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Abstract

This paper presents and discusses algorithms, hardware, and software architecture developed
by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in
the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within
the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved 2nd and 1st
place, respectively. We also discuss CoSTAR’s demonstrations in Martian-analog surface and
subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to
as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware
framework that aims at enabling resilient and modular autonomy solutions by performing
reasoning and decision making in the belief space (space of probability distributions over
the robot and world states). We discuss various components of the NeBula framework,
including: (i) geometric and semantic environment mapping; (ii) a multi-modal positioning
system; (iii) traversability analysis and local planning; (iv) global motion planning and
exploration behavior; (v) risk-aware mission planning; (vi) networking and decentralized
reasoning; and (vii) learning-enabled adaptation. We discuss the performance of NeBula on
several robot types (e.g. wheeled, legged, flying), in various environments. We discuss the
specific results and lessons learned from fielding this solution in the challenging courses of
the DARPA Subterranean Challenge competition.
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Figure 1: Tham Luang cave rescue mission. Figures from [Fedschun, 2018] and [Vejpongsa, 2018].

1 Introduction

Robotics and Artificial Intelligence (AI) are transforming our lives, with a growing num-
ber of robotic applications ranging from self-driving cars [Yurtsever et al., 2020], search & res-
cue [Balta et al., 2017], healthcare [Qin et al., 2020] and humanitarian missions [Santana et al., 2007], to
robots under water [Kinsey et al., 2006] and robots beyond our home planet on Mars [Sasaki et al., 2020,
Bajracharya et al., 2008] and the moon [Ford et al., 2020]. Autonomy and AI are empowering these robots
to carry out missions autonomously, increasing e�ciency with reduced human risk, saving lives, and accom-
plishing tasks that are often in hazardous environments too dangerous for human.

Extreme environments: Underground environments are an important example of the type of terrain that
imposes a lot of risk for humans, with a wide range of terrestrial and planetary applications. On Earth,
autonomous underground exploration is a crucial capability in search and rescue missions after natural
disasters, in mining, oil and gas industry, and in supporting spelunkers and cave rescue missions. One
prominent example is the Tham Luang cave rescue (Figure 1), where the international community aimed at
rescuing thirteen members of a football team from 4 km inside a partially flooded cave. Drones equipped
with thermal cameras have been flown over Tham Luang to detect possible access points, and an underwater
robot was deployed to send information back on the water depth and condition of the cave. However, at
that time, no technology existed to autonomously reach the people, map the cave, and scan for people deep
underground.

Planetary applications: Beyond our home planet, the research community has identified more than
200 lunar and 2000 Martian cave-related features [Cushing, 2012]. Caves and subsurface voids, in general,
are of utmost importance in space exploration for several reasons. First, their stable, radiation-shielding
environment, and potential to act as volatile traps makes them an ideal habitat candidate for future hu-
man exploration [Kesner et al., 2007, Titus et al., 2020]. Second, planetary cave environments may harbor
life due to their shielding from cosmic rays, and if there is life beyond Earth, deep planetary caves are
one of the most likely places to find it. Third, exploring caves provides an unprecedented opportunity
for scientists to study planetary volcanic processes and the geological history of planetary bodies. These
reasons, among many others, have made subsurface exploration one of the main next frontiers for space
exploration [Stamenković et al., 2019, Touma et al., 2020].

While autonomy and AI technologies are growing fast, challenges still remain for operations in extreme
environments. Technical challenges include: perceptual degradation (darkness, obscurants, self-similarity,
limited textures) in wholly unknown and unstructured environments; extreme terrain that tests the limits of
traversability; mission execution under constrained resources; and high-risk operations where robot failure



or component degradation is a real possibility. Most challenging of all, however is the combination of the
above features. Further work is needed to push the state-of-the-art to enable systems that can robustly and
consistently address these challenges simultaneously.

Contributions: In this paper, we discuss the NeBula autonomy solution and Team CoSTAR’s contribu-
tions towards addressing some of the challenges in robotic exploration of unknown extreme surface and
subsurface environments. We discuss these technologies in the context of the DARPA Subterranean chal-
lenge [DARPA, 2018a], where Team CoSTAR won the Urban competition and ranked 2nd in the Tun-
nel competition. The videos in [CoSTAR Team, 2020c, CoSTAR Team, 2020a, CoSTAR Team, 2020d,
CoSTAR Team, 2021, CoSTAR Team, 2020b] depicts some highlights of these runs. As we will discuss
in Section 2, this competition pushes the state-of-the-art boundaries in extreme environment exploration in
mobility, perception, autonomy, and networking. Specifically, we will discuss Team CoSTAR’s contributions
in advancing the autonomy in the following fronts:

1. Resilient, modular, and uncertainty-aware autonomy architecture (Section 4)
2. State estimation in perceptually-degraded environments (Section 5)
3. Large scale positioning and 3D mapping (Section 6)
4. Semantic understanding and artifact detection (Section 7)
5. Risk-aware traversability analysis (Section 8)
6. Global motion planning and coverage/search behaviors (Section 9)
7. Multi-robot networking (Section 10)
8. Mission planning and system health management (Section 11)
9. Mobility systems and hardware integration (Section 12).

2 DARPA Subterranean Challenge

The DARPA Subterranean or “SubT” Challenge [DARPA, 2018a] is a robotic competition that seeks novel
approaches to rapidly map, navigate, and search underground environments (Figure 2). The competition
spans a period of three years. The teams participating in the systems track develop and implement physical
systems for autonomous traversal, mapping, and search in various subterranean environments, including
mines, industrial complexes, and natural caves.

Figure 2: The three subdomains in the DARPA Subterranean Challenge: Tunnel systems, urban under-
ground, and cave networks

Illustrative scenarios: The primary scenario of interest for the competition is providing autonomous
and rapid situational awareness in unknown and challenging subterranean environments. The layout of the



environment is unknown, could degrade or change over time (i.e., dynamic terrain), and is either impossible or
too high-risk to send in personnel. Potential representative scenarios range from planetary cave exploration to
rescue e↵orts in collapsed mines, post-earthquake search and rescue missions in urban underground settings,
and cave rescue operations for injured or lost spelunkers. Additional scenarios include missions where
teams of autonomous robotic systems are sent to perform rapid search and mapping in support of follow-on
operations in advance of service experts, such as astronauts and search/rescue personnel. These scenarios
present significant challenges and dangers that would preclude employing a human team, such as collapsed
and unstable structures or debris, a presence of hazardous materials, lack of ventilation, and potential for
smoke and/or fire.

2.1 Competition Rules

Competition structure: Each team has a fixed time window (1 hour) to carry out the mission. Each team
deploys their robots to provide rapid situational awareness through mapping of the unknown environment
and localization of artifacts (e.g., CO2 gas source, survivors, electrical boxes). As the systems explore the
environment, these situational awareness updates need to be communicated back to a base station, outside
the challenging area, in as close to real-time as possible. The urgency in completing the course objectives
and providing near-real-time situational awareness updates is a consistent focus of the competition.

Scoring: The detailed scoring metrics are discussed in [DARPA, 2021]. At a high-level, each team gets 1
point per artifact, if the team can (i) reach, detect, and recognize the artifact, (ii) localize the object in
global coordinates with less than 5 meters error, and (iii) report the object to outside the course during
the 1-hour mission period. There are 20 artifacts distributed throughout the course, see Figure 3, and each
team has only 25 chances to report the artifacts. Hence, teams need to be careful in using their reporting
budget. In addition to artifacts, the quality of a 3D map, environment coverage, and the traverse length are
quantified as interim measures of success.

