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Abstract: This paper addresses the problem of robust fault detection for Linear Parameter
Varying (LPV) systems using set-based approaches. Two approaches are proposed, based
respectively on set-based state and parameter estimation methods, for implementing direct
and inverse test for robust fault detection (FD). The uncertainties are assumed to be unknown
but bounded and their effect is propagated using zonotopic sets. These robust FD test methods
aim at checking the consistency between the measured and estimated behaviour obtained from
estimator in the parameter or output space considering the effect of the uncertainty. When an
inconsistency is detected, a fault can be indicated. A case study based on an autonomous vehicle
is employed to compare the performance of proposed FD tests.
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1. INTRODUCTION

Autonomous vehicles recently receive much attention and
are widely studied, with the advantages of saving energy
consumption, improving traffic efficiency and at the same
time reducing traffic crashes by taking humans out of
driving. The most attractive and essential is avoiding
crashes on the roads under all circumstances, which will
lead to a huge reduction in deaths. However, as a com-
plex system composed by a series of modules, such as
sensing network (GPS, cameras, etc.), it may encounter
sensor faults or/and actuator faults which can lead to
catastrophic consequences if they are not diagnosed and
handled in time.

Fault Detection (FD) plays an important role in improv-
ing the safety and reliability of automatic control sys-
tems. Model-based fault detection checks the consistency
based on generating the residuals between the estimated
behaviors and the observations obtained from sensors.
Ideally, the residuals should only be affected by faults.
However, the built model is always affected by modelling
uncertainty, unknown noise and disturbance which lead to
mismatch between actual and estimated behaviours. As a
consequence, the fault detection must be robust against
these undesired uncertainties. And set-based approaches,
known as a class of deterministic robust methods, assume
an unknown-but-bounded description to model the uncer-
tainties with application to state estimation (Alamo et al.,
2005; Combastel, 2015) and parameter estimation (Bravo
et al., 2006).

The robust fault detection research focused on two distinct
approaches. One family of approaches, called active, aims

to decouple the effect of uncertainty (Chen and Patton,
1999). The other family is called passive, and allows to
enhance the robustness of the fault detection system at the
residual value evaluation stage (Frank and Ding, 1994).
The passive approach leads to two possible implementa-
tions known as direct and inverse test, respectively. The
direct test is based on verifying if the residual or the mea-
surement output is inside the interval of possible values
(Ploix et al., 2000; Puig et al., 2002). The inverse test is
based on verifying if there exists a value inside the nominal
parameter set that can explain the measured output of
the system (Puig et al., 2007). This paper focuses on the
use of passive robust fault detection methods to nonlinear
systems (e.g. autonomous vehicles) represented in linear
parameter varying (LPV) form. The paper also compares
the performance of direct and inverse fault detection im-
plementations for different type of faults.

In our previous research, see Zhang and Puig (2021), the
comparison between direct and inverse fault detection tests
was performed for linear time invariant (LTI) systems. As
we know, the best representation of autonomous vehicles
systems is driven by a set of nonlinear ordinary differential
equations. But, the non-linear systems are complex and
difficult to study. An appealing way to deal with non-
linear systems is through LPV systems by incorporating
non-linearities in the varying parameters. There are a few
researches successfully applying LPV framework to solve
control and/or fault diagnosis problems (Alcalá et al.,
2019; Guzmán-Rabasa et al., 2019; Delgado-Aguiñaga
et al., 2021). Furthermore, polytopic LPV system provides
a more convenient way to represent and analyze LPV
design problems.
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The main contribution of this paper is the development of
a Set-Membership Approach (SMA) for state/parameter
estimation applicable to LPV systems. This is achieved by
solving a set of Linear Matrix Inequalities (LMIs) obtained
from the minimization of Frobenius norm of the obtained
zonotope that approximates the set of states/parameters.
Thus, using such estimation approaches, direct and inverse
test for fault detection are introduced. The results pre-
sented in this paper extend preliminary results presented
in Pourasghar et al. (2019) where SMA for state/set es-
timation via LMI for LTI systems was introduced. This
paper is based on extending this research to parameter
estimation and LPV systems, which is more challenging
due to the varying parameters.

