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Abstract—In this paper, we present an efficient and reliable
deep-learning approach that allows users to communicate with
robots via hand gesture recognition. Contrary to other works
which use external devices such as gloves [1] or joysticks [2]
to tele-operate robots, the proposed approach uses only visual
information to recognize user’s instructions that are encoded in a
set of pre-defined hand gestures. Particularly, the method consists
of two modules which work sequentially to extract 2D landmarks
of hands —ie. joints positions— and to predict the hand gesture
based on a temporal representation of them. The approach
has been validated in a recent state-of-the-art dataset where
it outperformed other methods that use multiple pre-processing
steps such as optical flow and semantic segmentation. Our method
achieves an accuracy of 87,5% and runs at 10 frames per second.
Finally, we conducted real-life experiments with our IVO robot
to validate the framework during the interaction process.

I. INTRODUCTION

Hand gestures and sign language have been used as a way
to express and communicate feelings and thoughts between
humans. Precisely, sign language is a well-known structured
system which uses hand gestures and signs. This language
serves as a useful tool for the daily interaction of deaf and
speech-impaired community. Sign language requires the use
of different parts of the body, such us hands, fingers, arms or
facial expression to convey information [3].

Previously, the communication between humans and robots
was achieved using a keyboard or a touch-screen where direc-
tives were given to the robot [4]. However, in HRI (Human-
Robot Interaction), robot’s ability to collaborate naturally with
people in a human-centered environment is a crucial aspect.
Humans do not cooperate using touch-screens, their interaction
requires the recognition and interpretation of speech, gesture
or emotion [5]. Therefore, the interest on non-touch-based
methods are catching on recently.

Speech recognition is one of the most convenient meth-
ods, nevertheless, it has some problems due to the large
variety of human accents and failing in out-of-control noisy
situations. Alternatively, there exist vision methods that use
facial expression, eye tracking or head movements [6]; but the
most understood one is gesture recognition. Vision-based HRI
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Fig. 1. The proposed approach is used to interact with robots via hand gesture
recognition.

technology is a non-touch method that is capable of expressing
the most complex information [7].

From all human body gestures it is natural to focus on
hands, as they are intuitively used in natural human to human
communication. The main reason to pursue this touch-less
methods is to create an engagement between robots an humans,
and thus, achieve a natural interaction between them. Although
hand gesture recognition is being deeply studied [8], [9], it has
some challenges yet to overcome, like complex and moving
backgrounds or changes on illumination conditions [10]. In
this paper, we focus on the recognition of hand gestures as
a way to communicate with robots on an easy and natural
manner. It is crucial for robotics applications such as human-
robot interaction or assisted robotics, where the interaction
should be fluid, effective, and as less invasive as possible [11].
To this end, we propose an approach based on deep learning,
called EUREKA (gEstUre REcognition Key frAmes), see
Fig 1, that recognizes hand gestures in images using a social
robot.

An overview of this approach is shown in Fig. 2. Specif-
ically, it consists of two modules. The first one is a visual
detector which returns the 2D positions of hand landmarks
—joints— in the image, see Fig. 2-(b,c). In this work, we
rely on the Mediapipe landmark detector that has shown
exceptional results in terms of efficiency and accuracy [12],
[13]. The second module extracts a temporal representation
of the detected landmarks and predicts the hand gesture using
a densely connected network, see Fig. 2-(d). This straightfor-
ward but effective approach runs in real time and is robust
to uncontrolled environments with varying backgrounds and
lighting conditions.

Finally, our method has been evaluated extensively in the
IPN Hand dataset [14] where it has shown remarkable results
in comparison to more complex works in the state of the art.
Experiments with our mobile robot were also conducted to
validate the framework for human-robot interaction.

