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Abstract— We investigated the use of impact sounds gener-
ated during exploratory behaviors in a robotic manipulation
setup as cues for predicting object surface material and for
recognizing individual objects. We collected and make available
the YCB-impact sounds dataset which includes over 3,000
impact sounds for the YCB set of everyday objects lying on
a table. Impact sounds were generated in three modes: (i)
human holding a gripper and hitting, scratching, or dropping
the object; (ii) gripper attached to a teleoperated robot hitting
the object from the top; (iii) autonomously operated robot
hitting the objects from the side with two different speeds.
A convolutional neural network is trained from scratch to
recognize the object material (steel, aluminium, hard plastic,
soft plastic, other plastic, ceramic, wood, paper/cardboard,
foam, glass, rubber) from a single impact sound. On the
manually collected dataset with more variability in the speed of
the action, nearly 60% accuracy for the test set (not presented
objects) was achieved. On a robot setup and a stereotypical
poking action from top, accuracy of 85% was achieved. This
performance drops to 79% if multiple exploratory actions are
combined. Individual objects from the set of 75 objects can
be recognized with a 79% accuracy. This work demonstrates
promising results regarding the possibility of using impact
sound for recognition in tasks like single-stream recycling where
objects have to be sorted based on their material composition.

I. INTRODUCTION

Despite rapid progress in visual-based object recognition,
physical object properties like their material composition are
challenging to extract through distal sensing. In material
recognition, image-based approaches have showed some in-
trinsic limitations due to the diversity in material appearances
[1]. Haptic or tactile exploration can be also employed for
material recognition (see [2] for a review). The sensory
modality that has been overlooked so far but that bears great
potential regarding material recognition is sound. Auditory
response from impacts on the object surface reveals im-
portant characteristics about its material composition. Like
touch and unlike vision, the sensory data induced by this
interaction mode is independent of lighting conditions or
object properties that are not relevant (like color). Contact-
based object material recognition can be relevant in a number
of application areas, like for example single-stream recycling
[3], [4], where sound could aid recognition based on vision
or touch.

Human experience of the world is inherently multimodal
and sounds allow us to infer events in the world that are
often not perceptible through vision [5]. Inspired by this,
sound is finding its way into robotics in object-material
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Fig. 1: Experimental setup. Robot manipulator pokes objects
with a closed gripper, generating impact sounds used for
material classification.

segmentation [6], attribute shape prediction [7] and material
recognition [8]. However, in these works sound is used only
as a complementary modality for vision.

In this paper, we propose to leverage impact sounds, that
is the sounds an object emits as reaction to exploratory
behavior, to learn object surface material. To this goal we
introduce the first dataset of impact sounds with material
annotations for the YCB objects and model set dataset, which
includes over 3,000 impact sounds for 75 objects and propose
a simple approach to learn a model from our dataset that
can easily be transferred in a Robotic interactive learning
pipeline (see Figure[I). Our contributions can be summarized
as follows:

e We introduce and make publicly available the YCB-
impact-sound dataset containing on average forty impact
sounds and associated videos for each object in the YCB
dataset.

« We propose a complete pipeline to predict material from
impact sounds.

o We show that 75 individual objects can be recognized
with a 79% accuracy.

e« We demonstrated that the model learned with our
dataset can be easily transferred to a robot to rec-
ognize material from impact sounds generated during
exploratory behaviors.

The remainder of this paper is organized as follows: we
first review related work in Section then we introduce
the YCB-impact sounds dataset in Section and detail
our approach and the experimental results in Section [[V]
respectively. We conclude the paper with final remarks in
Section [V]



II. RELATED WORK
A. Vision and Sound in Robot Perception

Sound is increasingly becoming an important modality
for several tasks such as scene classification [9], object
reconstruction [10], object tracking [11], robot perception
[12]. In particular, impact sounds have proved to be useful
for a variety of tasks including action recognition [13],
object-material segmentation [6], self-supervised learning of
visual models where sounds act as supervisory signals [14],
attribute shape prediction [7], joint material and geometry
classification [15], collision detection and localization [16],
material recognition [8]. However, in these works, sound is
typically used in conjunction with vision, serving a supple-
mentary role.

B. Vision-based Material Estimation

Vision alone has been largely used for material recog-
nition, even if the large variability in rich surface texture,
geometry, sensitiveness to lighting conditions, and clutter
make the problem particularly challenging. To deal with such
extreme variability, the most successful approaches employ
Convolutional Neural Networks (CNN) over larger and larger
datasets [1], [17], [18]. However, state of the art methods still
suffer from domain adaptation when the model is tested on
a target dataset whose distribution differs from the source
dataset [1].