This paper is organized as follows: Section 2 presents the
problem formulation. Section 3 describes the two ways
to detect faults using the passive approach. Section 4
introduces a SMA for state estimation for LPV systems
as a way to implement the direct test. Section 5 proposes
a SMA for parameter estimation for LPV systems to
implement the inverse test. In Section 6, a case study based
on autonomous vehicles for fault detection using direct and
inverse tests are presented allowing to assess the proposed
approaches. Finally, conclusions are summarised in Section
7.

2. PROBLEM FORMULATION

LPV systems are linear dynamical systems whose math-
ematical description depends on parameters that change
values over time. These parameters are generally consid-
ered as bounded and taking values inside a set, often
assumed to be a compact and convex polytope (e.g. a box).
The non-linear embedding approach is used for obtaining
an LPV formulation from a non-linear physical model of
the system represented in state-space (LPV-SS):

xk+1 = A(θk)xk +B(θk)uk + wk

yk = Cxk + vk
(1)

where uk ∈ Rnu , yk ∈ Rny , xk ∈ Rnx , wk ∈ Rnx , vk ∈ Rny

are the input, output, state, disturbance and measurement
noise vectors, respectively. Moreover, the disturbance and
measurement noises are assumed to be unknown but
bounded. Besides, A (θk) ∈ Rnx×nx , B (θk) ∈ Rnu×nu ,
C ∈ Rny×nx are the state-space matrices, where θk ∈ Rnθ

is the vector of time-varying parameters belonging to a
known set Θ. The dependence of state matrices, i.e. A(θk)
and B(θk), with respect to θk can take many forms. Among
the available representation, the polytopic decomposition
is of special importance when it comes to analysis and
design.

The polytopic framework offers an elegant and convenient
way for representing and analyzing LPV and uncertain
systems (Briat, 2014). In addition, based on Rotondo
et al. (2015), polytopic LPV and Takagi-Sugeno (TS) have
strong analogies and close connection. The polytopic LPV
system can be represented by matrices A(θk) and B(θk),
where the scheduling vector θk ranges over a fixed polytope
resulting in the following representation

xk+1 =

N∑
i=1

µi(θk) (Aixk +Biuk) (2)

where the system matrices (Ai, Bi) define the so-called
vertex systems, N = 2nθ leads to a polytope of N vertices,
nθ represents the number of varying parameters and µ(·) is
known as the vertex membership function (or coefficients
of the polytopic decomposition), which satisfies

N∑
i=1

µi(θk) = 1, µi(θk) ≥ 0, ∀θk ∈ Θ (3)

where µi(θk) =
∏nθ

j=1 ξij

(
ηj0, η

j
1

)
, ∀i = 1, . . . , N . And

each membership function is given by

ηj0 =
θj − θjk
θj − θj

ηj1 =
θjk − θj

θj − θj

(4)

where θjk ∈ [θj , θj ] is the jth component of θk, ξij

(
ηj0, η

j
1

)

is the function that performs N possible combinations.

3. DIRECT VS INVERSE TESTS

The main idea of fault detection methods is to compare
the estimated behavior with the behavior measured using
sensors of the physical system. The inconsistencies be-
tween them are called residuals, usually the residuals are
evaluated in the output space or parameter space. When
the detection is conducted in output space, it is called
direct test. Thereby, inverse test is in parameter space.

In output space, the residuals are calculated as follows

r(k) = yk − ŷk (5)

where r(k) is the residuals vector, yk is the system output
measurement, and ŷk is the estimated output. In order to
consider the uncertainties, the detection test is based on
checking if r(k) ∈ [−σ, σ]. Then the fault detection test in
output space yields to check if

yk ∈ [ŷk − σ, ŷk + σ] (6)

where σ is the noise bound defined such that |vk| ≤ σ. In
output space, the test can be implemented by zonotopic
sate estimation presented in Section 4. In this case, the
estimated output is generated from the estimated state
bounded by a zonotope. Then, the direct test involves
checking whether the measured output is contained in the
estimated output interval.

