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Abstract— Pseudospectral collocation methods have proven
to be powerful tools to solve optimal control problems. While
these methods generally assume the dynamics is given in the
first order form & = f(x,u,t), where x is the state and u
is the control vector, robotic systems are typically governed
by second order ODEs of the form § = g(q, q,u,t), where q
is the configuration. To convert the second order ODE into a
first order one, the usual approach is to introduce a velocity
variable v and impose its coincidence with the time derivative
of q. Lobatto methods grant this constraint by construction,
as their polynomials describing the trajectory for v are the
time derivatives of those for g, but the same cannot be said for
the Gauss and Radau methods. This is problematic for such
methods, as then they cannot guarantee that § = g(q, q,u,t)
at the collocation points. On their negative side, Lobatto
methods cannot be used to solve initial value problems, as
given the values of v at the collocation points they generate
an overconstrained system of equations for the states. In this
paper, we propose a Legendre-Gauss collocation method that
retains the advantages of the usual Lobatto, Gauss, and Radau
methods, while avoiding their shortcomings. The collocation
scheme we propose is applicable to solve initial value problems,
preserves the consistency between the polynomials for v and g,
and ensures that ¢ = g(q, g, u,t) at the collocation points.

I. INTRODUCTION

Several methods are available to solve optimal control
problems in robotics. Among them, those based on direct
collocation enjoy widespread adoption due to their advan-
tages over indirect methods, which include their ease of
use and their larger regions of convergence towards optimal
solutions. Pseudospectral methods, also known as orthogonal
methods, are a particular type of direct collocation methods
that are attractive because of their exponential convergence
properties, and they have been successfully applied to a
variety of problems, including motion planning of robot arms
[1], biped gait generation [2], contact implicit optimization
[3], or maneuver planning on the International Space Sta-
tion [4]. Substantial theoretical work has also been done in
pseudospectral optimal control theory [5].

A pseudospectral method approximates each component of
the state and control vectors using high degree polynomials,
and imposing the dynamic equations at a set of collocation
points. Depending on the method, these points are taken from
the roots of specific orthogonal polynomials, or of combina-
tions of such polynomials and their derivatives. The most
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common sets of collocation points are those based on Leg-
endre or Chebyshev orthogonal polynomials, and depending
on whether they include the bounds of the time interval or
not, they are classified into Lobatto points, which include the
two bounds of the time interval, Radau points, which include
only one bound, and Gauss points, which include none. Ac-
cording to this classification, the most usual methods found
in the literature are the Legendre-Gauss (LG), Legendre-
Gauss-Radau (LGR), Legendre-Gauss-Lobatto (LGL), and
Chebyshev-Lobatto (CHL) methods [6, 7].

For problems with non-smooth solutions it could be conve-
nient to partition the time domain into subintervals and use a
different polynomial for each subinterval, but in this work we
assume that a single global polynomial is used for the whole
time domain. As is common in pseudospectral methods,
moreover, the polynomial approximating each component
of the state will be expressed as a Lagrange interpolating
polynomial constructed from a Lagrange basis with B time
nodes. While in the Lobatto case these B nodes coincide
with the /N collocation points, in the Gauss and Radau cases
they include one of the bounds of the time interval that is
not a collocation point, so B = N + 1.

The usual formulation of most pseudospectral methods
assumes that the system dynamics is governed by a first order
ODE of the form

&= f(z,u,t), (D

where x and u are the state and control vectors [8]. However,
in robotics, as in mechanics in general, the evolution of the
system is often determined by a second order ODE of the
form

q.:g(q’ q.7u7t)7 (2)

where g is the configuration and ¢ is its time derivative.
To apply a usual collocation method, therefore, the common
procedure is to cast (2) into (1) by introducing the velocity
vector v as a new variable, defining the state as = (g, v),
and adding the constraint v = @, so (2) can be written as

g=v, (3a)
{1'7 =g(q,v,u,t). (3b)

One drawback of this approach is that the configuration and
velocity components of the trajectory are approximated by
means of independent polynomials, when they are not, so
the problem is formulated with more variables and equa-
tions than actually needed. This concern has been addressed
specifically in the case of the LGL formulation [9], and has
been implicitly avoided through the use of (2) in the case of



the CHL method [6], but to the best of our knowledge no
similar studies have been done for the LG or LGR methods.