C. Vision and Sound for 3D shape and Material Estimation

Since surface material provides useful hints for improving
the performance of 3D scene understanding, recently there
has been an increased interested in predicting material and
shape jointly from videos and impact sounds. In [8], material
is recognized by combining sound and visual geometry of
the object, including global and local geometry around the
contact point generating the sound. The model has been
validated on a new dataset of synthetic objects encoded in a
voxelized representation, where impact sounds were gener-
ated by modal sound synthesis. However, such information
is difficult to acquire when testing on real objects.

D. Haptic Material Estimation

For material recognition by tactile sensing, Luo et al. [2]
distinguish surface texture and object stiffness based recog-
nition. The former typically involves sliding along the object
surface and perceiving the vibrations using acoustic or tactile
sensors. The latter, object stiffness based tactile material
recognition, may involve tapping on the object, pressing
it against a surface, or squeezing it between the gripper
jaws. Tapping is mainly estimating the object’s hardness
(e.g. [19]), while pressing or squeezing probes its stiffness
or material elasticity.

E. Vibration-based Material Estimation

Objects typically vibrate in a set of preferred modes that
are closely related to their geometry and material properties,
with high frequencies and small scales often imperceptible to
humans. In the context of non-destructive testing [20], object

material is often inferred through the measurement of its
vibrations using contact sensors or laser vibrometers, which
are very expensive. Recently, a method to predict material
from videos by relying on visual vibrometry theory has been
proposed in [21]. However, this approach only works with
objects having fixed or known geometry.

F. X-ray based Material Estimation

X-ray diffraction (XRD) imaging has been used widely
for material identification based on the intensity distribution
of X-rays that directly interact with a material’s molecular
structure [22]. It produces high accuracy predictions trans-
mission imaging but requires access to standard reference
data that must meet homogeneity requirements, hence pre-
venting use in an interactive setting. This limitation is also
shared by X-ray Transmission Imaging technology, which is
instead used to estimate material properties [23]. Recently,
the combination of X-ray diffraction and X-ray Transmission
Imaging has also been considered [24].

G. Laser-induced breakdown spectroscopy (LIBS)

LIBS is an atomic emission spectroscopic technique for
analyzing the elemental composition of various solids, lig-
uids and gases. It works by analyzing the spectral signature
emitted by the optical emission from a high temperature
plasma of the element under consideration, which is gen-
erated by removing a very tiny part from it by a high-power
pulsed laser. However, handheld LIBS are very expensive
and the deployment of LIBS in teleoperable and autonomous
robotic platforms is still subject of investigation.

In this paper we propose a simple and portable approach
to estimate material from impact sounds that does not require
any previous knowledge about the object, nor the use of
expensive technology.

H. Material datasets

The interest in material recognition from images led to
the publication of several datasets in the past two decades.
Since the first one, the CUReT dataset [25] published at the
end of the nineties, the size of material from images datasets
scaled up from a few thousands to millions of samples [1],
[17], [18], [26], [27]. However, due to the intrinsic limitations
of visual data for material recognition, more recent datasets
combine visual information with sound [6]-[8], [14], [15] or
are based on haptic features [28] such as force, temperature,
and vibration.

To the best of our knowledge, our is the first dataset
for material recognition from impact sounds that can be
used as an independent source of information in a robotic
manipulation setup.

III. YCB-IMPACT SOUNDS DATASET

We used the YCB set of everyday objects [29]
https://www.ycbbenchmarks.com/. Our dataset of impact
sounds generated with these objects is available at
https://osf.10/Y CB-impact-sounds/. An illustration of the pro-
cess of data generation is in the accompanying video
(https://youtu.be/Y C-impact-sounds-video).
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Fig. 2: Capture setup used for our manually collected YCB-
impact sounds dataset. A metallic gripper (hold by one hand)
is used to interact with the object. Impact sounds generated
by the interaction are captured by a shotgun microphone. A
static camera is used to capture a close view of the object.

