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Abstract—This work presents the preliminary findings of a feasibility
study for a class of sliding mode differentiators to be used in an on-line
parameter estimation methodology for vanadium redox flow batteries
(VRFB). Specifically, three high-order continuous differentiators are
considered: a Standard Differentiator; a Filtering Differentiator, which
excels the former by incorporating rejection to large noises small in
average; and a Tracking Filtering Differentiator, which produces smooth
consistent derivatives while inheriting the noise rejection capabilities from
the previous one.

To model the vanadium redox flow batteries an equivalent circuit model
is employed, whose time-varying parameters are estimated by a recursive
least squares algorithm with forgetting factor, that requires the VRFB
measured voltage and current, together with their derivatives. To assess
the performance of the different differentiation algorithms in obtaining
reliable values of the VRFB parameters, the storage system is excited with
standardised current demand profiles. Finally, representative simulation
results are presented and discussed.

Index Terms—Vanadium redox flow battery, Sliding mode differentia-
tors, Parameter estimation.

I. INTRODUCTION

The gradual depletion of fossil fuels deposits, together with the
impact that their massive utilisation has provoked on the environment
has prompted a deployment of carbon-free sustainable energy sources.
However, due to the inherent intermittent nature of most major
renewable energy sources, such as wind or solar, they still comprise
only a minority of the primary power sources. To achieve a greater
degree of renewables penetration, they need to be coupled with
efficient energy storage systems (ESS) that collect a part of the
harvested energy, and deliver it when required [1].

Among the different ESS developed up to now, vanadium redox
flow batteries (VRFB) are probably one the most promising for large
scale stationary applications. They gather unique features such as
high efficiency, module scalabilty, independence between capacity
and power output, safe and environmentally friendly operation, and
long life-time in comparison with other battery technologies [2].
Additionally, the fact that the energy is stored in tanks of electrolyte
decoupled from the electrochemical device make it possible for them
to be refuelled as quickly as gasoline. As a result, there are ongoing
efforts to develop RFB with high energy densities so that they can
be competitive also in mobile applications. In this framework, the
interest they have raised is so high that there already are some
proposals for their implementation in vehicles that do not require
long autonomy such as urban electric buses [3].

To fulfil the necessities of a variety of applications, an adequate
modelling and a subsequent VRFB characterisation are required.
This would permit to rapidly detect failures as well as to improve
the control design aiming to optimise their efficiency and satisfy
specific power demands. Regarding the VRFB modelling, in this
work an equivalent electric circuit model (ECM) is employed [4].
These models have gained a lot of interest and popularity amidst

battery management system designers due to their simplicity in the
implementation and relatively low computational cost, particularly
when compared to the more complex electrochemical, neural, or
distributed parameter models. Specifically, in this work a second
order ECM is employed (See Figure 1). With respect to the estimation
method utilised to determine the values of the electric elements of the
ECM, in this paper an structure based on the combination of sliding
mode differentiators (SMD) and a recursive least squares (RLS) with
forgetting factor is proposed [5] [6]. This approach requires precise
robust information of the voltages and currents of the VRFB and
their derivatives. The computation of the latter is not a simple task
and, furthermore, the differentiation accuracy normally diminishes
together with the order of the required derivatives.

Considering the mentioned aspects, in this work a feasibility anal-
ysis of sliding mode based differentiators applied to the estimation
method [5] is made. Specifically, among a variety of SMD (e.g. [7]–
[12]), three different continuous time differentiators are considered:
firstly the so called standard-SMD (SSMD), then the filtering-SMD
(FSMD), and finally the tracking-FSMD (TSMD) [13].

II. DESCRIPTION OF THE REDOX FLOW BATTERY MODEL AND

PARAMETER ESTIMATION METHODOLOGY

In this section, the VRFB time-varying equivalent circuit model
is introduced, along with a brief description of its paramaters and
associated dynamic equations. Subsequently, the employed estimation
method, based on RLS with forgetting factor, is presented.

A. Vanadium redox flow battery equivalent circuit model

In this subsection the ECM of the VRFB is presented (Fig. 1). All
parameters are assumed to be slowly time-varying but, for concise-
ness, the temporal argument t will be omitted in the mathematical
formulations.