High-level rules: There is no prior map of the environment. No team member is allowed to enter the
course prior or during the competition. The mission length is limited to an hour. There is one single human
supervisor outside the course, who is allowed to see the data coming from the robot and interact with them, if
and when a communication link is established. Communication between the operator and robots is typically
limited to the areas near the course entrance, due to the scale, complexity, and communication-denied nature
of the course.

2.2 Technical Challenge Elements

The competition is intended to push the boundaries of the state-of-the-art and state-of-the-practice across
various challenge elements, including: austere navigation, degraded sensing, severe communication con-
straints, terrain obstacles, and endurance limits.

All-terrain Traversability: The environment includes multiple levels, loops, dead-ends, slip-inducing
terrain interfaces, and a range of features and obstacles that challenge robot’s mobility. Examples of terrain
elements and obstacles include constrained passages, sharp turns, large drops/climbs, inclines, steps, ladders,
mud, sand, and/or water. The environments may also include organic or human-made materials; structured
or unstructured clutter; and intact or collapsed structures and debris.

Degraded Perception and Sensing: The environment includes elements that range from constrained
passages to large openings, lighted areas to complete darkness, and wet to dusty conditions. Such environ-
ments with limited visibility, di�cult and expansive terrain, and/or sparse features can lead to significant
localization error and drift over the duration of an extended run. Perception and proprioceptive sensors
will need to reliably operate in these low-light, obscured, and/or scattering environments while having the
dynamic range to accommodate such varying conditions. Dust, fog, mist, water, and smoke are among the
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Figure 3: The final event will comprise elements from all subdomains in a course to demonstrate the versatility
of solutions developed. To motivate the e�cient exploration and search of the environment, competitors score
points by accurately reporting the type and position of artifacts distributed along the course.

challenging elements.

Constrained Communication: Limited line-of-sight, radio frequency (RF) propagation challenges, and ef-
fects of varying geology in subterranean environments impose significant impediments to reliable networking
and communications links. Teams in this competition consider innovative approaches to overcome these con-
straints, including novel combinations of hardware, software, waveforms, protocols, distributed or dispersed
concepts, and/or deployment methods.

Endurance and Power Limits: To succeed in accomplishing the mission goals, teams need to be capable
of a team-aggregated endurance of 60-120 minutes. This aggregate endurance requires novel deployment
concepts, energy-aware planning, heterogeneous agents of varying endurance, energy harvesting or transfer
technologies, and/or a combination of various approaches to overcome the various challenge elements.

3 Concept of Operations

In this section, we briefly go over NeBula’s ConOps (Figure 4) for exploring unknown extreme terrains under
time constraints. In order to simultaneously address various challenges associated with exploring unknown
challenging terrains (Section 2.2), we rely on a team of heterogeneous robots with complementary capabilities
in mobility, sensing, and computing.

Robot Capabilities: Figure 5 shows the robots we have deployed. The capabilities of these robots drive the
ConOps design process. Tables 1, 2, 3 summarize our heterogeneous robot capabilities from mobility, sen-
sory, and computing perspectives. Our ConOps induces specific combinations of mobility-sensor-computer,
defining the robots we deploy in the environment to satisfy the mission objectives. The payload capacity
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Figure 4: NeBula’s Concept of Operation. Top: Bird’s eye view of autonomy in cave. Bottom: Perspective
view with our robots and di↵erent environments.

of each robot is directly correlated with the sensory capacity; larger payload capacity allows for a larger
sensory suite. Also, the energy/battery capacity, and desired endurance on each robot is correlated with
their processing capabilities; typically, larger robots are able to carry larger batteries and more powerful
computing resources. Some of these mobility-sensor-computer combinations are discussed in Section 12.

ConOps: Our Concept of Operations (ConOps) utilizes a heterogeneous set of platforms (see Table 1 and
Figure 5). In the following, we describe several steps of an example illustrative mission ConOps.

1. Vanguard Operations: As the robots enter the environments, they explore the frontier with vanguard
robots with highly capable sensing for mapping and artifact detection.

2. Mesh Network Expansion: As robots start the mission they aim at maintaining communication with
the human supervisor by creating and extending a wireless mesh network inside the environments of
networking. Ground robots do so by deploying communication pucks like breadcrumbs, and aerial scouts
can self-deploy for either comms relays or added sensing. Mission autonomy will decide where and how
to deploy these breadcrumbs.

3. Leaving the Mesh Network: The environment is highly communication-denied. Due to the large scale,
complexity of the environment, and capacity of robots to carry communication nodes, the mesh network
reach is typically limited to the parts of the environments in the vicinity of the base station (i.e., environ-
ment entrance). Hence, the robots will leave the communication network range soon and, for the most
part, carry out a fully autonomous mission.

4. Autonomous Mission: Robots perform search, mapping, and exploration. Autonomous mission guides
them to the rendezvous points to exchange information with each other, or they come back to the mesh
network to exchange information with the base station.

5. Dynamic Task Allocation: Robots continue simultaneous frontier exploration. They autonomously mon-
itor the
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Figure 5: Team CoSTAR’s NeBula-powered robots

(a) state of the robot team that includes: (i) health, battery, and functionality level of the assets, (ii)
robot locations, (iii) the information value (e.g., the numbers of detected artifacts) on each robot.

(b) state of the world that includes what robots learn about the environment, e.g., geometric and semantic
maps,

(c) state of the mission that includes: (i) the remaining mission time, and (ii) margin to the desired
mission output, (iii) acceptable risk thresholds.

(d) state of communication: (i) network connectivity, throughput, etc., (ii) how long each robot is out
of the comm range, (iii) location of comm nodes

Given these states, the mission planner will decide to deploy new robots, re-task or re-position active
robots in the environment.

6. Team Behaviors: Vehicles and team formation are configured during the mission. Examples include:

(a) Return to Base, when a battery swap is needed, optimal, and possible at base,

(b) Return to Mesh Network, to ensure the data are communicated, then continue,

(c) Explore Frontier, continue as is, aggressively prioritizing coverage,

(d) Act as a Data Mule: to retrieve data from a vehicle who cannot come back to the mesh network (due
to limited battery, health, speed, etc), faster and healthier vehicles can act as data mules to carry
the information between others agents and the mesh network.

7. Heterogeneous Coverage: These behaviors continue until the entire course is explored. Due to the het-
erogeneous capabilities of the robots from mobility, sensing, and computation perspectives, the autonomy
might dispatch di↵erent robots to the same parts of the course. This is to increase the confidence and
coverage in mapping and artifact detection by providing multimodal information (e.g., thermal, radar,
etc) about the environment elements. For example, the drone might have reached and searched parts
of the course but given its limited sensing capabilities, autonomy will dispatch a ground robot to get a
second vote on an artifact before submitting it to the server. All the data is submitted to the server prior
to the end of mission time.



