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Abstract. In this paper we present a variational approach to simultaneously re-
cover the 3D reconstruction, reflectance, lighting and specularities of an object,
all of them, from a set of RGB images. The approach works in an uncalibrated,
unified and unsupervised manner, without assuming any prior knowledge of the
shape geometry or training data to constrain the solution and under general light-
ing. To this end, the approach exploits a physically-aware image formation model
that in combination with a perspective projection one and under spherical har-
monics lighting gives a fully interpretable algorithm. Integrability is implicitly
ensured as the shape is coded by a depth map rather than normal vectors. As a
consequence, a wide variety of illumination conditions and complex geometries
can be acquired. Our claims have been experimentally validated on challenging
synthetic and real datasets, obtaining a good trade-off between accuracy and com-
putational budget in comparison with competing approaches.

Keywords: Specular-aware · Photometric Stereo · Uncalibrated · Unsupervised
· Variational Optimization.

1 Introduction

Photometric stereo (PS) is a relevant problem in computer vision and pattern recog-
nition aiming to retrieve both the 3D geometry of an object –probably via its normal
vectors– and the reflectance of a scene from multiple images taken at the same view-
point but under different illumination conditions [23–25]. Frequently, the way to sort
out the problem consists in inverting a physically-aware image formation model that
assumes a certain control of lighting. Despite providing accurate formulations, light-
ing control reduces the applicability of these methods to laboratory scenarios where an
exhaustive calibration of lighting must be performed. Instead, the uncalibrated counter-
part is ill-posed as the underlying normal map is recovered up to a linear ambiguity [5],
that decreases to a generalized bas-relief one if integrability is enforced. Differential
approaches based on variational formulations were introduced in order to directly re-
trieve the 3D geometry as a depth map, relaxing the remaining ambiguities [2, 16]. The
previous works assumed an illumination induced by a single source, limiting strongly
their applicability to natural scenarios where general lighting conditions appear. A non-
directional illumination model was proposed by [7] to encode natural illumination that
was even used in cloudy days [8]. Unfortunately, solving PS for uncalibrated and gen-
eral lighting is a very challenging task that has been rarely explored. Some exceptions
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PPPPPPPMeth.
Feat.

Integrability Uncalibrated Prior Material

No Yes Shape Training L NL
[8, 7] X X
[15, 19] X X X X
[12] X X
[11, 22, 26] X X X X
[4] X X X
Ours X X X X

Table 1. Qualitative comparison of our approach with respect to competing methods. Our
approach is the only one that directly retrieves a depth map (potentially non-integrable surface
normals are not estimated) of both Lambertian (L) and non-Lambertian (NL) materials; it is
uncalibrated and works under general lighting; and it assumes neither shape priors nor training
data with ground truth.

were proposed [15, 19] by assuming coarse 3D reconstructions as a prior, spatially-
varying directional lighting models [12], or Lambertian materials [4]. Beyond Lamber-
tian PS, the problem can be even more challenging for non-Lambertian objects as its
appearance could contain a mixture of specular and diffuse reflection properties.

In parallel, the use of deep learning has been also applied to PS [9, 11, 22, 26]. These
approaches propose end-to-end supervised training methodologies that ignore the un-
derlying physical principle of PS as the model is learned from data. While the obtained
results are promising, their lack of physical interpretability prevents them from exploit-
ing the real interactions between surface geometry and specularities, as the last are han-
dled in an implicit manner. However, the previous has not prevented a wider up-taking
of these methods. The lack of large-scale real-world training data hinders the progress
of data-driven deep PS. It is worth noting that obtaining ground truth –including 3D
geometries and lighting– in a natural lab setting is both expensive and laborious, espe-
cially for certain object materials where the acquisition could be very hard. In addition
to that, these approaches normally assume the light direction as well as the intensity
at each illumination instant, i.e., the problem is solved in a calibrated manner. Table 1
summarizes a qualitative comparison in terms of available characteristics and assump-
tions of our approach and the most relevant competing approaches. As it can be seen,
our approach is the only one that has all characteristics without assuming strong priors
such as the use of large amounts of training data or a 3D rough geometry.

In this paper we overcome most of the limitations of current methods with a varia-
tional algorithm that can solve the PS problem for non-specific objects. Our approach is
unified, unsupervised –no ground truth is needed for supervision–, and efficient; as well
as being able to handle the problem in an uncalibrated manner under general lighting.