The open circuit voltage of the battery, voc, is modelled with
the series of a constant source, that corresponds to its minimum
value (V0) and a capacitor Cbat, whose electrical charge accounts
for the available charge stored in the VRFB. The capacitor varies
with the State of Charge (SoC) such that Cbat = ∂Q/∂voc =
FQM
2RTN

(1−SoC)SoC, in accordance with the VRFB Nernst equation
(for details, see [2]). A series resistance (Rohm) is included to
represent the ohmic effects of the membrane, the electrolyte, the
porous electrodes and the collector plates. The circuit is completed
with a RC module (Rpol-Cpol) to represent the concentration and
activation polarisation of the VRFB [4].

• Dynamic equations of the vanadium redox flow battery

The dynamic equations of the VRFB are straightforwardly obtained
from the ECM of Figure 1 employing voc = V0 + vbat, and vpol as



Figure 1. VRFB Electric Equivalent Circuit Model.

the system states. Defining I and vout as the terminal current and
voltage of the battery, then:

v̇ = Av +BI =[
v̇oc
v̇pol

]
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(1a)

(1b)

To perform the parameter estimation, the system is described in
the Generalised Fliess Canonical Form as presented below. In this
representation, the new states are defined as the successive derivatives
of the system output: z1 = vout, z2 = ż1 = v̇out. The resulting
diffeomorphism Φ is:

z=Φ(v, I, İ) =[
z1
z2

]
=

[
C
CA

][
voc
vpol

]
+

[
D

CB+ Ḋ

]
I +

[
0
D

]
İ (2)

and the transformed dynamic system:
ż1 = z2

ż2 = m1Ï +m2İ +m3I +m4z2

vout = z1

(3a)

(3b)

(3c)

It can be appreciated that Equation (3b) is linear in the parameters m1

to m4. Then, assuming that these are slow time-varying for almost
all t, the terms related to their time derivatives can be neglected.
Subsequently, the following relations between the electrical and the
new parameters are obtained:

m1 = Rohm (4a)

m2 =
1

Cbat
+

1

Cpol
+

Rohm

CpolRpol
(4b)

m3 =
1

CbatCpolRpol
(4c)

m4 = − 1

CpolRpol
(4d)

B. Estimation methodology and real-time results validation

This subsection presents the parameter estimation methodology
previously developed in [5] and [6]. This methodology permits
to estimate, with a prescribed convergence time and known error
bound, the electric parameters of the ECM. To meet this goal, a
Recursive Least Square (RLS) with forgetting factor estimation is
implemented. This algorithm is utilised to perform a linear regression
on (3b), thereby obtaining an estimation of the parameters m1 to m4.
Subsequently, the electric parameters and the system states can be
straightforwardly obtained by computing the inverse of (4) and (2),
respectively. Firstly, before presenting the employed RLS algorithm,

for conciseness sake, the auxiliary equation (3b) is rewritten as
follows:

η(t) = ż2 = v̈out = θ(t)⊺φ(t) =

=
[
m1 m2 m3 m4

] [
Ï İ I z2

]⊺
(5)

where φ(t) ∈ R4 is the linear regressor and θ ∈ R4 contains
the desired parameters. Thereafter, defining θ̂(t) as the vector that
contains the estimates, the recursive expression that provides the
estimation is given by [14]:

˙̂
θ(t) = −G

[
R(t)θ̂(t) + r(t)

]
(6)

Ṙ(t) = −qR(t) + φ̂(t)φ̂⊺(t) (7)

ṙ(t) = −qr(t)− φ̂(t)η̂(t) (8)

where r(t) and R(t) are auxiliary variables initialised in zero:
r(t0) = 04×1, and R(t0) = 04×4. The elements of φ̂(t) and η̂(t) are
obtained from the differentiators. The design parameters are the gain
matrix G and the forgetting factor q, which are defined as follows:
• The forgetting factor q, exponentially weights the measured data,

giving more relevance to the recent measures with a time constant
τ = 1/q.

• G is a gain matrix that determines the convergence rate of the
estimations. It must be symmetric and positive-definite, and has to
be designed so that the dynamic of the estimation process is faster
than the variation of the system parameters.

It can be proved that, by appropriately selecting the parameters q and
G, an upper bound for the convergence time is [14]:

Te =
nτ

2 · λmin(G) · λmin(R(t))
⩽

⩽
nτ

2 · λmin(G) · λpe
(9)

valid only if the so called Estimation Condition holds:

λminR(t)) ⩾ λpe (10)

where λpe > 0 and nτ are design constants. Firstly, λpe is selected
to estimate with enough persistence of excitation (PE) during the on-
line application of this algorithm. As the convergence and stability
properties of (6)-(8) have been well studied in the literature, in this
work the PE is assumed to hold during the interval selected for
this particular application. Secondly, regarding nτ , in this paper an
accuracy of at least a 95% in the parameter estimation in Te = 230s
employing nτ = 3 is attained. To the interested reader, the problems
related to the measurement of the PE during on-line applications,
as well as further details about the employed estimation method are
thoroughly detailed in [5].