In the parameter space, the residuals are generated as
follows

r(k) = θk − θ̂k (7)

where θk is from the nominal parameters set Θ, and θ̂k
is the estimated parameter from parameter estimation
approach. Thus, the inverse test is alternatively based on
checking if there exists a parameter in the set of nominal
parameters that enables the model to be consistent with
the measurements

∃θ̂k ∈ Θ | ŷ(k, θk) ∈ [yk − σ,yk + σ] (8)

where ŷ(k, θk), as e.g., in case of a LTI system, is obtained
by using the shift operator q−1 and assuming zero initial
conditions, as follows:

ŷ(k, θk) = M(q−1, θ)uk (9)

with
M(q−1, θ) = C(θ)(qI −A(θ))−1B(θ).
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The main contribution of this paper is the development of
a Set-Membership Approach (SMA) for state/parameter
estimation applicable to LPV systems. This is achieved by
solving a set of Linear Matrix Inequalities (LMIs) obtained
from the minimization of Frobenius norm of the obtained
zonotope that approximates the set of states/parameters.
Thus, using such estimation approaches, direct and inverse
test for fault detection are introduced. The results pre-
sented in this paper extend preliminary results presented
in Pourasghar et al. (2019) where SMA for state/set es-
timation via LMI for LTI systems was introduced. This
paper is based on extending this research to parameter
estimation and LPV systems, which is more challenging
due to the varying parameters.

This paper is organized as follows: Section 2 presents the
problem formulation. Section 3 describes the two ways
to detect faults using the passive approach. Section 4
introduces a SMA for state estimation for LPV systems
as a way to implement the direct test. Section 5 proposes
a SMA for parameter estimation for LPV systems to
implement the inverse test. In Section 6, a case study based
on autonomous vehicles for fault detection using direct and
inverse tests are presented allowing to assess the proposed
approaches. Finally, conclusions are summarised in Section
7.

2. PROBLEM FORMULATION

LPV systems are linear dynamical systems whose math-
ematical description depends on parameters that change
values over time. These parameters are generally consid-
ered as bounded and taking values inside a set, often
assumed to be a compact and convex polytope (e.g. a box).
The non-linear embedding approach is used for obtaining
an LPV formulation from a non-linear physical model of
the system represented in state-space (LPV-SS):

xk+1 = A(θk)xk +B(θk)uk + wk

yk = Cxk + vk
(1)

where uk ∈ Rnu , yk ∈ Rny , xk ∈ Rnx , wk ∈ Rnx , vk ∈ Rny

are the input, output, state, disturbance and measurement
noise vectors, respectively. Moreover, the disturbance and
measurement noises are assumed to be unknown but
bounded. Besides, A (θk) ∈ Rnx×nx , B (θk) ∈ Rnu×nu ,
C ∈ Rny×nx are the state-space matrices, where θk ∈ Rnθ

is the vector of time-varying parameters belonging to a
known set Θ. The dependence of state matrices, i.e. A(θk)
and B(θk), with respect to θk can take many forms. Among
the available representation, the polytopic decomposition
is of special importance when it comes to analysis and
design.

The polytopic framework offers an elegant and convenient
way for representing and analyzing LPV and uncertain
systems (Briat, 2014). In addition, based on Rotondo
et al. (2015), polytopic LPV and Takagi-Sugeno (TS) have
strong analogies and close connection. The polytopic LPV
system can be represented by matrices A(θk) and B(θk),
where the scheduling vector θk ranges over a fixed polytope
resulting in the following representation

xk+1 =

N∑
i=1

µi(θk) (Aixk +Biuk) (2)

where the system matrices (Ai, Bi) define the so-called
vertex systems, N = 2nθ leads to a polytope of N vertices,
nθ represents the number of varying parameters and µ(·) is
known as the vertex membership function (or coefficients
of the polytopic decomposition), which satisfies

N∑
i=1

µi(θk) = 1, µi(θk) ≥ 0, ∀θk ∈ Θ (3)

where µi(θk) =
∏nθ

j=1 ξij

(
ηj0, η

j
1

)
, ∀i = 1, . . . , N . And

each membership function is given by

ηj0 =
θj − θjk
θj − θj

ηj1 =
θjk − θj

θj − θj

(4)

where θjk ∈ [θj , θj ] is the jth component of θk, ξij

(
ηj0, η

j
1

)

is the function that performs N possible combinations.

3. DIRECT VS INVERSE TESTS

The main idea of fault detection methods is to compare
the estimated behavior with the behavior measured using
sensors of the physical system. The inconsistencies be-
tween them are called residuals, usually the residuals are
evaluated in the output space or parameter space. When
the detection is conducted in output space, it is called
direct test. Thereby, inverse test is in parameter space.