Table 1: Heterogeneous NeBula-powered Mobility Modes

Robot Type Deployed In Energy capacity Payload capacity Comm Speed Mobility Endurance

Legged robots Urban Mid Mid Mid Mid Mid Mid
Hybrid (ground/aerial) STIX Low Low Low High Mid-High Low-Mid

Wheeled STIX, Mine, Urban High High High Low Low High
Drones STIX, Mine Low Low Low High High Low
Tracked STIX High Mid Mid Low Low-Mid Mid-High

Fast small rovers Mine Mid Mid Low High Low Mid
Aggregated robot team All events Shared/Synergistic Shared/Synergistic Shared/Synergistic Aggregated Aggregated Aggregated

Table 2: Heterogeneous NeBula Sensing Modalities (the values are based on our specific ConOps)
Exteroceptive Proprioceptive

Sensors Lidar Vision Radar Thermal Sonar IR Depth CO2/Gas Wi-Fi Sound Contact/Force Encoder IMU

Accuracy High Mid Low Low Low High Low Low Low Low Mid High
Power e�ciency Low High High Mid Mid High High High High High High High

Size/weight e�ciency Low High High Low Mid High High High Mid Mid Mid High
Range and FOV Mid High Low High Low Low Low High Mid - - -

Dark/fog/smoke/dust Mid Low High High Mid Mid - - - - - -

Table 3: NeBula Processors
Processors Micro-controllers Snapdragon Intel NUC Nvidia Xavier AMD

Compute Low Low Mid High High
Power consumption Low Low Mid High High

Size e�ciency High High Mid Low Low

4 NeBula Autonomy Architecture

Resiliency is a key requirement to enable a repeatable and consistent robotic autonomy solution in the field.
To enable a resilient autonomy solution, NeBula takes uncertainty into account to cope with unmodeled and
unknown elements during the mission.

Motivation/Insight: An important (if not the most important) cause of the brittleness of today’s auton-
omy solutions is the disjoint design of various subsystems. Traditionally, when designing or advancing the
performance of a certain module, the typical assumption is that the rest of the system functions properly
and nominally. When it comes to real-world deployment, these assumptions typically break due to the
discrepancy between the computational models and real-world models. This introduces uncertainty in the
perception, inferences, decision-making, and execution, potentially leading to suboptimal behaviors.

Key principle for resilient autonomy architectures: Focused on fielding autonomy in challenging
environments, NeBula is built on a fundamental principle that: “To achieve resilient autonomy, the decision-
making, inference, and perception modules must be reciprocal and tightly co-designed.” This implies rea-
soning over joint probability distributions across various component-level states as opposed to marginal
distributions over a set of disjoint system states. Contrary to the typical sense ! infer ! plan ! act
sequence in autonomy solutions, NeBula architecture is built on a plan-to-(sense ! infer ! act) loop, where
the planner dynamically plans for the acquisition of su�cient sensory information and plans for the quality

of representation required to enable resilient and uninterrupted missions within the prescribed mission risk
thresholds. NeBula’s joint perception-planning is formulated as an uncertainty-aware belief space planning
problem. Belief captures the probability distribution over system’s states including the robot pose, envi-
ronment state, measurements, team coordination state, health state, communication state, etc. Planning
over joint beliefs and taking cross-component uncertainty into account (which describes the interaction of
connected modules), NeBula allows for each module to not only be robust to uncertainties within its own
subsystem but also resilient to uncertainties in the integration process, resulted from imperfections and
o↵-nominal performance of connected modules.

Illustrative example (Perception-aware planning under uncertainty): Simultaneous localization
and mapping (SLAM) is a fundamental problem in robotics that aims at simultaneously solving the lo-
calization problem (“where is the robot?”) and the mapping problem (“what does the environment look



like?”). This is a very well studied problem and it is well-known that solving SLAM (i.e., incorporating joint
probability distributions between localization states and environment states) typically leads to optimal and
resilient inference, whereas solving localization and mapping separately and putting their solutions together
is suboptimal and can lead to a brittle inference system. Analogous to SLAM philosophy, NeBula extends
this concept from pure inference to “joint inference and decision-making” (Fig. 6). For example, NeBula
develops solutions where mapping and planning are solved simultaneously using SMAP (simultaneous map-
ping and planning) to achieve resilient traversability and risk-awareness. Similarly NeBula develops SLAP
(simultaneous localization and planning) solutions where localization uncertainty is taken into account in the
planning phase using belief space planners. Solving these joint problems typically leads to behaviors where
the autonomous system is intelligently planning proactive actions to improve the “inference quality” (e.g.,
world model or robot model) and reduce uncertainty to the levels necessary to achieve mission goals within
the prescribed risk thresholds. This is in contrast to typical solutions where the relationship is one-way
and the inference module serves the decision-making modules, and decision-making components react to
inference output.

Figure 6: Illustrative example of joint inference and decision-making
in NeBula’s low-level navigation system. Denoting the state domain
of the localization by pose x, mapping by map state m, and plan-
ing by policy parameters u, SLAM, SLAP, and SMAP aim at solv-
ing for (i.e., estimating or predicting) the joint distributions p(x,m),
p(x, u), and p(m,u). The full joint problem, SPLAM (simultaneous
planning, localization, and mapping) solves for the probability distri-
bution p(x,m, u).

Modularity and scalability: In addition to resiliency, NeBula focuses on a modular and scalable frame-
work. This requirement is driven by missions carried out by a team of networked heterogeneous robots. Each
robot has di↵erent mobility (e.g., wheeled, legged, aerial, hybrid), sensing, and computational capabilities
(e.g., Section 12). NeBula provides appropriate abstraction to allow for re-usability and agnosticism to the
specific robot and hardware. Any low-level hardware-specific modules should be properly isolated to increase
the re-usability of software. Further, NeBula supports networked systems where agents are intermittently
losing and re-establishing communications, and sharing knowledge with each other and with the base station,
enabling large-scale environment exploration with a limited number of robots. Each robot has a level of local
autonomy to act individually when it is disconnected from the rest of the team.

System architecture: Figure 7 illustrates the NeBula’s high-level functional block diagram, and will
serve as a visual outline of the sections of this paper. The system is composed of multiple assets: mobile
robots, stationary comm nodes, and a base station, each of which owns di↵erent computational and sensing
capabilities. The base station acts as the central component to collect data from multiple robots and
distribute tasks, if and when a communication link to the base station is established. In the absence of the
communication links the multi-asset system performs fully autonomously. The fundamental blocks are:

• Perception (Section 5, 6, 7): Perception modules are responsible to process the sensory data and create
a world model belief. The local perception modules (Section 5) provide the odometry and state esti-
mation information needed for local navigation, such as state (pose, velocity) and traversability maps.
The global SLAM (simultaneous localization and mapping) module, in Section 6, tracks the robot’s
position within a globally consistent frame while building a 3D map of the environment. The semantic
understanding and artifact detection module (Section 7) adds semantic information to the map and
finds objects of interest from the environment, and in conjunction with the global localization module
reports their location.

• Planning (Section 8, 9, 11): Planning modules will make onboard decisions based on the current world



belief. The planning modules are composed of multiple layers. The highest layer is the mission planning
module (Section 11) which runs a mission according to its specifications, generates global goals for
each robot, and allocates tasks to di↵erent robots. The second layer is the global motion planning
layer (Section 9), responsible for exploration, search, and coverage behaviors in global scale and large
environments. It makes plans to safely move the robot to a goal assigned by the mission planner.
It also enables autonomous exploration of the environment in order to increase the knowledge and
confidence about the world-belief. The third layer is the traversability and local navigation component
(Section 8), responsible for analyzing how and with what velocities di↵erent terrain elements can be
traversed. It quantifies the motion risk, and optimizes/replans local trajectories with high frequency to
enable aggressive traversability in obstacle-laden and challenging environments, while ensuring the risk
levels stay within the prescribed mission specifications. NeBula abstracts motion models, enabling the
planning stack to be robot-agnostic and to support heterogeneous mobility platforms.