III. HIGH-ORDER SLIDING MODE BASED DIFFERENTIATION

STRATEGIES

In this section the fundamentals of the three types of continu-
ous high-order sliding mode differentiators are presented: standard
(SSMD), filtering (FSMD), and tracking (TSMD). A brief descrip-
tion presenting the most relevant aspects of each differentiator is
developed.

The three differentiators are capable of robustly provide in finite
time asymptotically optimal estimates of a base signal f(t) and its
first and second-order derivatives [15] [13] [16] [17]. Furthermore,
the estimations are to be exact in the absence of measuring noise.
Also, this is possible as long as there is a known bound for the
third derivative of f(t), formally referred to as Lipschitz Constant
L > 0 of f̈(t). In this work, L is assumed known, as it can be easily



determined by studying the behaviour and limitations of the electrical
variables of the VRFB.

In the proposed estimation methodology, these differentiators have
a fundamental role, since they permit to obtain derivatives of the
measured current and voltage, which are required to perform the
regression from equation (5). The main reason for choosing sliding
mode based differentiators lies in their finite time convergence. This is
a powerful feature, given that allows to considerably improve the RLS
estimation rate bound, specially when compared with linear adaptive
schemes. It is particularly remarked that, despite all of them converge
in finite time, they do not have the same rejection to undesired signals
contained in the base signal to differentiate. Furthermore, the error
bound to which they converge is not the same, as detailed in [17].

A. Standard Sliding Mode Differentiators

The structure of a SSMD, utilised to estimate up to second-order
derivatives, in its non recursive form is the following [13], [15]:

µ̇1 = −λ2L
1/3|µ1 − f(t)|2/3sign(µ1 − f(t)) + µ2 (11)

µ̇2 = −λ1L
2/3|µ1 − f(t)|1/3sign(µ1 − f(t)) + µ3 (12)

µ̇3 = −λ0Lsign(µ1 − (f(t))) (13)

being f(t) the signal of interest to be differentiated; and λ0 = 1.1,
λ1 = 2.12 and λ2 = 2 fixed gains predefined to guarantee the
algorithm convergence as explained in [17]. The outputs are the
variables µ1 → f(t), µ2 → ḟ(t) and µ3 → f̈(t). It can be
highlighted the capability of the SSMD to provide robust exact
derivatives of f(t) in the absence of noise, and asymptotically optimal
estimates in the presence of bounded noise, i.e. with a known error
bound determined by the noise magnitude [15].

B. Filtering Sliding Mode Differentiators

In spite of the robustness of SSMDs with respect to small bounded
noises, their accuracy can be affected by high-value spurious signals
that can distort the current and voltage measurements. This is a
problem of particular interest in power electronics and in applications
such as the presented in this work. To deal with this problem, without
compromising its precision, the FSMD includes a sliding mode filter.
It is capable to reject large noises small in average, particularly
unbounded noises of filtering order not exceeding the differentiator
filtering order [17]. The structure of such FSMD in its non-recursive
form is the following [17]:

ẇ1 = −λ4L
1/5|w1|4/5sign(w1) + w2 (14)

ẇ2 = −λ3L
2/5|w1|3/5sign(w1) + (µ1 − f(t)) (15)

µ̇1 = −λ2L
3/5|w1|2/5sign(w1) + µ2 (16)

µ̇2 = −λ1L
4/5|w1|1/5sign(w1) + µ3 (17)

µ̇3 = −λ0Lsign(w1) (18)

Note that (16) to (18) are somewhat equivalent to those of the SSMD.
On the other hand, (14) and (15) constitute a sliding mode filter which
in this particular case is of second order. The filter is applied to the
difference between the signal to be differentiated and its estimate:
(µ1 − f(t)). After a finite-time transient, the signal w1 is a filtered
version of that difference. The outputs of the differentiatior are µ1 →
f(t), µ2 → ḟ(t) and µ3 → f̈(t). In this case, the gains λi are
adjusted as in [17]: λ0 = 1.1 λ1 = 4.57 λ2 = 9.30 λ3 = 10.03 y
λ4 = 5.