A. Manual dataset collection

We used 75 out of 77 objects of the YCB set (timer and
rubik’s cube were left out). The dataset was captured in a
room with closed windows. We placed a shotgun microphone
Rode Videomic Pro |'| connected to a digital audio recorder
Zoom HIN [f] close to the source of sound and we used the
PAL Robotics gripper made of anodised aluminium 7075-
T6 E] to interact with the objects. We also placed a static
GoPro camera Hero 4 E] on the side to capture a close top-
down perspective of the interaction (48fps) similar to those
that would have a camera placed on a robotic arm (see
Figure [2). The same person captured all the dataset in the
same place by performing three different actions to generate
impact sounds: hitting, scratching and dropping. The hitting
action was performed on average forty times by applying
a different force at different locations for each object to
capture richer data. The scratching and dropping actions were
performed on average five times each per object at different
locations and from different heights, respectively.

B. Dataset annotation

Surface material annotation was manually performed by
using visual and tactile inspection. The mass and dimensions
of the object provided by the authors of the YCB set [29]
could not be used for determining the material since often the
surface material differs from the internal material (e.g. drill).
We distinguished eleven different surface materials: plastic,
wood, ceramic, fiber, felt, foam, glass, paper, metal, rubber,

Uhttps://www.rode.com/microphones/videomicpro

Zhttps://zoomcorp.com/en/us/handheld-recorders/handheld-recorders/h 1n-
handy-recorder/

3https://github.com/pal-robotics/pal_gripper

“https://gopro.com/es/es/update/herod

leather. We also considered a more fine grained classification
that distinguished two types of metals (steel, aluminum)
and three types of plastic (soft plastic, hard plastic, other
plastic). We also found 10 objects out of 75 to be composed
of different materials (chips can, Master Chef can, Skillet
lid, fork, spoon, knife, scissors, two screwdrivers and the
hammer). For these objects, we labeled the impact sounds
with the material of the object part that generated the sound.
As can be observed in Fig. [3] the material distribution is very
unbalanced. A visual illustration of YCB objects grouped by
material is provided in Figure [4]

C. Dataset from gripper mounted on robot arm

For data collection using a robot arm, we used the Kinova
Gen 3 manipulator with a Robotiq 2F-85 gripper — see Fig.[I]
A subset of 49 YCB objects was used—the materials that do
not produce sufficiently loud impact sounds (like felt, fiber,
leather) were omitted as their response may be too weak
compared to e.g. the sound generated by robot motors. The
distribution for number of YCB objects explored per material
is shown in Table [l

The recording hardware comprised of a Rode VideoMic
Pro along with the Creative Extigy SoundBlaster E] sound
card. All audio was recorded at 44.1 kHz.

1) Teleoperated robot — impacts from the top: The posi-
tion of the object with respect to the microphone is fixed. The
Kinova robot pokes the objects from the vertical direction,
and the audio is recorded. For each object, 50 such samples
were collected for a total of 2190 impact sounds after
removing a few instances.

2) Autonomous robot operation — impacts from the side:
The robot approaches the object from the horizontal direc-
tion. Since there is a possibility that the object moves, the
audio produced is different from the vertical poke and helps
in preventing the classifier from over-fitting to one specific
audio profile. For the horizontal poke action, two different
speeds were used: 25mm/s and 14mm/s. We collected 50
samples per material for training and 10 samples per material
for testing, for a total of 660 samples.

Material # Objects
Steel 9
Aluminium
Hard Plastic
Other Plastic
Soft Plastic
Ceramic
Wood
Paper/Cardboard
Foam
Glass
Rubber

TABLE I: Material distribution of the 49 objects used in the
experiments with a gripper mounted on a robot arm.
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Fig. 3: Distribution of materials in the YCB dataset. Note that objects made of two materials appear twice. The IDs of the
objects are those introduced in [29].
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Fig. 4: Objects of the YCB dataset grouped by material.

D. Data post-processing

To detect the different impact sounds of the same object
in the raw audio signal, we used a sliding window technique.
We segmented uniformly the signal and for each segment, we
extracted the highest absolute value and compared it with the
highest absolute value in the previous segment. We assumed
that an impact occurs when a large change in the highest
absolute values between two temporally adjacent segments
is produced. Knowing a priori the number of impact sounds
present in the signal, the threshold could be easily tuned. The
audio signal in each recording was denoised by relying on
a classical denoising algorithm based on wavelet-threshold
multitaper spectra [30]. The algorithm is also very useful to
remove robot noise when the gripper is mounted on a robotic
arm. An example of denoised signal corresponding to impact
sounds generated on a paper object by a robotic arm can be
seen in Figure [3]

After denoising, we computed a spectrogram for each
detected impact sound from the denoised audio signal, with
a FFT of size 400 by using the Torch audio libraryﬁ
Since impact sounds are generally transient, we trimmed
the waveform of audio samples over time to one second in
length. We normalized the data to have a zero mean and
standard deviation equal to one. Each spectrogram therefore