• World Belief : This block includes a probabilistic model of the world. It is jointly constructed by
perception and planning modules, and enables a tight-integration between these modules leading to
perception-aware behaviors. World belief extends the traditional state database concept to a belief
database, where we maintain probability distributions over various state domains as well as joint prob-
ability distributions across multiple domains. It includes belief over robot pose, environment map,
mission state, system health, information roadmap, among other state domains. There are multiple
variations of the world belief: (i) local to each robot, (ii) shared belief across robots, and (iii) predicted
belief to assess future risk and performance to enable making perception-aware and uncertainty-aware
decisions. During exploration tasks, robots develop their own local world models based on what they
perceived with their limited sensor input. They generate the world model as an abstract representation
of spatial and temporal information of their surrounding environment (e.g., maps, hazards) and internal
state (e.g., pose, health). This world belief is internally predicted to enable uncertainty-aware decisions
and actions based on this predicted model. The shared world model is synchronized among the robots
and the base station using asynchronous bidirectional messaging with the publish/subscribe paradigm.
The discussion of world belief is distributed across all sections of the paper.

• Communications (Section 10): When possible, communication modules synchronize the shared world
models across the robots and the base station. To cope with the dynamic and unstable nature of the
underlying mesh network, the communication manager is responsible to provide reliable message transfer
with bu↵ering, compression, and re-transmission. The modules also provide capabilities to maintain a
mobile ad-hoc network using radio devices. Static communication nodes can be dropped from particular
robots to help forming a network.

• Operations (Section 11): Operation modules aid the human supervisor to e↵ectively monitor the system
performance and interact with it if and when communication links are established. One of the main
roles is the visualization of complex world belief in a human-recognizable form. In the nominal operation
scenarios, the human operator only interacts with the system by updating the world belief, when needed
and when possible.

Over time, each layer adapts to the collected data as well as to improvements of models in other layers.

Current Implementation Status: NeBula is a growing and evolving framework. Its current version (in
2020) has been deployed in several large projects for terrestrial and planetary applications. It has enabled
autonomous operations on various vehicle types including 1) wheeled rovers, 2) legged robots, 3) flying
multicopters, 4) hybrid aerial/ground vehicles, 5) 1/5th scale race cars 6) tracked vehicles, and 7) full-
size passenger vehicles. We refer to Section 12 for a detailed description of our implementation on these
platforms.
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Figure 7: NeBula functional block diagram

5 State Estimation

One of the fundamental components of the NeBula architecture, shown in Figure 7, is reliable state estima-
tion under perceptually-degraded conditions. This includes environments with large variations in lighting,
obscurants (e.g., dust, fog, and smoke), self-similar scenes, reflective surfaces, and featureless/feature-poor
surfaces. NeBula relies on a resilient odometry framework that fuses a set of heterogeneous sensors to
handle these various challenges. This section briefly describes this odometry solution. For more details,
please see [Santamaria-Navarro et al., 2019, Palieri et al., 2020, Kramer et al., 2020, Fakoorian et al., peara,
Fakoorian et al., pearb, Tagliabue et al., 2021, Lew et al., 2019].

Objective: The objective of the state estimation pipeline is to utilize multi-modal sensing to determine
the robot’s state, producing resilient, high-rate and smooth estimates in a probabilistic sense. A key aspect
to the proposed approach is assigning each sensor output a quality measure that can be used to identify
healthy or unhealthy measurements before they are fused. We start by introducing our notation: ~p 2 R3

(global position, x, y, z); ~R 2 SO(3) (global orientation, which can be described with minimal representation
�, ✓, ); ~v 2 R3 (body linear velocity); ~! 2 R3 (body angular velocity); ~a 2 R3 (body linear acceleration);
~↵ 2 R3 (body angular acceleration); and Qi 2 {Good,Bad} (quality of i, with i 2 {~p, ~R,~v, ~!,~a, ~↵}).
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Figure 8: NeBula’s state estimation architecture

Note that we restricted the quality of the state to binary values although it can be easily generalized to
higher resolutions and even continuous representations.

HeRO Architecture: The proposed architecture, shown in Figure 8, considers redundancy and heterogene-
ity in both sensing and estimation algorithms. It is designed to expect and detect failures while adapting the
behavior of the system to ensure safety. To this end, we present HeRO, Heterogeneous and Resilient Odom-
etry estimator [Santamaria-Navarro et al., 2019]: a framework of estimation algorithms running in parallel
supervised by a resiliency logic. Resilience logic has three main functions: a) perform confidence tests in
data quality (measurements and individual estimations) and check health of sensors and algorithms; b) re-
initialize those algorithms that might be malfunctioning; c) generate a smooth state estimate by multiplexing
the inputs based on their quality. The output of this resiliency logic, which includes a state quality measure,
is used by the guidance and control system to determine the best mode of operation that ensures safety
(see, for instance, the NeBula interconnections between Perception and Planning modules in Figure 7). For



example, guidance and control could switch to pure velocity control if the position estimates are unhealthy
or issue a stop command if both position and velocity estimates are unreliable.

Heterogeneous complementary algorithms: In addition to selecting heterogeneous sensing modalities,
HeRO uses heterogeneous odometry algorithms, e.g., LiDAR-inertial (LIO), visual-inertial (VIO), thermal-
inertial (TIO), kinematic-inertial (KIO), contact-inertial (CIO) or RaDAR-inertial (RIO), running in par-
allel to decrease the probability of a state estimation failure. The key idea behind HeRO is that any
single state estimation source can carry errors, either due to failures in sensor measurements, algorithms
or both, but having a complete failure becomes increasingly rare as the number of heterogeneous paral-
lel approaches increases. HeRO is front-end agnostic, accepting a various algorithmic solutions and with
the ability to incorporate either tightly or loosely coupled approaches. However, to take advantage of all
possible mobility modes, there is a need for estimating position, orientation, velocity and, ideally, accel-
eration. HeRO is tailored to incorporate a vast variety of estimation algorithms. Figure 8 depicts the
main sensor and algorithmic solutions developed and used by team CoSTAR in the DARPA Subterranean
Challenge. Our solution considers software-synchronized sensors (common clock synchronization after ini-
tialization), with extrinsic calibrations roughly obtained from the robot model designs and fine tuned used
optimization approaches such as Kalibr (camera-imu) [Furgale et al., 2013, Rehder et al., 2016] or LiDAR-
align (LiDAR-LiDAR) [Millane and Taylor, 2019]; or by aligning with the robot manufacturer frames. We
rely on a variety of in-house and open-source algorithms for sensor fusion. A few examples are as fol-
lows: WIO uses an Extended Kalman Filter (EKF) to fuse the measurements of the wheel encoders and
those from an IMU. CIO also takes advantage of an EKF but this time including the modelling of the con-
tacts [Lew et al., 2019]. The optical flow approach (OF), VIO, and thermal imagery fusion (TIO) leverage
a combination of opensource and commercial solutions, including PX4Flow [Autopilot, 2021], ORBSLAM
[Mur-Artal and Tardós, 2017], Qualcomm VI-SLAM [Qualcomm Technologies, Inc., ], and the MiT Kimer-
aVIO [Rosinol et al., 2020a], ROTIO [Khattak et al., 2019], among others. The RIO algorithm is our own
development presented in [Kramer et al., 2020]. Finally, the fusion of LiDAR scans with IMU measurements
is done by combining our LOCUS scan matching [Palieri et al., 2020] with IMU measurements, either us-
ing our Kalman filter variant (AMCCKF [Fakoorian et al., pearb]) or a factor graph optimization. As an
example, in the following we describe the latter LiDAR-inertial odometer.