2 Physically-aware Photometric Stereo

Let us consider a set of observations {Iic ⊂ R2} composed of i = {1, . . . , I} images
with c = {1, . . . , C} color channels where it appears an object we want to reconstruct in
3D. For that object, we also defineM⊂ Iic as its shape segmentation in the image set,
i.e., the masked pixel domain. Considering that the object to be captured is Lambertian,
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the surface reflectance for all P pixel points p ∈ M can be modeled by collecting
elementary luminance contributions arising from all the incident lighting directions ω
as:

Iic(p) =

∫
H2

ρc(p) lic(ω) max{0,ω>n(p)} dω, (1)

where H2 is the unit sphere in R3, ρc(p) and lic(ω) indicate the color-wise albedos and
intensity of the incident lights, respectively, and n(p) the unit-length surface normals
at the surface point conjugate to pixel p. The Lambertian surface assumes ρc(p) to
be always a positive value. The object irradiance or shading component is coded by
the max operator. Unfortunately, the previous model cannot handle materials that ex-
hibit a combination of specular and diffuse reflection properties, i.e., non-Lambertian
surfaces. To solve that, we can follow the approximation of a Phong reflection model
that considers the light at the p-th pixel as the sum of two additive terms: a viewpoint-
independent diffuse and a view-dependent specular. In other words, as the model in
Eq. (1) is specularity-free diffuse, we consider an additive component si(p) for the
specular reflection as:

Iic(p) =

∫
H2

ρc(p) lic(ω) max{0,ω>n(p)} dω + si(p). (2)

According to literature [2, 23, 25], the PS problem in an uncalibrated manner con-
sists in recovering the 3D shape of the object (via its normals n(p)) together with the
quantities {ρc}, {lic} and {si}, all of them, from the set {Iic}.

Following [1] the irradiance map can be modeled using a spherical harmonic ap-
proximation of general lighting by means of a half-cosine kernel:

k(ω,n(p)) = max{0,ω>n(p)}. (3)

The general image formation model in Eq. (2) can now be written as:

Iic(p) =ρc(p)

∫
H2

lic(ω) k(ω,n(p)) dω + si(p)

=ρc(p)α(ω,p) + si(p). (4)

By applying the Funk-Hecke theorem we obtain a harmonic expansion (N = ∞)
of the term α(ω,p) as:

α(ω,p) =

N∑
n=0

n∑
m=−n

(li,cn,mkn)hn,m(n(p)), (5)

where {hn,m} represents the orthogonal spherical harmonics, and {li,cn,m} and {kn}
indicate the expansion coefficients of lic and k with respect to {hn,m}, respectively. Ac-
cording to [1], most energy in Eq. (5) can be modeled by low-order terms and, therefore,
a first- or second-order spherical harmonic approximation can be considered. Particu-
larly, for a distant lighting the 75% of the resulting irradiance is captured for N = 1,
and the 98% for N = 2. Then, higher-order approximations are unnecessary.
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As a consequence, the image formation model after including the harmonic expan-
sion is written as:

Iic(p) ≈ ρc(p) lic
>
h[n](p) + si(p), (6)

where lic ∈ R9 and h[n] ∈ R9 are the second-order harmonic lighting coefficients and
images, respectively, with:

h[n] = [1,n1,n2,n3,n1n2,n1n3,n2n3,n
2
1 − n2

2, 3n
2
3 − 1]>. (7)

Without loss of generality, to consider a first-order approximation (i.e., N = 1), we
could directly use the first four terms in h[n].

3 Variational Photometric Stereo Optimization

We propose to use the image formation model introduced in the previous section to
recover non-Lambertian objects in 3D. However, the estimation of normal vectors is a
non-linear problem and, as a consequence, we first introduce a model to achieve a linear
dependency on depth. This section is devoted to describing the details of our variational
approach for uncalibrated specular-aware PS.

3.1 Measurement Model

We next describe how the process of observing the 3D surface is modeled. Given the
3D coordinates of a surface point in the camera coordinate system C, x = [x, y, z]>,
and assuming the z-axis aligned with the optical axis of the camera, under a perspective
projection the 3D coordinates can be given by:

x(u, v) = z(u, v)

fu 0 uo
0 fv v0
0 0 1

−1 uv
1

 , (8)

where (fu, fv) include the focal length values, (uo, vo) the principal point coordinates,
and p = [u, v, 1]> ∈ M the 2D observation of the point x in the image plane coded in
homogeneous coordinates.