In output space, the residuals are calculated as follows

r(k) = yk − ŷk (5)

where r(k) is the residuals vector, yk is the system output
measurement, and ŷk is the estimated output. In order to
consider the uncertainties, the detection test is based on
checking if r(k) ∈ [−σ, σ]. Then the fault detection test in
output space yields to check if

yk ∈ [ŷk − σ, ŷk + σ] (6)

where σ is the noise bound defined such that |vk| ≤ σ. In
output space, the test can be implemented by zonotopic
sate estimation presented in Section 4. In this case, the
estimated output is generated from the estimated state
bounded by a zonotope. Then, the direct test involves
checking whether the measured output is contained in the
estimated output interval.

In the parameter space, the residuals are generated as
follows

r(k) = θk − θ̂k (7)

where θk is from the nominal parameters set Θ, and θ̂k
is the estimated parameter from parameter estimation
approach. Thus, the inverse test is alternatively based on
checking if there exists a parameter in the set of nominal
parameters that enables the model to be consistent with
the measurements

∃θ̂k ∈ Θ | ŷ(k, θk) ∈ [yk − σ,yk + σ] (8)

where ŷ(k, θk), as e.g., in case of a LTI system, is obtained
by using the shift operator q−1 and assuming zero initial
conditions, as follows:

ŷ(k, θk) = M(q−1, θ)uk (9)

with
M(q−1, θ) = C(θ)(qI −A(θ))−1B(θ).

The above formula (8) can be transformed to check if
exists an intersection between parameter zonotope and
strip (Puig, 2010)

Θk+1 = Θk ∩ Fk (10)

where

Fk =

θ ∈ Rnθ | yk − σ ≤ cTk θk ≤ yk + σ


(11)

is the strip of parameters consistent with the current
measurements. cTk is the regressor introduced in Section
5. Due to the recursive formulation (10), the inverse test
can be implemented by parameter estimation procedure in
Section 5. Furthermore, if Θk+1 = ∅, a fault is indicated.

4. DIRECT TEST IMPLEMENTATION

As it is mentioned before, state estimation methods is a
possible way to implement direct test through obtaining
the nominal estimation state plus the uncertainty interval
based on measurements data. In this section, we extend
a SMA for LTI systems to LPV systems through the
polytopic representation and an LMI formulation.

4.1 Set-Membership State Estimation Approach

Based on previous research results (Zhang and Puig, 2021),
the SMA is a less conservative approach compared with
Interval Observer Approach (IOA) for estimating the state
of a LTI system with state-space matrices (A,B,C). It

describes the estimated state by a bounding zonotope X̂sm
k

with the center csmx,k and the shape matrix Rsm
x,k (Alamo

et al., 2005; Pourasghar-Lafmejani, 2019).

X̂sm
k =


csmx,k, R

sm
x,k


(12)

Considering that the disturbance and noise are unknown
but bounded using zonotopes: wk ∈ EwIk , vk ∈ FvIk ,
where E ∈ Rnx×nw , F ∈ Rny×nv are the known constant
distribution matrices of the disturbance and noise, wIk ∈
⟨0, Inw

⟩, vIk ∈ ⟨0, Inv
⟩, Inw

∈ Rnw×nw , Inv
∈ Rnv×nv

denote the identity matrices. The estimated state can
be obtained from the intersection between the prediction

state set Pk
sm =


csmp,k, R

sm
p,k


and kth instant output

strip, where csmp,k and Rsm
p,k denote the center and shape of

the zonotope P sm
k , respectively. For the sake of simplified

notations, the index k±1 will be replaced by ± and k will
be omitted, therefore the zonotopic state of LTI systems
estimated by SMA can be given as

csmx = csmp + λ
�
y − Ccsmp


(13a)

Rsm
x =


(I − λC)Rsm

p − λF


(13b)

with

csmp = Acsmx,− +Bu− (14a)

Rsm
p =


ARsm

x,− E


(14b)

where the optimal λ can be obtained minimising ∥Rsm
x ∥2F

λ∗ =
Rsm

p Rsm
p

TC

CRsm
p Rsm

p
TCT + FFT

(15)

4.2 LMI-based State Estimation Approach

To adapt this approach to the LPV systems, the following
improvements will be considered. The estimated state is
described by the bounding zonotope X̂ lmi

k =

clmi
x , Rlmi

x


.

clmi
x = clmi

p +

N
i=1

µi(θk−1)λi

�
y − Cclmi

p


(16a)

Rlmi
x =

N
i=1

µi(θk−1)

(I − λiC)Rlmi

p − λiF


(16b)

with

clmi
p =

N
i=1

µi(θk−1)(Aic
lmi
x,− +Biu−) (17a)

Rlmi
p =

N
i=1

µi(θk−1)

AiR

lmi
x,− E


(17b)

It is worth remarking that this method is conducted by
”offline+online computation”, i.e., solving LMI optimiza-
tion problem offline to obtain λi and conducting online

combination λ =
N

i=1 µi(θk−1)λi.