It is worth noting that in both SSMD and FSMD the derivatives
estimates contain high frequency oscillations inherent to the differ-
entiation structure, generated by the fractional power terms in the

right hand side of (11) to (13) in the SSMD and (16) to (18) in the
FSMD case. This phenomenon, normally referred to as chattering, is
subsequently introduced in the RLS as a high frequency component
but does not contain relevant information to the parameter estimation.
The effects of the chattering are discussed in section IV.

C. Tracking Sliding Mode Differentiators

The third and last type of sliding mode differentiator analysed in
this work is the tracking SMD. It possess the same virtues of the
FSMD with regard to its capacity to reject large noises small in
average. However, TSMD include in their structure a higher order
(n+ 1) sliding mode control algorithm with the purpose of keeping
the sliding mode variable σ=f(t)−ζ1 and its derivatives up to the
order n equal to 0. ζ1 is the estimate of the signal to be differentiated
f(t), extracted from a chain of integrators. As in this work n = 2,
the resulting control objective is: σ = σ̇ = σ̈ = 0. The structure of
a second order TSMD, in its non recursive form is [17]:

ẇ1 = −λ4 5L
1/5|w1|4/5sign(w1) + w2 (19)

ẇ2 = −λ3 5L
2/5|w1|3/5sign(w1) + (µ1 − σ) (20)

µ̇1 = −λ2 5L
3/5|w1|2/5sign(w1) + µ2 → σ̂ = µ1 (21)

µ̇2 = −λ1 5L
4/5|w1|1/5sign(w1) + µ3 → ˆ̇σ = µ2 (22)

µ̇3 = −λ0 5Lsign(w1) → ˆ̈σ = µ3 (23)

ζ̇1 = ζ2 (24)

ζ̇2 = ζ3 (25)

ζ̇3 = ν = −4
µ3
3 + |µ2|3/2sign(µ2) + µ1

|µ3|3 + |µ2|3/2 + |µ1|
(26)

Observe that the structure of (19) to (23) is equivalent to that of the
FSMD. Indeed, these equations comprise a second order differentiator
to compute derivatives of the sliding surface σ. Besides, ζ̇3 is defined
utilising the estimates of the sliding variable derivatives µ1, µ2 and
µ3, in order to develop a control action ν that guarantees σ = σ̇ =
σ̈ = 0. The outputs of this scheme are the parameters ζ1,2,3, obtained
from the chain of integrators (24)-(26). As a result, the derivative
estimates are smooth and consistent, i.e. each estimated derivative is
the integral of the following: ζ̇1 = ζ2 and ζ̇2 = ζ3.

As presented in [17], the TSMD estimation accuracy of |ζi−f (i)|
are of the order |f(t)(i+1)| independently of noises and sampling
periods. However, their consistency turns out to be of vital importance
in estimation algorithms, and the feasibility of these differentiators in
our particular application is therefore thoroughly evaluated. Indeed,
as will be discussed in the results section, the performance of
the estimation algorithm heavily relies on the quality of the input
variables conforming the regressor vector.

IV. RESULTS AND DISCUSSION

This section presents and analyses representative results of the
simulations obtained in the Matlab Simulink® environment. In this
sense, the performance of the previously presented differentiation
algorithms is compared and contrasted, in particular with regard to
their application to the estimation of the parameters mi of equation
(3b).

To perform a valid comparison between these algorithms, sampling
step of 2.5e−5s is utilised. The estimation results are calculated by
conforming the regressor (5) and η with the estimated derivatives
obtained from the SSMD, FSMD and TSMD, respectively. To this
end, the Lipschitz constants are set Lv = 250 and Li = 700 for the
differentiators to compute the voltage and the current derivatives. As
for the estimation parameters setup please refer to [18].



A comprehensive analysis involving a large number of tests with
different levels of noise was made. For the sake of space, only two
representative sets of these results are presented and discussed in
this work. The first set was performed in an ideal noise-free scenario.
The second one included additive noise to study the robustness of the
proposed methodology when the differentiators are subjected to more
exigent conditions. Note that, in those cases where the accuracy of the
estimation is very high, some of the resulting curves corresponding
to the different differentiators may be overlapped.

To simulate an on-line estimation environment, it is assumed that
the VRFB operates under a variable current demand profile, generated
using a standardised urban driving profile. The main reasons to
employ this profile are twofold. On the one hand, it is a current
demand profile with enough PE, therefore simplifies the results
comprehension. On the other hand, as previously mentioned, even
though it still requires further studies and improvements, the utili-
sation of VRFB in vehicular applications is an attractive alternative
to standard batteries. The current profile, together with the resulting
output voltage obtained with the ECM are shown in Figure 2.