5.1 LiDAR-inertial odometry estimation

LiDAR is one of the key sensors o↵ering high range, accuracy. LiDARs also perform well in low-light
conditions. Moreover, the combination with an IMU provides essential dynamic information and the regis-
tration of the gravity vector, which is of high importance for planning modules (e.g., computing traversabil-
ity regions). There exist several methods exploiting LiDAR-IMU data fusion achieving remarkable accu-
racy [Shan et al., 2020, Ye et al., 2019, Hess et al., 2016]. However, they do not consider potential failures
of the fused sensing modalities, which are likely to be observed in real-world field deployments and can result
in catastrophic degradation of the odometry performance if not robustly handled.

To enable reliable operation in extreme settings, our proposed LiDAR-inertial odometry estimation consists
of three modules: (i) A LiDAR front-end, which provides ego-motion estimation by analyzing LiDAR scans;
(ii) an IMU front-end based on pre-integration techniques; and (iii) a data fusion module, formulated as a
factor graph optimization problem, which fuses the data provided by the front-ends and also analyzes the
LiDAR observability. This observability analysis is then used by HeRO to take informative decisions about
using or not the LIO estimation. These modules are briefly described hereafter.

5.1.1 LiDAR front-end

LOCUS: NeBula’s LiDAR-centered front-end, referred to as LOCUS (Lidar Odometry for Consistent
operations in Uncertain Settings) [Palieri et al., 2020], is a multi-sensor LiDAR-centric solution for high-
precision odometry and 3D mapping in real-time. LOCUS provides a Generalized Iterative Closest Point



(GICP) [Segal et al., 2009] based multi-stage scan matching unit equipped with a health-aware sensor inte-
gration module for robust fusion of additional sensing modalities in a loosely coupled scheme. The archi-
tecture of the proposed system, depicted in Figure 9, is made of three main components: (i) point cloud
pre-processor, (ii) scan matching unit, (iii) sensor integration module.
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Figure 9: Architecture of the proposed system. In the block diagram MDC stands for Motion Distortion
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Figure 10: Boxplot visualization of the absolute position error (APE) computed for the di↵erent LiDAR-
based methods on the perception-degraded underground test datasets: for clarity, only the best six algorithms
in each dataset are shown. A larger drift is observed in the Safety Research Course as in this dataset points
are not motion corrected and the course presents many perceptually-challenging conditions such as harsh,
unstructured terrains and long, feature-less corridors: for this run, the inset reports a zoomed version of the
performance of the best three algorithms.

The point cloud pre-processor is responsible for the management of multiple input LiDAR streams (e.g.
syncing, motion-correction, merging, filtering) to produce a unified 3D data product that can be e�ciently
processed in the scan matching unit. The scan matching unit then performs a cascaded GICP-based scan-to-
scan and scan-to-submap matching operation to estimate the 6-DOF motion of the robot between consecutive
LiDAR acquisitions.

The sensor integration module is a key-component of the system to enable joint optimization of accuracy
and robustness. In robots with multi-modal sensing, when available, LOCUS can use an initial transform
estimate from a non-LiDAR source to ease the convergence of the GICP in the scan-to-scan matching stage,
by initializing the optimization with a near-optimal seed that improves accuracy and reduces computation,



enhancing real-time performance. Multiple sources of odometry (e.g VIO, KIO, WIO) and raw IMU mea-
surements available on-board are fed into a sensor integration module which selects the output from a priority
queue of the inputs that are deemed healthy by a built-in health-monitor, which prioritizes the order based
on the expected accuracy of the methods. If the highest priority input is not healthy, then the next highest
priority is used. If all sensors fail, the GICP is initialized with identity pose and the system reverts to
pure LiDAR odometry. Notice how the confidence tests (health monitoring) depicted in Figure 8 are here
incorporated within this sensor integration module. [Palieri et al., 2020] provides more details on the system
functioning.

LOCUS Comparative Results: We compare LOCUS with state of the art LiDAR odometry meth-
ods [Shan et al., 2020, Ye et al., 2019, Hess et al., 2016, Zhang and Singh, 2014, Nelson, 2016] in extreme,
perceptually-degraded subterranean environments and demonstrate high localization accuracy along with
substantial improvements in robustness to sensor failures. For the evaluation, we use the data collected in
the Tunnel and Urban Circuit rounds of the DARPA Subterranean Challenge, from a wheeled ground robot
carrying 2 Velodyne LiDARs, an IMU and running WIO onboard. To assess accuracy, we compute the
absolute position error (APE) of the estimated robot trajectory against the ground-truth reference, for the
di↵erent methods over the di↵erent runs, and report in Figure 10 a summary of the results. Throughout all
the operations, LOCUS achieves highly accurate performance. To assess robustness, we analyze the flexibility
of the various methods with respect to sudden failures of an input source by testing the following failure sce-
narios: (i) failure of WIO/IMU; (ii) failure of WIO; (iii) failure of LiDAR. In these scenarios, tightly-coupled
approaches and methods designed with synchronized callbacks stop operating when an input is missing. In
contrast, LOCUS consistently achieves reliable ego-motion estimation and mapping, demonstrating e�cient
handling of sensor failures in a cascaded fashion, behaviour that is desirable to accommodate the unforeseen
challenges posed by real-world operations where hardware failures are likely to happen, or sensor sources
can become unreliable (see [Palieri et al., 2020] for details).

5.1.2 IMU front-end

IMU pre-integration: The IMU front-end is based on a pre-integration technique of the inertial mea-
surements. This module leverages the state-of-the-art on-manifold pre-integration theory to summarize the
high-rate IMU measurements into a single motion constraint [Forster et al., 2015a, Forster et al., 2015b] for
the subsequent pose-graph optimization performed in the LiDAR-IMU data fusion algorithms. IMU pre-
integration is also used to guarantee a pose and velocity estimate at high-rate and low latency, regardless of
the time taken by the optimizer used in the back-end of the sensor fusion algorithm.

5.1.3 LiDAR-IMU data fusion

Smoothing Framework (LION): The fusion of the relative ego-motion estimations, obtained from LO-
CUS and IMU pre-integration front-ends, is performed via a fixed-lag smoother using a factor graph, as
described in [Tagliabue et al., 2021], where we introduce LION (LiDAR-Inertial Observability-aware Navi-
gator for vision-denied environments). The state estimated by the proposed smoother consists of: (a) the
pose (position and attitude) WTB of the IMU-fixed reference frame B expressed in a slowly drifting inertial
reference frame W ; (b) the linear velocity Wv; (c) the IMU biases (Bba for the accelerometer and Bbg for
the gyroscope), and (d) the extrinsic calibration BTL between the LiDAR-fixed frame L and the IMU frame
B, introduced to reduce the e↵ects of error in mounting the sensors, as well as to address the challenges
in o✏ine LiDAR-extrinsic calibration. A representation of the states and factors used in the factor graph
with a window of k time steps can be found in Figure 11. Following [Forster et al., 2015b], we model the
smoothing problem using GTSAM [Dellaert, 2012] and we solve the associated optimization with iSAM2
[Kaess et al., 2012].