Ohttps://pytorch.org/audio/stable/index.html

Raw Audio - Paper Fitered Audio - Paper

e

Fig. 5: Example of denoising, via wavelet-threshold multita-
per spectra, of raw audio signal corresponding to an impact
sound generated by a motor arm on a object of paper.

represents a concise ’snapshot’ of an audio wave which
is well suited to being input to CNN-based architectures.
Examples of spectrograms corresponding to two different
materials can be seen in Figure [6]

IV. EXPERIMENTS AND RESULTS

A. Network architecture

We trained from scratch a modified version of the
ResNet34 network [31] with a cross-entropy loss to predict
object material among 11 classes. We found such network
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Fig. 6: Example of spectrograms corresponding to two dif-
ferent materials.
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Fig. 7: ResNet34 used in the experiments. Upper blue
numbers refer to the feature map dimension. Lower reddish
numbers indicate the output size of the convolutional opera-
tor.

to have a capacity adapted to the complexity of the problem
to solve. We used gray level spectrograms of dimension
128% 128 as input. The first convolutional layer has 1 input
channel and 64 output channels, kernel size 7, padding 3 and
stride 2. The dimension of the last fully connected layer is
512 (see Figure [7).

B. Experiments on the manually generated dataset

Since the material class distribution in the YCB-model set
is very unbalanced, we used data augmentation techniques
[32] to create a more balanced training dataset. In the
experiments reported in this section, we neglected objects
of felt, leather and fiber to make results more directly
comparable with those performed with data generated by
a robot, where they were also discarded. We trained from
scratch the network for 15 epochs using a learning rate of
0.001 which decreases by a factor gamma 0.1 every seven
epochs, with momentum 0.9, and weight decay 0.02. When
including impact sounds from the same object in training
and testing, performance is very high and achieves over
90% accuracy. However, to ensure generalization capability
to unknown objects, we split the dataset in train/validation
and test set in a way such that the test set contains objects not
presented during training. The list of unpresented objects and
their material information is reported in Table [l Such split
consists of 72% training, 15% validation and 13% testing. In
this case, performance drops significantly but still achieved
nearly 60% over 11 classes (9% chance level accuracy) for
seventeen objects of the test set. In Figure [8] we show the

Material Objects
Steel padlock
Aluminium master chef can, potted met can

Hard Plastic
Soft Plastic
Other Plastic

pitcher base, chain, rope
banana, strawberry
Golf ball, small marker

Ceramic mug
Wood ‘Wood block
Paper/Cardboard Gelatin box
Foam Foam brick, washers
Glass skillet lid
Rubber racquetball

TABLE II: Independent testing set — not presented objects
and their material.

confusion matrix obtained when testing on objects presented
for the first time. As would be expected, materials that have
a strongly attenuated response, foam in particular, are hard
to identify. Paper and plastic have also lower recognition
rates; for plastic, part of the drop in accuracy is due to
misclassification within the subclasses of plastic (soft / hard
/ other).
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Fig. 8: Confusion matrix — manually collected dataset (Sec-
tion [IV-B). Confusion matrix on test set of the YCB-impact
sounds dataset.

C. Experiments on the robot-generated dataset

Experiments were carried out on the data collected from
the robotic setup to gauge how effectively the network
described in [[V-B| can transfer to similar impact sounds
generated by a robotic setup. The following experiments
were conducted:

1) Testing a randomly initialized network on audio samples
generated by the robot.

2) Testing the network pre-trained in Section [V-B] on
audio samples generated by the robot:
a) teleoperated vertical impact
b) automated horizontal impact
¢) mixture of test samples from vertical and horizontal

impact



3) Fine-tuning the network by further training it with a
sparse subset of audio samples from the robot impact
sound dataset. For every material, mixed audio samples
of known objects collected from different exploratory
behaviors were used for further training the network.

a) teleoperated vertical impact
b) mixture of test samples from vertical and horizontal
impact

The number of samples were chosen to be 50 samples
per material, 100 samples per material, and the whole
training set.