Figure 2. (Up) Current profile. (Bottom) Output VRFB voltage.

A. Results comparison employing SSMD and FSMD

In this subsection, the results of the parameter estimation obtained
by employing SSMD and FSMD are compared and analysed. When
the signals to be differentiated are free of noise, the estimation
performance is very similar for both differentiators (see Fig. 3). This
is because the accuracy asymptotics of both SSMD and FSMD is
preserved. To better visualise the obtained results, the relative error
is computed and shown in Fig. 5. It can be appreciated that, in both
cases, after an initial convergence lapse, the relative error stays below
5% for all the parameters.

Subsequently, to assess the advantages of including a sliding
mode filter in the differentiation algorithm, a second simulation is
performed (see Fig. 4). In this case, white noise was introduced in
the measured signals I and vout. Additionally, a high frequency com-
ponent ϵ = 0.01 sin (10000t) was also included, aiming to put the
algorithms under even more challenging conditions. In this scenario,
the estimates obtained with the SSMD are seriously affected, with
an error that surpasses 20% in the estimation of m3 (See Fig. 6).
Conversely, the FSMD performs considerably better, with its relative
error being less than half the SSMD’s error.

B. Results comparison employing FSMD and TSMD

To perform a comparative analysis between the FSMD and the
TSMD, it is firstly highlighted that both algorithms inherently posses
the same capabilities to reject undesired noises contained in the base
signal.

Figure 3. Estimated parameters without additive noise employing SSMD,
FSMD and TSMD.

Figure 4. Estimated parameters with additive noise employing SSMD, FSMD
and TSMD.

To understand the incidence of each differentiator on the parameter
estimation process, it is initially of interest to analyse the current error
(I− Î) and the first derivative error (İ− ˆ̇I) without noise (See Fig. 7).
In the first place, observe that the error in the estimates is exiguous in
both differentiators. However, note that the amplitude of the TSMD
error is considerably higher than the one of the FSMD. On the other
hand, the derivatives of the TSMD are smoother and consistent, since
they are obtained from a chain of integrators.

Then, even though both the FSMD and the TSMD possess the same
noise rejection capabilities, the smoothness and consistency of the



Figure 5. Relative error comparison [%] in the parameter estimation employ-
ing SSMD, FSMD and TSMD without additive noise in the differentiated
signals.

Figure 6. Relative error comparison [%] in the parameter estimation employ-
ing SSMD and FSMD with additive noise in the differentiated signals.

TSMD derivatives is a determinant factor to improve the estimation.
This can be appreciated in Figs. 5 and 8 where, with or without noise,
the relative error in the RLS estimation is maintained below a %5
error bound. For its part, under exacting noise conditions, the use
of the FSMD still provides an acceptable estimation error, although
accuracy is worsen in comparison to the TSMD.

Figure 7. Error in the current (I) and derivative (İ) estimation employing
TSMD (left) and FSMD (right).

Figure 8. Relative error comparison [%] in the parameter estimation employ-
ing FSMD and TSMD with additive noise in the differentiated signals.

V. CONCLUSIONS

The work presented in this paper was undertaken as part of a
project aiming to develop an estimation methodology to deal with
energy storage systems utilised in sustainable hybrid energy systems.
In this stage, three differentiators were evaluated to be applied in
on-line estimation of VRFB parameters: a Standard, a Filtering and
a Tracking SMD.

Without (or with very low) noise, all of them demonstrated excel-
lent behaviours, allowing finite-time convergence for the regression
equation variables which, in the VRFB under study, are the voltage,
the current and their respective time derivatives. Above a certain level
of noise the performance of the Standard SMD visibly deteriorates.
Conversely, the Filtering and the Tracking SMDs, keep on delivering
very good results. Subsequently, putting them to test under exacting
noise conditions, the TSMD proved capability to better deal with
it. The results reveal that, even though the error amplitude in the
FSMD’s derivatives are lower than the ones of the TSMD, the



consistency in the estimated derivatives of the latter positively impact
in the parameter estimations.

Therefore, it can be concluded that the Filtering and the Tracking
SMDs are both applicable alternatives to implement the RLS with
forgetting factor methodology for flow batteries on-line estimation.
The latter is recommended, however if a lower computational burden
is required, the former is also a highly suitable option.

As future work, other differentiation strategies, as well as different
methods for the differentiators discretisation, will be investigated.
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