A more important aspect related to the formulation using
(3) is whether or not the approximating polynomial obtained
for a velocity component v coincides with ¢, not only at
the collocation points, where this coincidence is explicitly
imposed, but all along the whole time interval. In a Lobatto
method, where B = N, the approximating polynomials are
of degree at most N — 1, and therefore have N independent
parameters. Since the polynomial for v is constrained to
coincide with that of ¢ at N points, they must necessarily
be the same, since there is only one polynomial of degree at
most IV —1 satisfying IV conditions. In contrast, in the Gauss
and Radau methods where B = N +1, the polynomials for v
and ¢ have N +1 independent parameters, and imposing their
coincidence at N points does not force the two polynomials
to be the same. An unexpected consequence of this fact is
that, since v(t) # q(t), their derivatives will also be different
even at the collocation points ¢; (i.e., ¥(¢t;) # ¢(t;) despite
the fact that v(¢;) = ¢(¢;)), and, since

v(t%) = g(q(ti)v (j(ti)ﬂ u(ti>7 ti)?
this implies that

G(t:) # g(a(ts), q(t:), u(ts), t;),

what means that, in the case of the Gauss and Radau
methods, the second order dynamic constraints in (2) are not
really imposed at the collocation points, when they should.

On the other hand, the Gauss and Radau schemes have
the good property of providing a unique sequence of state
values q(t;), i = 1,..., N for any given sequence of control
values wu(t;), ¢ = 1,...,N and initial state g(¢p), since
these involve N + 1 constraints, which is the number of
independent parameters of the polynomials. However, for the
Lobatto schemes, each polynomial has just N parameters,
so imposing NN collocation constraints plus one initial value
constraint overconstrains the problem, which can only be
solved if the values w(t;), ¢ = 1,..., N are restricted to a
certain subspace [7]. This makes Lobatto schemes viable for
optimization but not for solving initial value problems.

In this paper, we aim to propose a pseudospectral colloca-
tion method that retains the advantages of the usual Lobatto,
Gauss, and Radau methods, while avoiding their shortcom-
ings. Specifically, we present a Legendre-Gauss collocation
method for second order systems with the dynamics in (2)
that preserves the consistency between the polynomials for
v and q, ensures that (2) is fulfilled at the collocation points,
and allows the solution of initial value problems. Using well-
established benchmark problems from the literature, we show
that the new method produces more accurate trajectories in
comparison to those of the standard LG method, without
increasing substantially the computational time needed to
obtain the solutions. We call the new method “second order”,
to distinguish it from the usual “first order”” methods that only
guarantee the dynamics in (1) at the collocation points. Our
work can be seen as a natural continuation of the one in [10]
for the trapezoidal and Hermite-Simpson methods.

II. PROBLEM FORMULATION

Let ¢ = (g, v) be a tuple describing the robot state, where
q € R™ is the robot configuration and v = ¢. We assume the
robot dynamics is given by the ODE in (2), or equivalently
by (1), where u € R™* is the control vector of motor forces
and torques. Then, given an instantaneous cost function
L(x(t),u(t)), a path constraint h(z(t),u(t)) < 0, and
a boundary constraint b(x(0), z(ts),t;) = 0, the optimal
control problem that we face consists in finding trajectories
x(t) and u(t), and a final time ¢; > 0, that

He(t).u(t) = [ Lia).u) dt @

o(-),u(-), s

subject to  &(t) = f(x(t),u(t),t), te€[0,tf], (4b)
h(z(t),u(t)) <0, te0,ts], (4c)
b(x(0), z(tf),t) = 0. (4d)

The goal of a collocation method is to transcribe the dynam-
ics in (4b) into a discrete form, so the whole problem in
(4a)-(4d) can be expressed as a NLP problem to be solved.
While the standard LG method departs from Eq. (4b) to do
the transcription (Section III), our new LG method will use
Eq. (2) instead (Section IV).