4) Retraining the network from randomized initial weights
on only audio samples form the robot impact sound
dataset.

a) teleoperated vertical impact
b) mixture of test samples from vertical and horizontal
impact
c¢) train only on sounds collected from vertical poking,
and test only on sounds collected from horizontal
poking
In all cases, the samples in the test set are only taken
from objects not presented during training (see Table [II).
The results from three runs per experiment are averaged
and shown in Table [l The confusion matrices for selected
experiments are shown in Fig E} For experiments 2) and 3),
the hyperparameters for training were not changed from
Bl

Experiment Accuracy

1 26 %

2.a 42.01%

2.b 48.31%

2.c 45.92%

3.a (50 samples/material) 53.36%
3.b (50 samples/material) 55.41%
3.a (100 samples/material) 59.83%
3.b (100 samples/material) 62.14%
3.a (avg. 175 samples/material) 65.12%
3.b (avg. 175 samples/material) 67.68%
4.a 84.7%

4.b 78.9%

4.c 71.36%

TABLE III: Experimental results with data collected by a
robotic arm.

We can see from the results that the network trained in
Section [IV-B| achieves 42% accuracy versus 26% achieved
using random weights. There is a slight difference between
the prediction accuracy for vertical and horizontal impact
sounds which is discussed later.

Fine-tuning the network with audio samples from the robot
setup in the Experiment 3.z series can increase the accuracy
from around 45% up to around 65% when more samples are
added.

If the network is trained specifically on the data from
the robot setup (Experiments 4.x), the accuracy increases
up to 84.7% (Exp. 4.1) for the vertical impacts. This is a
good recognition rate (recall that this is still on the test set
— objects not presented to the network before). Moreover,

the misclassifications are largely within the subcategories of
plastic. The fact that training and testing was done using the
same action—vertical pokes—may be realistic in an appli-
cation scenario. When both robot actions are combined—top
and side pokes—the performance drops to 78.9%.

Finally, we tested transfer from one robot action to the
other in Experiment 4c. For vertical impacts, the motion
of the objects against the direction of motion is restricted,
but during horizontal impact, they are free to slide across
the surface. The difference was investigated by retraining
the proposed network from scratch on only vertical impact
sounds and testing on only horizontal sounds. The accuracy
of 71% is reasonable and may indicate also the accuracy
that could be achieved when transferred to a different robot
setup—different robot arm, gripper, table etc. For sounds
from more rigid materials, an accuracy of 70% to 80% can
be achieved. For materials that damp the impact sounds the
accuracy drops, rubber being the most difficult material to
recognize.

D. Recognizing individual objects from impact sounds

With the dataset of impact sounds generated manu-
ally, which include 75 YCB-objects, we trained the same
ResNet34 from scratch to explore the potential of our impact
sounds dataset for object recognition. We divided the dataset
in training/validation/test in a way such that the test set
contains only impact sounds of objects not presented during
training. Our model achieves 79% accuracy at test time,
which is significant considering that there are 75 different
objects. This result is in line with previous work [33], which
has shown that sounds generated by physical interaction with
objects contain information indicative of the object. The
confusion matrix we obtained is shown in Figure [I0]

V. CONCLUSION AND FUTURE WORK

This paper proposed a learning framework and introduced
an experimental study which shows how a robot can use
impact sounds to recognize the types of surface material
of objects not presented during training. To the best of
our knowledge, this is the first experimental study which
investigates and demonstrates the suitability of impact sounds
to predict material in a robotic manipulation setting. In
addition, we tested also recognition of individual objects.

The framework was evaluated using 49 objects from the
YCB-object set made of 11 different materials and by using
different types of behavioral interactions, namely poking
from different directions under varying motion restrictions.
Overall, our experiments demonstrate that impact sounds
can be an important source of information to predict object
material. Material information can subsequently be used in
a perception-action learning loop alone or jointly with other
modalities to adjust accordingly the manipulation force and
grasp strategy, to estimate stiffness, or to recognize the object
type.

We achieved very good material recognition accuracy
(85%) on the robot setup when the same exploratory action
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Fig. 10: Confusion matrix obtained when predicting objects
from impact sounds not presented during training. For IDs
of the objects, see [29].

(vertical poking) was used. This is acceptable in a setting
when the actions is specifically designed for perception. We
have also shown transfer between different robot actions
and their parameters. Thus, material recognition from sound
could also be employed in parallel to other tasks carried out
by the robot (e.g. pick and place). As would be expected,
materials that attenuate impact sounds like foam, rubber and
paper were the hardest to classify.

We have made our dataset and trained model publicly
available on the Open Science Foundation (OSF) plat-
form (https://osf.io/YCB-impact-sounds). This dataset con-
tains data from more material categories (14). In addition,
additional actions (scratching and dropping the object —
these were not used for classification in this work) are
available, along with video recordings from the experiments.
In the future, recognition using these additional actions or
combined material estimation from audio and visual data can
be performed.
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