Observability Module: It is crucial for LiDAR-based estimation algorithms to determine if the geometry
of the scene can well constrain the estimation of the translational motion, since long shafts and corridor-like
structures can severely impact motion-observability. Following [Gelfand et al., 2003, Bonnabel et al., 2016],
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Figure 11: Factor graph representing state and mea-
surements used by LION back-end. Biases are de-
noted with bj := {Bba,B bg}j .

Figure 12: Comparison of the translation error in
an o�ce-like environment, with and without the ob-
servability module integrated in HeRO.

Track A Track B
Run 1 (685 m, 1520 s) Run 2 (456 m, 1190 s) Run 1 (467 m, 1452 s) Run 2 (71 m, 246 s)

Algorithm t(m) t(%) R(rad) t(m) t(%) R(rad) t(m) t(%) R(rad) t(m) t(%) R(rad)
Wheel-Inertial 130.50 19.05 1.60 114.00 25.00 1.28 78.21 16.75 0.99 6.91 9.79 0.12
Scan-To-Scan 105.47 15.40 0.90 18.72 4.11 0.18 56.6 12.14 0.79 4.55 6.45 0.27

LION 56.92 8.31 0.36 7.00 1.53 0.10 17.59 3.77 0.27 3.78 5.36 0.05

Table 4: Estimation error of Wheel-Inertial Odometry, Scan-To-Scan matching and LION for two runs of
the two tracks of the Tunnel competition, computed for one of the robots deployed.

we propose an observability metric, computed within LION architecture, which can inform the HeRO switch-
ing logic Figure 8 about potential unreliability in the odometry output of LiDAR-based estimators. Such
metric is based on the condition number (Att) := |�max(Att)| |�min(Att)|�1 of the translational part Att

of the Hessian of the cost minimized by the Point-To-Plane ICP algorithm. The eigenvector associated
with the smallest eigenvalue of Att is the least observable direction for translation estimation. As a conse-
quence, larger the condition number (Att) is, the more poorly constrained the optimization problem is in
the translational part. More details are provided in our related work [Tagliabue et al., 2021].

Evaluation: We report the performance of the LiDAR-IMU fusion technique during the two tracks (A and
B) of the Tunnel Competition at the DARPA Subterranean Challenge. The LOCUS output (selected, for
this evaluation, to be the pure scan-to-scan matching from the Generalized ICP [Segal et al., 2009]) was
fused at 10 Hz with the IMU, and consequently the fused output of LION, could be provided at up to
200 Hz. The sliding window of LION used here is 3 seconds and the factor graph optimization was tuned
to use approximately 30% of one CPU core of an i7 Intel NUC. The root-mean-squared error (RMSE) for
position (t(m)) and attitude estimation (R(rad)) and the percentage drift (t(%)) are reported in Table 4,
where we include a comparison with WIO and LOCUS (Scan-to-Scan), with the global localization algorithm
LAMP [Ebadi et al., 2020] (presented in the following section) as ground truth. The results highlight that
fusing inertial data with the odometry from the front-end significantly reduces the drift of LiDAR’s pure
scan-to-scan matching. Additionally, LION reliably estimates the attitude of the robot, and guarantees
a gravity-aligned output provided at IMU rate. Last, in Figure 12, we report the performance of the
observability module in an indoor, o�ce-like environment, characterized by long corridors. The results show
that when the observability module is not used (Figure 12, left), motion-unobservability creates a LiDAR

slip, producing a position estimation error of ⇡ 9 m. When the observability module is used (Figure 12,
left), the switching-logic in HeRO switches to WIO instead of LION for the section of the corridor without
LiDAR features. The total error is ⇡ 1 m (“Before loop closure”). Improved state estimation (reduced drift
in the output of HeRO) benefits the global mapping solution (Section 6), which can now correctly detect a
loop closure (Figure 12 “After loop closure”), further reducing the drift.



5.2 Other Odometry Sources

Apart from the LiDAR-inertial odometry estimator, NeBula consists of other robust and resilient estima-
tion algorithms developed to provide a robust state estimation while navigating in perception-challenging
environments. Some examples are, for instance, a Contact-inertial odometry estimation [Lew et al., 2019],
where contacts are exploited to produce zero velocity updates into a Kalman filter that is integrating IMU
measurements during a dead-reckoning situation; or a Radar-inertial odometry [Kramer et al., 2020], which
provides reliable ego-motion estimations even in the presence of obscurants thanks to the Radar signal prop-
erties. The parallel combination of these heterogeneous estimation sources within the HeRO architecture
provides a qualitative and robust state estimation that can be refined with a back-end algorithm providing
global localization, as described in Section 6.

6 Large-Scale Positioning and 3D Mapping

NeBula’s Simultaneous Localization and Mapping (SLAM) solution, called LAMP (Large-scale Autonomous
Mapping and Positioning) achieves low drift, multi-robot, multi-sensor SLAM over large scales in perceptually
degraded conditions. LAMP produces a consistent global representation of an unknown environment, along
with the associated covariances to enable uncertainty-aware solutions across the NeBula system (Figure 7). In
the context of the DARPA Subterranean Challenge, LAMP achieves the requirement for artifact localization
error of less than 5 m over multiple kilometers of traverse. In this section, we will outline the architecture of
LAMP, and then describe our approach to multi-sensor SLAM. Finally, we present results from representative
field tests.

6.1 Subsystem Overview

As outlined in Figure 13, LAMP is a factor-graph based SLAM solution, with the following key compo-
nents: a) an adaptable odometry input that can process individual or fused odometry sources, such as
HeRO (Section 5), b) a multi-modal loop closure module, based on LiDAR, visual or semantic features, c)
an outlier-resilient optimization of the factor graph, including multi-sensor inputs.

The flow of data starts with the odometry and sensor inputs, which add factors to the graph on the robot.
Parallel processes then run loop closure searches and factor-graph optimization. Next, the graph is sent to
the base station. The base station merges graphs from each robot into a common multi-robot graph that is
further optimized with the addition of inter-robot loop closures. The main output products of LAMP are a
set of poses describing the robot trajectory and the location of artifacts, as well as a point-cloud map.

Pose Nodes and Adaptable Odometry Input: To make the factor-graph optimization computationally
tractable over large-scale, long-term multi-robot exploration, LAMP utilizes a sparse graph of pose-nodes
and edges (Figure 14). The edges are obtained from an accumulation of odometry measurements between
two consecutive nodes (odometry edges) or from translation and rotation estimates between non-consecutive
nodes (loop closures edges, described below). A new pose-node and linking odometry edge is created after
travelling more than a threshold translation or rotation. To address the challenge of perceptual degradation
for these odometry edges, we use HeRO (Section 5) as the input odometry source.