III. THE STANDARD LEGENDRE-GAUSS METHOD

In the Legendre-Gauss method, the collocation points are
the roots of the N-degree Legendre polynomial, which are
interior to the interval [—1,1]. The time domain is assumed
to coincide with this interval, and a variable 7 will be used
as the time variable running along this interval. It is usual
to transform the time variable of the actual time domain of
the problem ¢t € [0,t] into 7 € [—1,1] through the affine
transformation:

T=—-1+—. 5)

The state and control trajectories are approximated by La-
grange polynomials of degree N whose nodes are the N
collocation points 7y, ..., 7y together with the initial point

7o = —1. The j** component of the state is modeled as:
N
zyHr) = Zfﬂiijv+l(T)7 (6)
i=0

where x;; is the value of the j th component of the state at the
it" node point, and L (r) is the corresponding Lagrange
polynomial.

Then, the dynamics, as defined in Eq. (4b), are imposed at
the N collocation points. Usually, the controls are modeled
as Lagrange polynomials based on these collocation points,
so the j" component of the control is modeled as:

N
uf (1) = ui LY (7), @)

i=1
where wu;; represents the value of the jth component of

the control at the i*" collocation point and LY (7) is the
corresponding Lagrange polynomial.



Following this definition, we can easily obtain the deriva-
tives of x(7) with respect to 7 through the use of a
differentiation matrix. That is, for the j*" component of the
state we have

N+1

Z z LY (7) ®)

and, therefore, at the k' collocation point

;V+1 Zx”LNJrl Tk Z-Dkzxw (9)
=0

We can define the Gauss pseudospectral differentiation ma-
trix D, with size N x (N + 1), where each element Dy; of
the matrix is the value of LY (7;,) for k = 1,..., N, and
i=0,...,N,and the matrix X whose values X;; are x;(7;)
fori=0,...,N and j = 1,...,2n,. That is, each column
of X comprises the values of the j* component of the state
at all the node points, and each row is the value of all state
components at the i*" node point. Applying (9) to all the
collocation points of all the components of the state, we get

$§V+1(T ) (10

k) = (DX)i;
fork=1,...,Nand j =1,...,2n,. Note that matrix DX
has size N x 2n, while X has size (N + 1) x 2n,,.

Let us introduce now the matrices X ““, defined as Xj; =
xj(mg) for k=1,...,N and j = 1,...,2n, (that is, equal
to X but without the first row, which corresponds to 7, that
is a node point but not a collocation point), and U, defined as
Urj = Uj(my) for k=1,...,N and j = 1,...,n,. Taking
also into account the difference in derivation with respect to ¢
and 7, this notation allows us to finally express the enforcing
of (4b) at the collocation points as

;DX = F(X™ U) (1)
f
where F' = [fy, ...
collocation points.

7fN]T

is the discretization of f at the

IV. A METHOD FOR SECOND ORDER SYSTEMS

As explained in Section I, when the standard LG method
is applied to a second order system through the application
of (3), the coincidence of the approximating polynomials
for v and ¢ is not granted, and even worse, the second
order dynamics constraint in (2) is not actualpsed at the
collocation points. Our approach to overcome these problems
consists in modeling only the configuration g(7), and not the
whole state (7). To do so, we will use the LG collocation

points 7p,...,7Tn, but we will construct our node points
by adding both the starting point 7 = —1 and the end
point 741 = 1, so that B = N 4 2. Therefore, our

polynomials will be of degree N + 1 and they will have
N + 2 independent parameters. This structure allows us to
keep the capability to determine a state trajectory from a
given initial state and a given control: for each configuration
component, the polynomial has N + 2 parameters, and is
subjected to N collocation constraints, plus one constraint

for the initial configuration and another one for the initial
speed. The velocity polynomials are simply obtained as the
derivative of the configuration polynomials.