In order to obtain the vertex λi, we need to construct and
solve LMIs with the same aim of minimizing the Frobenius
radius of the zonotope shape matrix by following theorem
1.

Theorem 1. Given the polytopic LPV system (2), the
polytopic LPV parameter λi(i = 1, ..., N) can be designed
as

λi = Υ−1Wi (18)

if there exist positive scalars γ, Υ = Υ⊤ and Wi by solving
the following optimization problem:

min γ (19a)

subject to the following LMIs:
γInx Inx

Inx Υ


> 0 (19b)




−Υ ΥAi −WiC ΥE Wi

AT
i Υ− CTWi

T −Υ 0 0
ETΥ 0 −I 0
Wi

T 0 0 −R−1


 < 0 (19c)

where Q = Q⊤ ≥ 0 and R = R⊤ > 0 are the covariance
matrices of disturbances and noise, respectively.

Proof. To obtain the LMI design conditions (19) for
the LPV SMA optimal parameter λ, the duality princi-
ple between filtering and LQR optimal control will be
used (Ostertag, 2011). Applying duality principle (A ⇒
AT , B ⇒ CT ,K ⇒ λT ) to LQR inequality derived in
Ostertag (2011) and using polytopic representation, the
optimal λi should satisfy the following inequalities:

P < γInx
(20a)

(AT
i −CTλT

i )
TP (AT

i −CTλT
i )−P+Q+λiRλT

i < 0 (20b)

where Q = EET = Q⊤ ≥ 0 and R = R⊤ > 0
are the covariance matrices of disturbances and noise,
respectively. Now, applying the Schur complement, (20a)
can be reshaped into the LMI form as (19b). And (20a)
can be rearranged as follows:

−P + (Ai − λiC)P (Ai − λiC)
T
+Q+ λiRλT

i < 0 (21)

Then, we do left and right multiplications of (21) by
Υ = P−1 and introduce Wi = Υλi, the second constraint
becomes

−Υ+ (ΥAi −WiC)Υ−1
�
AT

i Υ− CTWT
i


+ΥEETΥ+WiRWT

i < 0
(22)
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Now, by reformulating (22) as

−Υ− [ ΥAi −WiC ΥE Wi ]

·


−Υ−1 0 0

0 −I 0
0 0 −R





AT

i Υ− CTWT
i

ETΥ
WT

i


 < 0

(23)

Finally, by applying the Schur complement, (23) yields the
LMI form as (19c). Thus, the ith parameter λi is obtained
as λi = Υ−1Wi. To obtain the optimal parameter λ, the
scalar parameter γ > 0 should be minimized subject to the
LMIs (19b) and (19c) leading to the optimization problem.

5. INVERSE TEST IMPLEMENTATION

5.1 Set-Membership Parameter Estimation Approach

Parameter estimation methods allow implementing the in-
verse test and are require a set of inputs and measurement
outputs to obtain estimated parameters. As it is well-
known, state estimation algorithms (as e.g. Kalman filters)
can be used for the parameter estimation by means of the
following reformulation:

A = I, B = 0, C = cTk , D = 0, E = 0 (24)

Besides, the system (1) can be expressed as another LPV
system in the regressor form after using (24), as follows:

yk = cTk θk + vk = ŷk + vk (25)

where ck is the regressor vector with dimension of nθ

which contains functions of inputs uk and outputs yk; vk
is measurement noise where vk ∈ FvIk ; θk ∈ Θk is the
parameter vector of dimension nθ and Θk is the set that
bounds parameter values, which can be described by a
zonotope as follows (Bravo et al., 2006):

Θk = Pk ⊕HkB
n = {Pk +Hkz : z ∈ Bn} (26)

where Pk ∈ Rnθ represents the nominal parameter, Hk ∈
Rnθ×n is the shape matrix, and Bn ∈ Rn×1 is a unitary
box.