Multi-Modal Loop Closures: A crucial capability to reduce the accumulated error in the robot trajectory
is loop closure detection: the ability to correctly assert when a robot revisits a previously visited location
or known landmark. Loop detection enables the computation of rigid body 3D transformations between
non-consecutive pose-nodes that can be added as loop closure edges in the factor graph (Figure 14). The
multi-modal architecture of LAMP’s loop closure module (Figure 13) enables a robust and reliable system
through the use of di↵erent sensing modalities. These loop closure sensing modalities include using lidar
data [Ebadi et al., 2020], visual data [Rosinol et al., 2020b] and semantic data [Ebadi et al., 2021].
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Figure 13: LAMP Architecture. Each robot maintains their own factor graph (FG), which can then be fused
with a multi-robot team on the base station, using a centralized architecture. The LiDAR and camera data
that is used for loop closures and map building (white ”Sensor Data” box) is labelled Keyed Sensor Data,
being linked with a specific pose-node. Handlers of artifact observations, IMU measurements, and Ultra-
Wide-Band (UWB) signals all process data to add constraints to the factor graph. Our robust optimization
approach runs in parallel to optimize both the robot and multi-robot factor graphs.

Figure 14: Graphical representation
of the LAMP multi-robot pose-graph,
including odometry factors, inter- and
intra- robot loop closures, gravity fac-
tors, ranging beacon measurements
and shared observations of landmarks
(e.g. artifacts).

Multi-robot Fusion: NeBula addresses the problem of multi-robot exploration of unknown environments
by relying on LAMP’s multi-robot architecture. This architecture is centralized, to leverage agents with
greater computational resources (such as a base station), however for decentralized applications of NeBula
we utilize the techniques described in [Choudhary et al., 2017]. In the centralized architecture the agent
with the greatest computational capability serves as the central agent to fuse factor graphs constructed by
individual robots into a consistent multi-robot graph, along with the associated sensor data (Figure 13).
The factor graphs are fused using the same multi-modal loop closure modules as on the single robot, but
instead of searching for intra-robot loop closures, these modules search for inter-robot loop closures. To
further improve localization accuracy, we leverage the computational power of the central agent to perform
batch loop closure analysis across the entire graph. This analysis identifies and computes additional inter-
and intra-robot loop closures to add to the multi-robot graph. The updated multi-robot global graph is then
optimized, and periodically sent back to the robots, for each agent to have a consistent global representation
of the environment for global planning (Section 9).

Factor-Graph Optimization: Our factor-graph optimization (Kimera-RPGO [Rosinol et al., 2020b]) uses
a robust outlier rejection approach to reject the erroneous loop closures that can occur when operating in



perceptually degraded conditions, such as with obscurants and self-similar environments. Kimera-RPGO
rejects erroneous loop closures by finding the largest consistent set of loop closures for each set of sin-
gle robot and inter-robot loop closures, using a consistency graph and max clique search (an adaptation
of [Mangelson et al., 2018]). The loop closures that are not in the consistent set are discarded prior to op-
timization (see [Ebadi et al., 2020] and [Lajoie et al., 2020] for details). The updated factor graph is then
optimized with a Levenberg–Marquardt solver that is implemented in GTSAM (Georgia Tech Smoothing
and Mapping [Dellaert, 2012]).

6.2 Additional Factors and Multi-Sensor Fusion

LAMP fuses multiple sensing inputs into the factor graph (Figure 14) to improve the robustness and accuracy
of the SLAM solution. We present four examples here:

1. IMU Gravity Factors: When the robot is stationary, the accelerometers on the IMU can be used
to obtain a robust estimate of the local gravity vector, which is added to the factor graph as a
constraint on roll and pitch (yellow factors in Figure 14).

2. Landmark Factors: Measurements of distinct landmarks can either be used to detect loop closures
or to directly provide constraints to the factor graph. These landmarks fall into two categories.

(a) Deployed Landmark Factors: These landmarks include visual beacons, ranging beacons or retro-
reflecting beacons and are deployed from a robot while exploring an unknown environment.
For example, we have implemented deployable Ultra-Wide-Band (UWB) ranging beacons in
our system (see Section 12.2 for hardware details, and [Funabiki et al., 2020] for algorithmic
details). The signals from the beacons robustly and e�ciently identify loop closures, to seed
LiDAR- or vision-based alignment computations for single- and multi-robot teams (green node
and factors in Figure 14).

(b) Environmental Landmark Factors: Existing features in the environment such as signs, salient
objects and the shape of junctions (e.g. [Ebadi et al., 2021]) can be used as landmarks. For
example, we use observations of specific objects, such as backpacks and fire extinguishers (called
artifacts in SubT), with sets of range-bearing observations (dashed black lines in Figure 14) from
the artifact relative-localization module (Section 7). By fusing the object observations into the
factor graph we also ensure the most up-to-date global location of those objects for situational
awareness (and scoring in SubT).

3. Calibration Factors: At the start of a mission, each robot is aligned with a global reference frame
from a combination of LiDAR, IMU and survey station measurements of the robot and a calibration
gate (e.g. Figure 15). These initial calibration measurements, as well as any additional measurements
generated during the mission, are added as constraints to the factor graph.

6.3 Metric and Semantic Map Generation

LAMP builds both a geometric and semantic global map from sensor measurements attached to the nodes
in the factor graph. Both maps are built by projecting sensor measurements into the global reference frame
by using the latest, optimized state of the associated pose-nodes in the factor graph. For the geometric
map, these sensor measurements (Keyed Sensor Data in Figure 13) are either point clouds (from LiDAR,
depth cameras or visual feature tracking) or local occupancy grids. In particular, structures like confidence-
rich occupancy grids [akbar Agha-mohammadi et al., 2019], allows for encoding the environmental uncer-
tainty, which then can be used for perception-aware coverage planning and enabling SMAP-like behaviors
[Heiden et al., 2017]. For the semantic map, the sensor measurements are descriptive observations, such as
detections of distinct objects (e.g. backpacks, survivors), semantic classifications of 3D spaces (e.g. door-
ways, stairs) or ambient measurements (e.g. temperature, pressure, gas concentration). The resulting 3D
semantic map provides rich situational awareness to the operator of the robotic team, and can be the critical



output data product of the overall system. The semantic map is especially important in the context of SubT,
where the semantic map primarily consists of the globally localized artifact observations (both objects and
ambient measurements), which is exactly the information needed for scoring (Section 7).

Figure 15: Example calibration to global frame from the DARPA Subterranean Challenge Urban Circuit.
The coordinates of the survey prisms and reflective patches on the gate are provided and define the reference
frame. A survey station measures the prisms to determine its pose in the global frame, after which it can
measure the position of robots. LiDAR measurements of the reflective patches provide a yaw estimate and
an IMU computes roll and pitch assuming gravity alignment of the reference frame.

6.4 LAMP Performance

The performance of LAMP on a single robot dataset from a husky robot equipped with 3 LiDARs is demon-
strated in Figure 16. LAMP achieves error at less than 0.2% of the distance travelled, with the IMU gravity
factors assisting in reducing the z error in the latter portion of the trajectory (Figure 16.c). Further single
robot tests are summarized in Table 5, from the five benchmark datasets shown in Figure 17. These bench-
marks show LAMP achieving the accuracy better than 5m on all other than the tunnel and cave datasets,
which have motion distorted LiDAR measurements. Multi-robot LAMP performance is demonstrated in
Figure 18 with two huskies deployed in an urban environment. The results demonstrate the benefit of us-
ing UWB beacons (Figure 18.c) compared to using pure LiDAR-based loop closures. Further results are
presented in Section 13. Please refer to [Ebadi et al., 2020] for detailed results in tunnel environments, in-
cluding the impact of loop closures, [Funabiki et al., 2020] for results using UWB beacons for a single robot
and [Morrell et al., 2020] for single robot cave exploration results.