As our goal is to recover the 3D object, we need a way to parametrize the surface
normal vector n at point x(u, v) by its depth z. To this end, we first compute a vector
pointing to the camera as n̄(u, v) ≈ ∂ux(u, v) × ∂vx(u, v). According to [4, 13], this
normal vector n̄[z](u, v) is given by: − z(u,v)∂uz(u,v)fv

− z(u,v)∂vz(u,v)fu
u−u0

fu

z(u,v)∂uz(u,v)
fv

+ v−v0
fv

z(u,v)∂vz(u,v)
fu

+ z(u,v)2

fufv

 , (9)

that can be simplified to: fu∂uz(u, v)
fv∂vz(u, v)

−(u− u0)∂uz(u, v)− (v − v0)∂vz(u, v)− z(u, v)

 . (10)
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Finally, the unit vector oriented towards the camera is computed as:

n[z](u, v) =
n̄[z](u, v)

|n̄[z](u, v)|
. (11)

3.2 Variational Optimization

Considering our final model in Eq. (6) together with the parametrization in Eq. (11), the
model parameters can be simultaneously estimated by minimizing a photometric error
of all the observed points over all images by means of the following variational cost
function A({ρc}, {lic}, {si}, z):

I∑
i=1

C∑
c=1

∫
M
ψλ

(
ρc(u, v) lic

>
h[n[z]](u, v) + si(u, v)− Iic(u, v)

)
du dv

+ µ

C∑
c=1

∫
M
| 5 ρc(u, v)|γ du dv + µs

I∑
i=1

∫
M
|si(u, v)|γs du dv, (12)

where 5 is the spatial gradient operator and | · |γ denotes a Huber norm. In the data
term we use a Cauchy’s M-estimator defined by ψλ(q) = λ2 log(1 + q2

λ2 ), where λ
is a scaling coefficient. Unfortunately, the previous problem is non-convex and highly
non-linear.

To better condition it, we add two regularization priors to improve the joint solution.
The first one consists of a Huber total variation term on each albedo map and it is used
to enforce smoothness on the albedo maps {ρc}. To prevent a full explanation of the
image as a specularity, we also penalize its use by means of a second Huber-based
regularizator. Both regularizators are balanced with the data term by using the weights
{µ, µs} > 0 that are determined empirically. The Huber loss can be defined as:

|q|γ =

{
|q|2/(2γ) if |q| ≤ γ
|q| − γ/2 if |q| > γ

, (13)

where γ is a fixed coefficient.
It is worth noting that thanks to our formulation in Eq. (12), we can directly solve

the uncalibrated PS problem in terms of z instead of recovering a set of potentially
non-integrable normal vectors. Moreover, that means an improvement in terms of com-
putational efficiency as additional post-processing steps are unnecessary.

3.3 Implementation and Initialization

To numerically solve the problem in Eq. (12), the domainM is replaced by the number
of pixels P , and employing a forward difference stencil to discretize the spatial gradi-
ent we can finally obtain discretized vectors to encode our model parameters. Then, the
optimization problem can be efficiently solved by means of a lagged block coordinate
descent algorithm. Basically, the full problem is tackled by means of partial subprob-
lems independently resolved via least squares strategies. As our variational formulation
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is non-convex, it is important not to initialize their values at random, and for that reason,
we follow a strategy as in [4] to initialize albedos and lighting. In addition to that, we
impose null specularity for initialization.

Regarding the depth initialization, we use image silhouette to recover a balloon-like
surface by solving a constrained minimal surface problem [14, 20, 21]. Particularly, the
solution is constrained by a volume value κ that is set a priori. Fortunately, as in real-
world applications the distance from the camera to the object shape is within reasonable
bounds, the relation between shape area and shape volume is always similar, simplifying
the search for a volume value κ. We will consider that in the experimental section.

4 Experimental Evaluation

In this section we show experimental results on both synthetic and real image collec-
tions providing both qualitative and quantitative comparison with respect to state-of-
the-art-solutions. For quantitative evaluation, we consider the mean angular error be-
tween ground truth nGT [z] and estimated n[z] normals defined as:

MAE =
1

P

P∑
p=1

tan−1
( |nGT [z]× n[z]|

nGT [z] · n[z]

)
, (14)

where × and · denote cross and dot products, respectively. In all experiments, we set
γ = γs = 0.1 and λ = 0.15. The rest of coefficients will be considered later.