Thus, the inverse test implementation is as follows:

P+ = P + λ
�
y+ − cTP


(27a)

H+ =
�
I − λcT


H,−λF


(27b)

where the optimal λ can be obtained by minimising ∥H∥2F

λ∗ =
HHT c

cTHHT c+ FFT
(28)

5.2 LMI-based SMA

Since the previous SMA for parameter estimation already
works for LPV systems, LMI-based formulation mainly
aims to implement the optimal parameter λ∗ by con-
structing and solving LMIs. Based on the Theorem 1,
this design consists in considering a varying shape matrix
H for parameter estimation to make it less conservative
and improve the estimation accuracy. Thus, the process is
totally online.

Theorem 2. If there exist positive scalars γ, the optimal
λ∗ is computed as

λ∗ = Υ−1W (29)

where Υ and W are the feasible solutions of the following
optimization problem:

min γ (30)

subject to the following LMIs:
γInx

Inx

Inx
Υk


> 0 (31)




−P−1 ΥInx −WC W
Inx

Υ− CTWT −Υ 0
WT 0 −R−1


 < 0 (32)

Proof. The proof procedure is similar to Theorem 1. Note
that in this case (21) becomes

P = (I − λC) P̄+(I − λC)
T
+ λFFTλT (33)

by considering a varying P and the matrices definition
(24). Then, the condition (32) could be obtained after
replacing Υ = P+

−1, P = HHT from last time instant
and applying Schur complement.

6. APPLICATION TO AUTONOMOUS VEHCILE

In this section, we consider the application to an au-
tonomous vehicle to illustrate the effectiveness of the pro-
posed method. The following state-space model from (Ifqir
et al., 2020) is considered:


β̇

ψ̈


=




−cf + cr
mvx

crlr − cf lf
mv2x

− 1

crlr − cf lf
Iz

−
crl

2
r + cf l

2
f

Izvx




β

ψ̇


+




cf
mvx
cf lf
Iz


 δf

(34)
where m, Iz, are the mass and the yaw moment, vx is the
longitudinal velocity, β and ψ̇ are vehicle sideslip angle
and yaw rate, lf , lr are distances from front and rear axle
to the center of gravity, Fyf and Fyr are lateral tire force
of front and rear tires, cf , cr are the cornering stiffness of
front and rear tires, δf is front steering angle. The available

measurements are yaw rate ψ̇, longitudinal velocity vx,
sideslip angle β and front steering angle δf . Then, the
model is first discretized using zero-order hold method
with a sampling period T . Then, the nonlinear vehicle
model can be equivalently transformed into a discrete-time
LPV model:

xk+1 = Axk +Buk (35)

with

xk =


βk

ϕk


, uk = δf k (36)

A =



1− T

cf + cr
mvx

T
crlr − cf lf

mv2x
− T

T
crlr − cf lf

Iz
1− T

crl
2
r + cf l

2
f

Izvx


 , B =



T

cf
mvx

T
cf lf
Iz




(37)

where ϕk denotes ψ̇ in discrete-time model. Furthermore,
disturbances and non-modelled effects are added to the
vehicle model through additive state disturbance and
measurement noise vectors wk and vk, which satisfy |wk| ≤
[0.002 0.01]T and |vk| ≤ 0.03.

6.1 State/Parameter Estimation

Case of state estimation. To get a polytopic LPV sys-
tem, we select vx as scheduling variable leading to poly-
topic model with two vertices considering the following
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Now, by reformulating (22) as

−Υ− [ ΥAi −WiC ΥE Wi ]

·


−Υ−1 0 0

0 −I 0
0 0 −R





AT

i Υ− CTWT
i

ETΥ
WT

i


 < 0

(23)

Finally, by applying the Schur complement, (23) yields the
LMI form as (19c). Thus, the ith parameter λi is obtained
as λi = Υ−1Wi. To obtain the optimal parameter λ, the
scalar parameter γ > 0 should be minimized subject to the
LMIs (19b) and (19c) leading to the optimization problem.