The contribution of this paper is threefold: first, a deep
learning approach for hand gesture recognition called EU-
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Fig. 2. Overview of the proposed approach for hand gesture recognition. Given a video sequence of images (a), the proposed method uses the Mediapipe
pose detector (b) to localize landmarks of hands in each video frame (c). Subsequently, the detected landmarks are encoded temporally and spatially in a
feature representation which is then used to perform hand gesture recognition by a densely connected network (d).

REKA was developed. It integrates hand landmark detection
with gesture classification in a two-step approach; second, we
conducted some ablation studies over the IPN Hand dataset
[14] where we report significant improvement over the state-
of-the-art results after finetuning; and third, we define a novel
batch approach to work on real-life situations, tested on
continuous streams of data taken by our robot IVO.

The remainder of this paper is organized as follows. Sec-
tion II presents some related work for human-robot interaction
and hand gesture recognition. Section III describes the compo-
nents of the proposed method: hand landmarks extraction and
gesture recognition. In Section IV, the method is evaluated in
a state-of-the-art dataset. Finally, some conclusions and future
work is provided in Section V.

II. RELATED WORK

In this section, we present some related work in the state
of the art for human-robot communication using gestures, and
for hand gesture recognition using deep-learning approaches.

A. Human-Robot Communication Using Gestures

Nowadays, robots are becoming increasingly ever-present
in human environments such as homes, malls, hospitals, or
schools. Hence, the new human environment requires them to
be equipped with social intelligence, successfully qualifying
them to assist, interact and collaborate with humans. The
research field of human-robot interaction (HRI) has studied
how humans and robots can communicate using gestures.
Particularly, such research has placed a wide scope of social
HRI applications like robots assistance [15], education [16],
search and rescue [17], or tour guiding in cities [18].

Moreover, collaborative robotics is an emerging and mul-
tidisciplinary research field, in which gesture-based HRI is
an active research topic. The use of hand gestures constitutes
a natural form of communication among humans and can
therefore be an effective method for natural and accessible
HRI. In addition to that, hand gestures might offer a better
alternative to speech recognition to overcome challenges such
as noise, reverberation and distant speech [19]. As a result,
hand gesture recognition has been thoroughly studied in the
field of HRI.

It has been demonstrated that gestures are one of the
most effective and natural mechanisms for reliable HRI [20]
as they encourage a natural interaction process. In the HRI
context, they have been used for robot tele-operation [21], or
to coordinate the interaction process and cooperation activities
between human and robot [22].

B. Deep Learning applied to Human-Robot Communication

As stated in [23], non-machine-learning approaches for hand
gesture recognition face unstable accuracy problems regarding
different light environments and gesture overlapping, making
machine-learning algorithms more flexible and able to adapt
to real exigent situations.

Research on gestures detection using neural networks has
been vastly explored and one could say it is reliable, but
when it comes to develop a real-life working method for
natural human-robot communication the temporal component
supposes the biggest challenge.

Gao et al. [24] designed a method that fusing 2D and 3D fast
hand estimations gets a dynamic gesture recogniser with high
accuracy. In the videos used for their experimentation, the user
began moving the hand into the image and ended removing it.
Zhang et al. [25] achieved great results approaching the tem-
poral component with bidirectional ConvLSTM and 3DCNN,
and then, fusing them at a higher level from 2DCNN. The
use of LSTM based RNN was proven suitable for the various
length videos, nevertheless gestures in databases used in their
work, ChaLearn IsoGD [26] and SKIG [27], were isolated so
each video contained exactly one gesture.

Isolated gesture classifiers are not actually applicable to
real-life situations, as what the computer sees is not isolated.
This paper aims to get down to real life situations where what
the computer analyzes are successions of gestures without
starting and ending labeling or signaling.

There has been some recent research on continuous gesture
recognition. Benitez-Garcia et al. [14] created a dataset with
videos each containing 21 successive gesture instances, see
Section IV-A. Authors used a two-stage approach, at first
they slide a gesture detector through the video frames and,
whenever a gesture is detected, the gesture classifier makes
a prediction on the gesture that has been performed. In [28],
Gammulle et al. designed a single-stage framework that used
distinct feature extraction methods, and then fused these
extracted features to make a prediction on each video frame.