4.1 Synthetic Data

We propose the use of four synthetic shapes with different light conditions for evalua-
tion. Particularly, we consider the challenging shapes Joyful Yell provided by [27], and
Armadillo, Lucy, and ThaiStatue provided by [10]. To generate the datasets, we employ
25 environment maps li from [6] with a white albedo (ρc(p) = 1). To render synthetic
input images, we use Eq. (1) in combination with a specularity mask (si(p) 6= 0) per
image. All the environment maps we use are shown in Fig. 1-left, as well as the impact
of every incident lighting in combination with specularity over the Joyful Yell shape in
Fig. 1-right.

First of all, we analyze the effect of the initialization in our approach. It is worth
recalling that our variational formulation is non-convex and, as a consequence, it is
important to consider initialization of certain parameters. To do that, we have tried
three alternatives for the specular term: full specularity (si(p) = 1), null specularity
(si(p) = 0), and the provided by [18]. The last one is based on the fact that the in-
tensity ratios for diffuse pixels are independent of the shape geometry. Figure 2 shows
visually the effect of those initializations in comparison with the specular ground truth
as well as the estimated 3D shape. As it can be seen, when full specularity is used that
component absorbs too much information, which causes a very poor estimation of the
depth. For null specularity, both the estimated specular component and the 3D shape
are very competitive. Finally, when we use [18] for initialization following the imple-
mentation in [17], the 3D shape we obtain is slightly worse than the one obtained by
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Fig. 1. Illustration of the synthetic Joyful Yell dataset. Left: 360-degree spherical environment
maps. Right: Input images after projecting the Joyful Yell mesh with specularity and white albedo.
Best viewed in color.

Fig. 2. Effect of specular initialization. In all cases, the figure displays the case of full specu-
larity at initialization, null specularity at initialization, initialization by [17], and ground truth for
the Joyful Yell shape. Top: Specular maps. Bottom: Depth estimation.

(si(p) = 0), but it converges faster to the solution. Thus, the estimation obtained by
the last initialization could provide the best trade-off between accuracy and efficiency.
However, the method fails for images with negligible specular lighting by considering
white pixels as points with specularity. This effect is shown in Fig. 3 where some white
parts of the object are initialized with a high specularity. For that reason, we will finally
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Fig. 3. Specular initialization in white areas. Comparison in objects without (on the left) and
with specularity (on the right). Odd columns show the initial specular component by [17] and, in
the pair ones the albedo-aware ground truth images.

Fig. 4. MAE errors to measure the precision on the estimated depth as a function of tuning
parameters for synthetic datasets. Left: Initial volume evaluation. Middle: Regularization on
albedos by µ. Right: Regularization on specularities by µs.

assume null specularity for initialization, as our goal is to achieve the most accurate
method as possible while robustness is not compromised.

We next evaluate the effect of depth initialization in section 3.3. To discover the
optimal volume values κ for each dataset, we consider the range of values [100, 102].
As it can be seen in Fig. 4-left, the solution is stable for a part of the interval. Without
loss of generality, for these synthetic datasets we chose the values which provided the
most accurate shapes, and fixed them for the rest of the experiments. The optimal values
were 44, 12.25, 8.25 and 8 for Joyful Yell, Armadillo, Lucy, and ThaiStatue datasets,
respectively.

Now, we evaluate the effect of the regularization weights {µ, µs} in Eq. (12). To
this end, we consider for both weights a large range of values for [10−7, 10−4]. The
MAE error for every dataset is represented as a function of those µs and µ values in
Fig. 4-right and Fig. 4-middle, respectively. Considering all the datasets, we fix for the
rest of experiments µs = 2 ·10−6 and µ = 3 ·10−6 despite not being the optimal values
for every dataset independently.

Finally, we provide quantitative evaluation and comparison with respect to UPS [4],
the most competitive technique in state of the art for our approach according to ta-
ble 1. This method provided better performance compared to [12, 15, 19] in [4]. The
parameters of this method were set in accordance with the original paper. Our results
are summarized in Table 2. As it can be observed, the provided method can achieve a
MAE error of 10.66 degrees on average, a more accurate solution than the 19.11 de-
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PPPPPPPMeth.
Dataset