5. INVERSE TEST IMPLEMENTATION

5.1 Set-Membership Parameter Estimation Approach

Parameter estimation methods allow implementing the in-
verse test and are require a set of inputs and measurement
outputs to obtain estimated parameters. As it is well-
known, state estimation algorithms (as e.g. Kalman filters)
can be used for the parameter estimation by means of the
following reformulation:

A = I, B = 0, C = cTk , D = 0, E = 0 (24)

Besides, the system (1) can be expressed as another LPV
system in the regressor form after using (24), as follows:

yk = cTk θk + vk = ŷk + vk (25)

where ck is the regressor vector with dimension of nθ

which contains functions of inputs uk and outputs yk; vk
is measurement noise where vk ∈ FvIk ; θk ∈ Θk is the
parameter vector of dimension nθ and Θk is the set that
bounds parameter values, which can be described by a
zonotope as follows (Bravo et al., 2006):

Θk = Pk ⊕HkB
n = {Pk +Hkz : z ∈ Bn} (26)

where Pk ∈ Rnθ represents the nominal parameter, Hk ∈
Rnθ×n is the shape matrix, and Bn ∈ Rn×1 is a unitary
box.

Thus, the inverse test implementation is as follows:

P+ = P + λ
�
y+ − cTP


(27a)

H+ =
�
I − λcT


H,−λF


(27b)

where the optimal λ can be obtained by minimising ∥H∥2F

λ∗ =
HHT c

cTHHT c+ FFT
(28)

5.2 LMI-based SMA

Since the previous SMA for parameter estimation already
works for LPV systems, LMI-based formulation mainly
aims to implement the optimal parameter λ∗ by con-
structing and solving LMIs. Based on the Theorem 1,
this design consists in considering a varying shape matrix
H for parameter estimation to make it less conservative
and improve the estimation accuracy. Thus, the process is
totally online.

Theorem 2. If there exist positive scalars γ, the optimal
λ∗ is computed as

λ∗ = Υ−1W (29)

where Υ and W are the feasible solutions of the following
optimization problem:

min γ (30)

subject to the following LMIs:
γInx

Inx

Inx
Υk


> 0 (31)




−P−1 ΥInx −WC W
Inx

Υ− CTWT −Υ 0
WT 0 −R−1


 < 0 (32)

Proof. The proof procedure is similar to Theorem 1. Note
that in this case (21) becomes

P = (I − λC) P̄+(I − λC)
T
+ λFFTλT (33)

by considering a varying P and the matrices definition
(24). Then, the condition (32) could be obtained after
replacing Υ = P+

−1, P = HHT from last time instant
and applying Schur complement.

6. APPLICATION TO AUTONOMOUS VEHCILE

In this section, we consider the application to an au-
tonomous vehicle to illustrate the effectiveness of the pro-
posed method. The following state-space model from (Ifqir
et al., 2020) is considered:


β̇

ψ̈


=




−cf + cr
mvx

crlr − cf lf
mv2x

− 1

crlr − cf lf
Iz

−
crl

2
r + cf l

2
f

Izvx




β

ψ̇


+




cf
mvx
cf lf
Iz


 δf

(34)
where m, Iz, are the mass and the yaw moment, vx is the
longitudinal velocity, β and ψ̇ are vehicle sideslip angle
and yaw rate, lf , lr are distances from front and rear axle
to the center of gravity, Fyf and Fyr are lateral tire force
of front and rear tires, cf , cr are the cornering stiffness of
front and rear tires, δf is front steering angle. The available

measurements are yaw rate ψ̇, longitudinal velocity vx,
sideslip angle β and front steering angle δf . Then, the
model is first discretized using zero-order hold method
with a sampling period T . Then, the nonlinear vehicle
model can be equivalently transformed into a discrete-time
LPV model:

xk+1 = Axk +Buk (35)

with

xk =


βk

ϕk


, uk = δf k (36)

A =



1− T

cf + cr
mvx

T
crlr − cf lf

mv2x
− T

T
crlr − cf lf

Iz
1− T

crl
2
r + cf l

2
f

Izvx


 , B =



T

cf
mvx

T
cf lf
Iz




(37)

where ϕk denotes ψ̇ in discrete-time model. Furthermore,
disturbances and non-modelled effects are added to the
vehicle model through additive state disturbance and
measurement noise vectors wk and vk, which satisfy |wk| ≤
[0.002 0.01]T and |vk| ≤ 0.03.

6.1 State/Parameter Estimation

Case of state estimation. To get a polytopic LPV sys-
tem, we select vx as scheduling variable leading to poly-
topic model with two vertices considering the following

limits vx ∈ [10.6, 15.3]. After denoting the state and input
variables in (36), it yields

xk+1 =

2∑
i=1

µi(vxk) (Aixk +Biuk) (38)

The results of the proposed LMI-based and classical state
estimation methods are shown below in Fig 1(a). It can
be seen the performances of the proposed and classical
method for state estimation are almost the same.