EUREKA establishes a gesture recognition method that
combines a feature extractor with a neural network that, with
the help of advanced pre-processing techniques, outperforms
other state-of-the-art methods. Our work also brings up a
pioneering batch approach to face real-life situations with
continuous gestures.

III. PROPOSED METHOD

In this section we describe the proposed method, EUREKA,
which is depicted in Fig. 2. It consists of two main modules



Fig. 3. Example images showing the output of the landmarks detector.

which work together to predict efficiently hand gestures. The
first module focuses on the 2D localization of landmarks —i.e.
hand joints— in images, while the second one predicts the hand
gesture based on a temporal and normalized representation of
the detected landmarks. In the following, these modules are
explained in more detail.

A. Hand landmarks extraction

The extraction of landmarks is done efficiently by the
Mediapipe pose detector which is a cross-platform open source
solution that uses machine learning algorithms to track hands
on color images [12]. Some example images are shown in
Fig. 3. Note that it is able to localize hand landmarks under
varying pose configurations. This detector consists of two
steps. First, a palm detector is run over the full input image
to localize palms using oriented bounding boxes.

Then, a hand model is applied to the extracted bounding
boxes to return the 2D position of landmarks associated to 21
joints of a human hand.

This two-step approach vastly reduces the need for data
augmentation through its oriented hand bounding box which
eludes rotation, translation and scale problems. It allows the
landmark predictor to focus mainly on localisation accuracy.
Moreover, to speed up the detection process, the approach
uses previous landmarks predictions in order to avoid running
the palm detector in every frame. This results in a real-time
method which is able to detect multiple hands.

B. Hand gesture recognition

The recognition of hand gestures is carried out by a network
that uses the landmarks provided by the Mediapipe detector,
observe Fig. 2-(c). The input to this network can be the raw
landmark positions given in pixel coordinates. However, as
we will see in the experiments section, computing a temporal
and normalized representation of landmarks leads to better
recognition rates. In this section, we introduce different feature
representations and the network architecture for hand gesture
recognition.

Key frames selection. In order to recognize hand gestures that
include motion like waving, it is crucial to include temporal
information at the time of performing classification with the
network, see Fig. 2-(d). For this goal, we propose a frame
selection strategy which combines the landmarks extracted

from different frames. This allows to encode the spatial
changes among landmarks positions and over time.

We start by defining a number of key frames M. Then,
for each gesture instance in the dataset, M frames from that
instance are selected. The selection is made by choosing
M equally distanced frames in time (see Eq. 1) where L
represents the total number of frames in the instance where
the hand landmarks were detected.

f1 0

f2 L 1

f3 :M* 2 (D
aYs M -1

Note that the division L/M result is rounded to the nearest
integer because the frame number must be an integer. We
define f the vector that contains the indexes for the selected
M frames of a certain gesture instance.

In cases where the number of frames with detected land-
marks is smaller than the number of frames in the gesture
instance (L < M), we proceeded to replicate the detected
landmarks until reaching M.

Feature representation. For each video frame we have the 2D
positions of 21 landmarks, what results in a 42-dimensional
feature vector. When we consider multiple key frames, M > 1,
the resulting feature vector has a size of 42*M values.
This feature vector corresponds to the raw positions of the
hand landmarks. We denote this vector as our raw feature
representation Fig. 4-(a). In the following, we study different
feature representations in order to provide some translation
and scale invariance and achieve better classification results.

The second feature representation, called Distances Fig. 4-
(b), computes the Euclidean distances among all landmarks
in the same video frame. For example, let’s consider a vector
with 3 landmarks with x and y components. The distances
computed will start with 1—2, then 1—3 and the last 2—3.
Note that the distance from a point to itself is 0 and adds
no information, so it is not considered in our experiments.
Analog distances like 3—2, while having computed 2—3, are
also ignored. Equation 2 can be used to obtain the input vector
shape, where nl% is the length of the input vector, [ represents
the number of landmarks and ¢ the number of components for
each of them.
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In the previous example, the Raw and Distances feature
representations have vectors of size 6*M . However, when we
use the full set of landmarks (21 landmarks) the feature vector
has a size of 420*M values.