Joyful Yell Armadillo Lucy ThaiStatue Average

Ours 7.66 13.63 10.05 10.93 10.66
UPS [4] 13.44 24.83 14.43 23.74 19.11

Relative incre. 1.754 1.822 1.436 2.172 1.793

Table 2. Reconstruction quantitative comparison. The table reports the MAE results in degrees
for UPS [4] and our algorithm. Relative increment is computed with respect to our method, the
most accurate solution.
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Fig. 5. Qualitative comparison on synthetic datasets. Comparing our estimation with respect
to UPS [4] and the ground truth. From left to right it is displayed the UPS [4] estimation, our
solution, and ground truth.

grees obtained by UPS [4]. In other words, our approach reduces the error a 79.3%.
As expected, UPS [4] cannot handle scenarios with specularities as good as our method



10 P. Estevez and A. Agudo

O
ve

nm
itt

Ta
bl

et
Fa

ce
Va

se

Fig. 6. Qualitative comparison on real datasets. Comparing our estimation with respect to
UPS [4]. First and Third columns: depth and albedo by UPS [4]. Second and Fourth columns:
depth and albedo by ours.

does. A qualitative comparison with the competing technique as well as with the ground
truth can be seen in Fig. 5. Both methods provide physically coherent estimations, but
the differences of the 3D reconstructions are noticeable in the Armadillo and ThaiStatue
datasets as more details are correctly acquired by our approach.

4.2 Real Data

In this section, we provide qualitative evaluation and comparison on four different
datasets. Particularly, we consider the real-world shapes Ovenmitt, Tablet, Face, and
Vase [3]. This set of datasets offers a large variety of complex geometries (nearly pla-
nar, smooth and wrinkled shapes) and albedos and was captured under daylight and a
freely moving LED. Depth initialization was manually set by exploiting the relation
between shape area and shape volume, as it was commented above. The results are
displayed in Fig. 6. As it is showed, our approach visually obtains better 3D represen-
tations, especially for Ovenmitt, Tablet, and Vase datasets, by recovering more spatial
details as well as achieving a global consistency. In addition to that, reflectance seems
to be slightly more accurate, as it can be seen in the Vase dataset. Similar results with
respect to UPS [4] are obtained in the Face dataset, as the specular component is low.
In this line, we consider that our method outperforms UPS [4] for the Vase dataset due
to the specular component in this set of images being bigger and, as a consequence,
our method can handle it better and produce more accurate joint solutions. This can be
easily observed in Fig. 7, where we show our specular estimations for one particular
image of several datasets. Fortunately, our approach can capture properly the specular
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PPPPPPPMeth.
Dataset

Vase Tablet Ovenmitt Face2 Average

Ours 705.32 884.62 765.34 295.88 662.79
UPS [4] 627.45 783.24 667.16 257.62 583.86

Relative incre. 1.124 1.129 1.147 1.148 1.135

Table 3. Computation time quantitative comparison. The table reports the computation time
results in seconds for UPS [4] and our algorithm. Relative increment is computed with respect to
UPS [4], the most efficient solution.

component, making more robust the joint estimation of depth, albedo, and specularity.
For instance, our method can capture some specularities that are not clearly a diffuse
component, as it can be seen for the nose in the Face dataset (see Fig. 7, third row).
Regarding computational complexity, as our method can provide more complete esti-
mations, the computation time is slightly larger than the provided by UPS [4]. A sum-
mary of those results (in non-optimized Matlab code) on a commodity laptop Intel Core
i7-8700 3.20GHz CPU are reported in Table 3 for real datasets. Despite increasing the
computational time a 13.5%, the trade-off between accuracy and computation time is
very competitive for our approach as it can accurately solve the problem with a small
increase in computation.

5 Conclusion

The uncalibrated PS problem under general lighting has been approached by a varia-
tional and unified method. The proposed algorithm can jointly retrieve reflectance, 3D
reconstruction, lighting and specularities of the object, all of them, from a set of RGB
images and without assuming any training data at all. To this end, we have presented a
physical-aware image formation model that, in combination with a perspective projec-
tion one and under spherical harmonics lighting, gives a fully interpretable algorithm.
Thanks to our formulation, we can handle a large variety of complex geometries and
illumination conditions without needing any knowledge prior. We have experimentally
evaluated our approach both on synthetic and real datasets. While our approach provides
a full and interpretable model capable of generating competitive joint 3D and lighting
reconstructions with respect to competing techniques, the computational cost slightly
increases. An interesting avenue for future research would be to validate our formula-
tion for articulated objects where strong shadows could appear due to self-occlusions.
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Fig. 7. Specular Recovery. Some input images for synthetic and real images (left columns) to-
gether with the specular estimations (right column) obtained by our method.
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