This structure translates eq. (6) for our method as:

N+1
N+2 Z q”LN-‘rQ (12)
and similarly to (8):
N+1
g A (r Z gi; L 2(7) (13)

But now, instead of evaluating the expression only at the
collocation points as in (9), we will use all the node points:

N+1 N+1
q]N+2 Z quLN+2 (7k) Z Dyt (14)
=0

for k=0,...,N + 1, resulting in the differentiation matrix
D* where each element D}, is the value of LN "%(r;,) for
k=0,...,N+1land i =0,...,N + 1, and the matrix Q
whose values Q;; are g;(r;) for i =0,...,N+1and j =
1,...,nq. Taking into account the relationship between ¢ and
T, we can define the matrices Q and Q of size (N +2) x ng,
which contain the values of velocities and accelerations at
the node points respectively, as:

. 2

Q=-DQ (15)
f

. 2\ 2

Q— D*Q = () D**Q. (16)
f f

Similarly to as before, from each of these matrices we will
define the sub-matrices QLG, QLG, and QLG, obtained by
eliminating the first and last row in order to keep only the
values related to the collocation points. This allows us to
express the enforcing of the second order ODE (2) at the
collocation points as:

Q-LG _ G(QLG,QLG,U),
where G = [gi1,...,gn] " is the discretization of g at the
collocation points, which along the usual transcription (4),
allows us to solve the optimization problem granting the
satisfaction of (2) at the collocation points and avoiding the
inconsistency between v and ¢ along the whole time domain.

A7)

V. TEST CASES

The first and second order versions of the Legendre-Gauss
method are next compared in terms of performance, by
applying them to solve the pendulum swing-up problem and
two trajectory optimization problems thoroughly documented
n [11], namely, the cart-pole swing-up and the five-link
bipedal walking problems (Fig. 1). Analytical solutions for
these problems are rather complex or directly not available,
so in order to compare the methods, we compute the dynamic
transcription error produced by each of them. To this end,
we define the following errors.
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Test cases. (a) A simple actuated pendulum. (b) A cart-pole system that has to perform a swing-up motion. (c) A five-link biped walking under

a periodic gait. The three snapshots on the right illustrate the motion that occurs between the foe off and heel strike events defining a period of the gait.

The first order dynamic error of the ¢; coordinate is
eql (1) = i() — vilt).

In general, this error is non-null in the first order LG method,

as it does not enforce v;(t) = ¢;(t) for all t. However, it

becomes zero by definition when using the second order

method. For the same coordinate, the second order dynamic
error 1s

(18)

55] (t) = Gi(t) — gi(q, 4, u, ). (19)

We found the 2" order error more meaningful than the 1%
order error reported in [11], since it reflects the deviation
from the actual system dynamics, which is expected to be
minimized by the collocation process. When all coordinates
in g have the same units, it also makes sense to define a
joint error for all coordinates. A plausible definition for this
error is

el?l(t) = |€([121] @O +...+ |€([12T]q (t)|. (20)

Finally, to summarize the error functions in just one number,
we compute their integrals over [0, ¢¢]:

23
B = [ lebie) .

ty
EM::/‘emﬁ)ﬁ,
0

To perform the comparisons, we have implemented the
methods in Python using the symbolic package SymPy [12]
to model the systems, and the toolbox CasADi [13] to
solve the NLP problems that result. CasADi provides the
necessary means to formulate such problems and to compute
the gradients and Hessians of the transcribed equations using
automatic differentiation. These are necessary to solve the
NLP problems, a task for which we rely on the interior-
point solver IPOPT [14] in conjunction with the linear solver
MUMPS [15]. The execution times we report have been
obtained on a single-thread implementation running on an
iMac computer with an Intel i7, 8-core 10th generation
processor at 3.8 GHz.

r=1,2 (@21

r=1,2 (22

In what follows, and in order to simplify the explana-
tions, we use the shorthands LG and LG2, respectively, for
the first and second order versions of the Legendre-Gauss
pseudospectral methods. Fig. 2 provides a comparison of the
second order errors and optimization times for both methods
in all problems, showing mean results after 10 runs.

A. The pendulum swing-up problem

The system consists of a pendulum formed by a single link
connected to ground with a revolute joint (Fig. 1(a)). The
angle of the pendulum relative to the rest position is given
by ¢ and the revolute joint is powered by a motor, which
applies a torque u to the link. Starting with the pendulum
hanging at rest in its bottom position, the goal is to reach
the upright configuration with zero velocity in the shortest
possible time t¢. The cost functional to be minimized is

J(u(t)) :/Ofdt:tf.