The next feature representation, denoted as DistAndTime
Fig. 4-(c), takes into account the relative change of landmarks
over time. It is computed by adding, to the Distances feature
representation, the distance from each landmark to itself in
the past frame. Coming back to the previous example with
3 landmarks the new vector will have distances 1—2, 1—3,
23, 1=1past, 2—2past and 3—3,4:. Note that for these

nl
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Fig. 4. Depiction of proposed feature representations. a) Raw Landmarks Representation: raw landmarks directly taken from the hand joints detector
MediaPipe. b) Distances: computes the Euclidean distances among all landmarks in the same video frame, in the figure simplified for only 2 of the landmarks.
¢) DistAndTime: computed by adding, to the Distances feature representation, the distance from each landmark to itself in the past frame. d) DistTime:
computed by calculating distances from each of the points in the present frame to each of the points in the past frame, in the figure simplified for only 2 of

the landmarks.

operations at least two frames are needed, the present and the
past one. As a consequence, this feature representation ends
up with a vector’s length of (M — 1).
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The feature vector for the full set of landmarks has a size
of 462*(M — 1) values.

The last feature representation, called DistTime Fig. 4-(d), is
a combination of previous ones. It is computed by calculating
distances from each of the points in the present frame to
each of the points in the past frame. In this representation
the distance from 1—1,,,; is no longer 0 and 2—-3,,,,; is not
analog to 3—2,,,;.

The following equation is used to compute the size of the
feature vector.

=12 c.(M-1) 4)

For the 21* M hand landmarks the input vector’s length after
this representation is 882*(M — 1).

Network. Once the feature vector is computed, we use a neural
network consisting of densely connected layers to perform
hand gesture classification (MLP). That is, the feature vector is
classified in one of the gesture classes defined in the database.

More specifically, the network has four layers in which the
size of the input layer is set according to the length of the
feature representation. Next, the network has two hidden layers
with ReLU activation functions. The number of neurons in
each layer is tested and evaluated in the experiments section,
but we define a baseline network which has 64 and 32 neurons
in the first and second hidden layers respectively. The output
layer uses softmax activation function to predict the gesture.
Dropout and batch normalization is also applied to avoid
overfitting.

IV. EXPERIMENTS

In this section, first the dataset used for the state-of-the-art
experiments is described. Next, those tests reaching the best
model for EUREKA are presented. At the end of the section,
real-life experiments with robot IVO are described.

TABLE I
EXPERIMENT IN WHICH SOME DESIGNED FEATURE REPRESENTATIONS
SUPPOSE AN UPGRADE IN FRONT OF USING RAW DATA

Method Accuracy
Raw 0.831
Distances 0.831
DistTime 0.841
DistAndTime 0.845
TABLE II

EXPERIMENT SHOWS THAT ADDING A 25% DROPOUT AFTER EACH
HIDDEN LAYER IS CONVENIENT TO OBTAIN BETTER ACCURACY AND
AVOID OVERFITTING

Method Dropout | Accuracy
- 0.25 0.870
DistTime 0 0.847
. . 0.25 0.862
DistAndTime 0 0831

A. Dataset

The IPN Hand dataset [14] contains 4218 instances of
gesture instances but, notably, they are grouped in 200 videos.
Each video includes 21 gesture instances, what lets us state
that the dataset considers real-life continuous gestures per-
formed without transitional states. It is also remarkable that,
as in real-life, gesture instances last different amounts of time
despite having the same gesture performed. Therefore, the
minimum length of a gesture in the dataset is 9 frames and
the maximum is 650 frames. All videos were recorded at 30
frames per second.

