbed trial, and can be used when deciding how many
perturbed trajectories to sample. The performance of our
algorithm is compared with a uniformly random placement
in [0, tM ]. Our algorithm outperforms the baseline, achieving
a higher average coverage, and a smaller deviation than
the random policy. This is a key feature, since running the
perturbed samples is costly, as it involves using the WAM.
Our knowledge-based approach is therefore sample-efficient,
as shown in Table III.

V. CONCLUSIONS

In this work, we have presented a novel methodology for
inferring the stiffness’ profiles of a task to be performed by
a robotic manipulator. Our approach, based on the concept of
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perturbations and human supervision, easily adapts to different
sensory equipment. While our work focused on introducing the
framework, it can form the basis of interesting future research.
For instance, the relationship between the impedance control
law, the perturbations and the resulting VIC controller might
be studied in terms of stability. Furthermore, the variance-
based methodology could be extended to the inference of full
stiffness matrices, in case large datasets of demonstrations
are available. Lastly, our perturbation strategy can also be
employed if the force measurements are not available. In this
case, the external forces could be estimated by means of an
observer as done in [21], under the assumption of negligible
modeling error. Such an approach would still require the EMG
measurements, as they allow to distinguish the human and the
environmental forces.

APPENDIX
PERTURBING THE ORIENTATION

Let us consider a non-minimal representation of the ori-
entation, such as quaternions. Given a desired quaternion
qd = [ηd, ϵd]

T and the true EE quaternion qe = [ηe, ϵe]
T ,

we get that the 3-dimensional orientation error is

eORI(qd) = (ηeϵd − ηdϵe − ϵd × ϵe) ∈ R3. (19)

Now, let us consider a local quaternion qp perturbing the
orientation reference [22], i.e., composed as

qd,p = qd ∗ qp := h(qp). (20)

According to Eq. (19), and considering that our reference
has become qd,p, this perturbation will lead to a hallucinated
orientation error, eORI(qd,p), seen by the impedance con-
troller. Note that, in this case, a perturbation on the reference
orientation might affect multiple components of the error at
the same time, leading to a perturbation on the tracking error

∆eORI = eORI(qd,p)− eORI(qd). (21)

Conversely, with a minimal representation, and a perturbation
on the first DOF, we recall from Sec III-B that ∆eORI =
[p, 0, 0]T . Interestingly, in the case of quaternions, the mapping
k(qp) := eORI(h(qp)) is linear in the components of qp. We
can further observe that eORI(qd) can be thought of as a
reference quaternion perturbed by [1, 0, 0, 0]T , i.e.,

eORI(qd) = k([1, 0, 0, 0]T ). (22)

Thus, letting Jk be the Jacobian of k(·), we have

eORI(qd,p) = eORI(qd) + Jk(qp − [1, 0, 0, 0]T ), (23)

and therefore

∆eORI = Jk(qp − [1, 0, 0, 0]T ). (24)

If we want the quaternion perturbation to affect only one
component of the error at a time (e.g., we want an error offset
of the form [γ, 0, 0]), we can obtain it as

qp = J†
k[γ, 0, 0]

T + [1, 0, 0, 0]T . (25)

qe, needed for the Jacobian calculation along with qd, can be
obtained by running the unperturbed trajectory once. In this

example, the standard deviation to be used in the knowledge
function and in the profile of γ, to match Def. III.1 and Eq. (6),
is the one of the first DOF of eORI(qd). This is obtained from
the (diagonal) covariance matrix of the vector part of qd, given
by the GPs, and by applying the method in the appendix of [9],
based on the quaternion rate matrix.
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