Case of parameter estimation. The LPV model for
parameter estimation is expressed in regressor formation
as follows:

yk = ϕk, θk = [A21, A22, B2]
⊤
,

c⊤k =
[
βk−1, rk−1, δf k−1

]
,

(39)

where A21, A22, B2 are the elements in (37) with the
corresponding subscript. It is noted that parameter A22 is
not constant due to the affect of velocity vx. Therefore,

we design the residual r(k) = θk − θ̂k to avoid the
variation of velocity. In this way, only faults can affect the
residual. More precisely, considering the velocity bounds,
the parameter varies in A22 ∈ [0.9544, 0.9684].

Based on Fig 1(b), the performances for parameter es-
timation of the proposed method and classical method
are quite close. Furthermore, the proposed method could
converge faster than the classical method. As a conclusion,
the results reveal that the proposed LMI-SMA method is
a good alternative to the classical method.

0 500 1000 1500 2000 2500 3000

Time instant

-0.1

-0.05

0

0.05

0.1

0 500 1000 1500 2000 2500 3000

Time Instant

-0.5

0

0.5

State LMI Classical SMA

1420 1440 1460 1480 1500

0.02

0.025

0.03

760 780 800 820 840

-0.15

-0.1

(a) State estimation

0 500 1000 1500 2000 2500 3000

Time instant

-5

0

5

1

0 500 1000 1500 2000 2500 3000

Time instant

-1

0

1

2

3

2

0 500 1000 1500 2000 2500 3000

Time instant

-2

0

2

3

Parameter LMI Classical SMA

(b) Parameter estimation

Fig. 1. State/Parameter estimation using classical SMA
and LMI-based SMA

6.2 Consistency Test

This part tends to compare the performance of direct test
and inverse test for fault detection based on LMI-based
estimation method considering the LPV vehicle model. For
this purpose, the faults are firstly classified into additive
and multiplicative faults depending on whether they are
independent of the observable variables, see Patton et al.
(2013). Additive faults occur outside of the system, can
be divided into actuator fault fa, input sensor fault fin,
and output sensor fault fout. Multiplicative faults affect
the parameters of the plant, and we introduce this type of
faults on fcf and fIz to the vehicle system.

For direct test, if the measured output is outside of the
estimated output bound, it indicates a fault, see Fig. 2.
It is worth remarking that the fault can be detected in
inverse test if there is no intersection between the support
hyperplane of the zonotope and the strip, see Fig. 5(a).

Moreover, the position relationship between the zonotope
and strip in figure is not as the criterion of detection, only
for reference, since they are shown in 2D coordinates.

On the one hand, we can see that direct test is effective
for all additive faults while partially effective for multi-
plicative faults, see Fig. 4(a). Even if the direct test could
indicate the fIz , the indicated time instant k = 1750 is not
consistent with the instant k = 1601 when fault occurs.
On the other hand, it is can be concluded that inverse test
is valid for all multiplicative faults, while partially valid
for additive faults, see Fig. 3(b) and Fig. 3(c). It is noted
that the inverse test cannot detect this fin due to the
existence of intersection, although they are separated in
(θ1, θ2) space. Overall, direct test is more appropriate for
detecting additive faults, while inverse test achieves better
performance on the detection of multiplicative faults.
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Fig. 2. Additive faults detection by direct test
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Fig. 3. Additive faults detection by inverse test

7. CONCLUSION

This paper has presented the LMI-based state/parameter
estimation methods for LPV systems and applied for fault
detection. Firstly, a polytopic LPV system is considered
to describe nonlinear properties. Then, regarding fault
detection in state space and parameter space, direct and
inverse tests are implemented by LMI-based methods, re-
spectively. Moreover, the LMI-based SMA for state estima-
tion is a good alternative to the classical SMA. While the
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Fig. 4. Multiplicative faults detection by direct test
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Fig. 5. Multiplicative faults detection by inverse test

LMI-based SMA for parameter estimation has kind of low
effiency but high response with quick convergence. Based
on the case study of autonomous vehicles, we could arrive
the same conclusion as classical state/parameter estima-
tion methods, namely, direct test has better performance
on additive faults, inverse test has better performance on
multiplicative faults.
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