Furthermore, the videos, that are only 2D RGB videos,
feature 50 subjects with static or dynamic backgrounds, lighter
or darker illumination conditions, and interacting with either
right or left hand. The dataset includes 2 pointing gestures, 11
performing actions and a non-gesture class, making up a total
of 14 gesture classes. A non-gesture class is crucial so that the
system leans to distinguish the addressed gestures from other
natural gestures such as scratching the nose, drinking water,
etc.



The training and testing sets are chosen in the same way
as Benitez-Garcia et al. did, they randomly split into 74%
training and 26% testing, resulting in 37 training subjects and
13 testing subjects, what is 3117 and 1101 training and testing
gesture instances, respectively, so we chose the same subjects
for the training and testing sets. Afterwards, 5 of the training
subjects are randomly chosen to conform the validation set,
that supposes a 10% of the overall dataset.

B. SOTA experiments

In this section we perform some experiments to study the
impact of some choices of EUREKA on the hand gesture
recognition performance.

The following experiments were run training the neural
network with the preprocessed data using the training and
validation sets. For each experiment, 5 tests were operated
with the same input data and equal hyperparameters, then the
average accuracy was computed and also its standard devi-
ation. The following tables show the classification accuracy,
where standard deviation values are not shown because they
were lower than 0,001 in all cases.

For each test, 3 models were saved: the default model
obtained at the end of the training process, the one after
the epoch that got the highest accuracy and the model that
presented the lowest loss value. The model that subsequently
obtained the best accuracy against the testing set was selected.

Firstly, we assess the different feature representation meth-
ods explained in Section III-B. In this work, in those cases
where the Mediapipe detector is unable to detect hand land-
marks, due mainly to fast movements and blurring effects, the
feature representation removes those frames.

The first test directly gets, as the input data, the detected
landmarks in each of the selected key frames. After this raw
data test is done, the three representation methods are applied.
Results in Table I imply that the Distances method does
not entail an upgrade to the raw data models, but DistTime
and DistAndTime do. Normally we would select DistTime as
the best feature representation and carry on with it but, as
DistAndTime accuracy value is near the best, both methods
will be evaluated in the next experiments.

The next parameter to be analyzed is M, the number of key
frames for each gesture instance. Starting from the base value
of M =5, tests were run using M = 3 and M =9, a higher
and a lower value. The outcome presented a higher accuracy on
higher key frames selection, that is why some more tests were
performed to determine the trend. The accuracy for each tested
value of M can be seen in Figure 7. It shows that once M =
11 is reached, the accuracy growth experiments a saturation
and stops increasing. At M = 15, DistTime method gets a
higher accuracy than DistAndTime, but we’ll keep analysing
both feature representation methods as they’ve both reached
similar accuracy and this M = 15 spike could be spurious.

Then, the number of key frames that were selected from
each gesture instance in the dataset was fixed to M = 15.

The next experiments influence the neural network hyper-
parameters to get a better configuration of it. It started by
finding out if the dropout applied after each hidden layer was

TABLE III
EXPERIMENT FINDS OUT THAT ADDING AN EXTRA HIDDEN LAYER WON’T
INCREASE ACCURACY

Method Hidden Layers | Accuracy
- 2 0.870
DistTime 3 0.851
. . 2 0.862
DistAndTime 3 0851
TABLE IV

EXPERIMENT SETS OUT THAT HAVING HIGHER NUMBER OF NODES IN
FIRST HIDDEN LAYER IMPROVES ACCURACY

Method Hidden Layers | Accuracy
64-32 0.870
o 32-64 0.855
DistTime 64-64 0.870
128-64 0.875
64-32 0.862
) i 32-64 0.850
DistAndTime 64-64 0.859
128-64 0.869

functional, or rather disadvantageous. As Table II displays,
dropping out nodes in the network helped increasing overall
accuracy, in both tested feature representation routines, by
regulating and avoiding overfit on the training data.