From the top plots in Fig. 2 we observe that the use of
LG2 reduces both the second order dynamic error and the
computation time. The error is reduced in about two orders
of magnitude, with the gain increasing with N, while the
optimization time is approximately halved for all N.

(23)

B. The cart-pole swing-up problem

The cart-pole system comprises a cart that travels along a
horizontal track and a pendulum that hangs freely from the
cart (Fig. 1(b)). A motor drives the cart forward and back-
ward along the track. Starting with the pendulum hanging
below the cart at rest at a given position, the goal is to reach
a final configuration in a given time ¢y, with the pendulum
stabilized at a point of inverted balance and the cart staying
at rest at a distance d from the initial position. The cost
functional to be minimized is

J(u(t)) = / " a2ty

where u is the force applied to the cart, and we adopt the
same dynamic equations and problem parameters as in [11].

(24)
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points in the three test cases considered. For the cartpole system, only the plot of Ec[121] is provided, as the one of E([ZQQ] shows a similar trend.

It can be observed in the middle row of Fig. 2 that the
use of the second order method reduces the second order
dynamic error in about 40% for all values of N (left plot),
while using a similar computation time in both methods
(right plot).

C. The 5-link bipedal walking problem

We next apply the methods to optimize a periodic gait
for the planar biped robot shown in Fig. 1(c). The robot
involves five links pairwise connected with revolute joints,
forming two legs and a torso. All joints are powered by
torque motors, with the exception of the ankle joint, which
is passive. Like the cart pole system, therefore, this robot
is underactuated, but it is substantially more complex. The

system is commonly used as a testbed when studying bipedal
walking [16]-[19].

For this example we use the dynamic model given in [11],
which matches the one in [16] with parameters corresponding
to the RABBIT prototype [20]. We assume the robot is left-
right symmetric, so we can search for a periodic gait using a
single step, as opposed to a stride, which involves two steps.
This means that the state and torque trajectories will be the
same on each successive step.

As in [11], we define g as the vector that contains the
absolute angles of all links relative to ground, while u
encompasses all motor torques. Also as in [11], and similarly
to the cart-pole problem, our goal is to find state and action



trajectories @ (t) and w(t) that define an optimal gait under
the cost

ty
J(u(t)) = / w(t)Tu(t) dt. (25)
0

For this problem, the bottom row of Fig. 2 shows that our
modified second order LG method results in a reduction of
the second order dynamic error. Such a reduction increases
with N until about N = 8, and stabilizes at about one order
of magnitude from then on. However, we can observe that
this comes at the cost of increasing the optimization time a
bit (by a factor of at most 2 in the worst cases) for values
of N above 15.

VI. CONCLUSIONS

This paper has presented a modified version of the LG
pseudospectral method that is able to correctly deal with
the second order nature of the dynamical systems frequently
arising in robotics. In comparison to the classical LG method,
the one we present guarantees that the approximation poly-
nomials for the velocity are the time derivative of the poly-
nomials for the configuration, which results in trajectories
which are more in agreement with the system dynamics.
The use of an additional node point in the definition of
the configuration polynomials, moreover, has allowed us to
have N + 2 independent parameters for each component
of the configuration vector. When stating an initial state
and control trajectory, two initial value constraints and N
collocation constraints were defined for each component, all
of them independent, therefore retaining the ability of the
usual LG method to solve initial value problems. Using three
benchmark problems from the literature, moreover, we have
shown that the new LG method provides trajectories with
a much smaller dynamic error in comparison to the usual
LG method. This implies that the obtained trajectories will
be more compliant with the system dynamics, which should
facilitate their tracking control in practice.

Points that deserve further attention include the study of
problem characteristics that lead to an increase or decrease of
the computing time when switching the methods, the applica-
tion of the new formulation to finite element methods that use
several polynomials in sequence, instead of a single global
polynomial, and a detailed theoretical analysis of the second
order LG method to confirm that the usual good properties
of LG methods, which include symplecticity, symmetry, and
the smallest possible global error for a polynomial of a given
degree [21], are preserved.
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