After proving 25% dropout is convenient, we advanced to
testing 2-hidden-layers network against 3-hidden-layers. The
3-hidden-layers architecture was 64 —32 — 16 nodes and the 2-
hidden-layers one was the base architecture set before, 64 — 32
nodes. Table III concludes that adding a hidden layer was not
successful for neither of the feature representation techniques.

The last experiment that was carried out tested diverse node
configurations for the two hidden layers of the neural network.
The first test combination switched hidden layers order from
the defined base network, conforming a 32 — 64 node net.
Also a symmetric 64 —64 and a bigger 128 — 64 network were
included in the experiment. Table IV exposes that 32 — 64 was
the lowest accuracy achieving distribution, 64 —64 and 64 — 32
respond similarly and the 128 — 64 configuration turned out to
outperform the rest. This experiment shows that it is essential
to have a high number of nodes on the first hidden layer, and
it makes sense taking into account the huge length of the input
data vectors after the feature representation preprocess, 13230
for DistTime and 6930 for DistAndTime.

After all these experiments, the optimal method parameters
and neural network hyperparameters are rooted out. The
ultimate configuration of the method will select 15 key frames
for each gesture instance, will preprocess input data using
DistTime as feature representation technique and its neural
network will have a 128 —64 distribution in its 2 hidden layers
with a 25% dropout after each of them.

This definitive method obtained an accuracy of 87,5%. Table
V contains the comparison between state-of-the-art methods
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Fig. 5. EUREKA combined with a pioneering batch approach to continuous gestures identifies the hand-gestures performed in front of IVO. Note that when
the user is scratching their ear or nose, the robot predicts there is not a command being executed.

TABLE V
COMPARING OUR METHOD’S ACCURACY WITH THE STATE-OF-THE-ART
METHODS ON IPN HAND DATASET

Model Accuracy
C3D 0.778
ResNeXt-101 0.836
ResNet-50 0.731
DistTime 0.875
DistAndTime 0.869

exposed in the IPN Hand database and EUREKA using the
two overperforming feature representation techniques. One
can observe that our method outran the accuracy obtained
by Benitez-Garcia et al. in [14] either using DistTime or
DistAndTime.

C. Experiments with the robot

This section unfolds the process followed to test the ob-
tained state-of-the-art model on a real-life situation with the
robot IVO, which is a robot designed for citizen assistance
in public or outdoor spaces. IVO is equipped with an Intel
Realsense D435i infrared camera which is installed in the head
of the robot, this camera has been used to test our model with
volunteers.

The application designed to recognise hand gestures in
images that IVO sees will load the best-performing EUREKA
model obtained in IV-B state-of-the-art experiments, the one
that uses the DistTime feature representation, 15 key frames
and a 128 —64 composition in its neural network hidden layers
with a 25% dropout after each of them.

The key frames selection is tricky in continuous gesture
recognition because the time that a gesture lasts is not known.
That is why a batch approach is executed. This approach
consists of taking different sized batches containing each a
distinct number of frames, then the model emits a prediction
for each of the taken batches and the prediction with a higher
score will be the trusted one.

To exemplify this batch approach let’s imagine there is a
gesture instance that lasts 50 frames, like in Fig. 6. If it
was in an isolated gesture dataset our method would take
15 from those 50 frames and select them as key frames to
do the evaluation. In real-life continuous gesture instances,
the batch approach takes for instance 3 batches with 30, 60
and 90 frames. On each of the 3 batches the 15 key frames
are selected and evaluated to get 3 model predictions. In the
exposed case the 60 frame batch would return the best score
prediction, because the 30 frame batch would get part of a
gesture and the 90 frame batch obtained a mix of more than
a gesture instance.

Figure 5 portraits how the batch approach working with
EUREKA recognise gestures (or non-gestures) included in the
IPN Hand dataset classes performed in front of the robot IVO.
The app runs at 10 frames per second using an unoptimized
code. The following subsection presents the developed user
study to analyze people perception during the experimentation
procedure.

D. User Study

The results presented in the previous section demonstrate
that the robot is able to detect and recognize human gesture.
A user study was also conducted to determine whether the
hand gesture recognition to control our robot enhances the
usability and the comfort of the robot from the point of view
of the human. We compared our method with the use of a
remote controller.

The hypothesis we endeavored to test was as follows:
“Participants will perceive difference between the use of hand
gesture recognition and the use of a remote controller.”

In the first experiment, the human had to use the hand
gestures recognition to express to the robot what action must
perform. We conducted these experiments in a Wizard-of-Oz
way, since using the gesture detector may lead to missing some
of the gestures, and it can cause a negative impact on the user
perception of gestures.

Then, we repeated the same experiment but this time we
gave a remote controller to the human, thus they could tele-
operate the robot after some instruction.
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Fig. 8. Evaluation from 1 (low) to 7 (high) of the main aspects related to the
robot behavior in hand gesture recognition.

In each case, we asked the volunteers to make all ges-
tures/commands in a random order. We also chose randomly
between the gesture communication and the controller as the
first experiment for each volunteer in order to avoid possible
biases.

For the experiments, we selected 14 people (8 men, 6
women) on the University Campus. Participants ranged in
age from 22 to 50 years (M=26.2, SD=10.3), and represented
a variety of University majors and occupations including
computer science, mathematics, physics, and chemistry. For
each selected participant, we randomly activated one of the two
behaviors. It should be mentioned that none of the participants
had previous experience working or interacting with robots.

Participants were asked to complete a questionnaire. Our
independent variables considered whether participant make use
of our hand gesture recognition or the remote control. The
main dependent variables involved participants’ perceptions
of the sociability, naturalness, and comfort characteristics.

Each of these fields was evaluated by every participant using
a questionnaire to fill out after the experiment, based on [29].

Participants were asked to answer a questionnaire, following
their encounter with the robot in each mode of behavior.
To analyze their responses, we grouped the survey questions
into four scales: the first measured sociability robot behavior,
while the second naturalness, and the last one evaluated the
comfort. Both scales surpassed the commonly used 0.7 level
of reliability (Cronbach’s alpha).

Each scale response was computed by averaging the results
of the survey questions comprising the scale. ANOVAs were
run on each scale to highlight differences between the three
robot behaviors.

Below, we provide the results of comparing the two different
methods. To analyze the source of the difference, four scores
were examined: ‘“sociability”, “naturalness”, and “comfort”,
plotted in Fig. 8. For all three aspects, the evaluation score
plotted in Fig. 8, pairwise comparison with Bonferroni demon-
strate there were difference between the two kind of behavior
approaches, p < 0.05.

Therefore, after analyzing these three components, we may
conclude that, if the robot is capable of understanding people’s
hand gesture, the acceptability of the robots increases and
participants perceived the robot as a social entity.
Acknowledgments: The authors would like to thank to
Michael Villamizar for the help and advice in the design of
the proposed deep-learning approach based on landmarks.

V. CONCLUSIONS

This paper has introduced a new deep-learning framework,
which allows humans to communicate with robots using hand
gesture recognition. The proposed method only makes use of
visual information to recognize humans’ commands that are
predefined in a hand gestures database.

Carried out experiments achieve an over-performing method
that surpasses the state-of-the-art methods’ accuracy. EU-
REKA uses DistTime as feature representation technique, a
key frame selection procedure and a 128 — 64 architecture in
its neural network hidden layers with a 25% dropout after each
of them.

Furthermore, the method is tested in real-life situations
where gestures are continuous by using a batch approach that



successfully detects the gestures performed in front of the
robot IVO.

The communication framework will be very useful for col-
laborative robots. Our experiments show that our framework
is capable of interpreting human instructions with gestures.
Furthermore, we are currently working on the design of more
advanced deep learning methods with data fusion, and more
real-life testing is being performed to enhance the refinement
of the batch approach.
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