Dataset Characteristics Absolute Transl. Error Absolute Rot. Error
Dataset Robot Environment Dist. (km) Max (m) Mean (%) Max (deg) Mean (deg/m)
(a) Husky Tunnel 1.65 9.7 0.93% 5.3 0.006
(b) Spot Urban 0.65 2.2 0.46% 5.0 0.019
(c) Husky Urban 0.62 3.5 0.42% 3.9 0.011
(d) Husky Urban 0.75 0.9 0.19% 1.8 0.006
(e) Spot Cave 0.6 10.6 1.68% 6.0 0.020

Table 5: Performance statistics for LAMP operating on single-robot benchmark datasets from di↵erent
robots and in di↵erent environments (Figure 17)



Figure 16: Single-robot LAMP performance with loop closures and IMU factors in the Urban Circuit of the
DARPA Subterranean Challenge: (a) LAMP localization accuracy compared to DARPA-provided ground
truth. (b) Translational error against distance travelled for LAMP, and the HeRO odometry input to LAMP.
(c) z trajectory against distance travelled for LAMP, HeRO and the ground truth. IMU factors included in
LAMP help to constrain attitude drift and achieved improved performance in z, and overall, compared to
the input odometry.

200 m

270 m

80 m 95 m

90 m

(a)

(c) (d)

15 m

200 m

90 m

(b)

(e)

Figure 17: Maps from the five LAMP single-robot benchmark datasets. (a) Tunnel dataset from Bruceton
mine on a Husky. (b) Multi-level urban dataset from Satsop Power Plant on a Spot robot. (c) and (d) Urban
dataset from Satsop Power Plant on a Husky robot platform. (e) Cave dataset from Valentine Cave on a
Spot robot. The ground truth is provided by DARPA for (a)-(d) and by survey scans for (e).

7 Semantic Understanding and Artifact Detection

Semantic understanding of the environment and detecting objects of interest and artifacts are important
capabilities to enable higher levels of robotic autonomy in unknown environments. Semantic mapping and



Figure 18: Multi-robot map accuracy results: (A) no loop closure (No LC); (B) geometric-only lidar loop
closure (GO-LLC); and (C) range-aided lidar loop closure (RA-LLC). In this test, data from two robots in
the Urban Circuit of the DARPA Subterranean Challenge are used, with two deployed UWB beacons (as
shown on the left overlaid on the DARPA provided ground-truth map). µerror indicates the mean map error
to the ground truth map.

artifact detection are among the main components of the NeBula autonomy framework. This section discusses
NeBula’s solution for detecting, localizing, and visualizing objects of interest on heterogeneous robots with
di↵erent sensor configurations. Here, we focus on both (i) static objects, with clear visual, thermal, or depth
signature, and (ii) spatially-di↵used phenomena such as gas propagation and WiFi signal. The pipeline is
explained in detail in [Terry et al., 2020], with a summary and recent extensions detailed here.

Requirements: The object detection system needs to (i) make detections in real-time across multiple
sensor modalities; (ii) permit high-accuracy localization; (iii) adjust the sensor configuration based on the
detection and localization confidence; and (iv) apply filtering to present the most likely detection candidates
to the mission supervisor (when a communication link is established). While the method presented in this
section is general, in the context of the DARPA Subterranean challenge, we focus on a set of predefined
object types including gas sources (e.g., CO2 source) and man-made objects such as fire extinguisher, drill,
rope, helmet, survivor manikin, backpack, vent, and cell phone [Agrawal, 2019, Orekhov and Chung, 2021].
Object signatures exist in one or more modalities: visual, thermal, depth, WiFi, audio, and chemical.

Architecture: Figure 19 shows the proposed object detection, localization, and visualization pipeline. We
break down the underlying object detection problem into two stages: (1) an image-based object detection
pipeline to first find the object; and (2) a relative localization filter applying projective geometry to the
detection to estimate its position explicitly. By splitting the detection and localization tasks, we can utilize
high quality and fast detection from existing algorithms and apply them to generic camera types in our
relative localization approach. For temporally-static objects, NeBula relies on multi-modal detection and,
when available on robots, leverages visual cameras, depth measurements, and thermal cameras.

Spatially Di↵use Phenomena: For temporally-dynamic and spatially-di↵used phenomena, we rely on
source seeking methods based on gas sensors and WiFi sensing . The detection confidence provides the
uncertainty assessment to the perception-aware planner. The planner motivates the sensor to adjust the
configuration to make new measurements with higher fidelity, leading to more accurate detections. We
discuss the three stages of detection, localization, and base station processing in the rest of this section.

Detection: For visually-observable objects, detections are made in both the color and thermal spectra using
state-of-the-art convolutional neural networks (CNNs). CNN produces a bounding box on the image to pass
to the relative localization module. NeBula relies on di↵erent CNN implementations to adapt to various pro-
cessing capabilities. On ground robots, a YOLO Tiny [Redmon and Farhadi, 2018, Bochkovskiy et al., 2020]
variant is used, leveraging GPU hardware (e.g., Nvidia Jetson Xavier) to run in real-time on multiple cameras



Figure 19: Multi-robot, multimodal object detection, localization and visualization pipeline.

(see Section 12). On drones, a MobileDet variant [Xiong et al., 2020] is used, modified to run on a Google
EdgeTPU. To achieve su�cient detection performance for our specific application, we fine-tuned the detec-
tion networks with the appropriate domain-specific dataset. In the context of SubT, we have produced more
than 40,000 annotations of the following objects: fire extinguisher (12.26 %), drill (9.98%), rope (17.90%),
helmet (19.29%), survivor (19.84%), and backpack (20.72%). Our training is focused on maximizing recall
that increases true positives. This is followed by an outlier rejection method using range, color, and size
filters, reducing the false positives. For more details on training methods on this data, see [Terry et al., 2020].

Localization: The detection networks produce 2D bounding boxes (within image) that are combined with
depth measurements, used to compute the position of the artifact relative to the robot. The depth mea-
surements can be obtained from multiple sources: depth cameras (such as from an RGB-D camera), LiDAR
scans mapped into the camera frame, or a size-based projection, where the depth is computed such that the
bounding box, when projected to 3D at that depth, matches the expected size of the object. These methods
are detailed in [Terry et al., 2020]. For robustness to sensor failure, each method is run in parallel, with
the highest priority method (LiDAR, then depth, then size projection) used if the corresponding sensor is
available. All methods jointly filter multiple detections to produce a combined relative location reported to
the LAMP module (Section 6) to compute the global location before sending the report to the base station.
The relative location can also be computed without depth measurements, as an additional back-up, and on
systems without depth cameras or LiDAR (such as drones). In this case, we use a monocular based tracking
approach over an image sequence (detailed in [Ramtoula et al., 2020]).

Multi-modal multi-robot artifact reconciliation: The artifact reports from each of the robots are
further processed on robots with more powerful computational resources (or on base station). These reports
include:(i) detection class; (ii) detection confidence; (iii) reference RGB/thermal image; (iv) bounding
box; and (v) location estimate. The base station processes the reports, rejecting outliers and matching
observations of the same artifact instances from other agents or previous visits. To reduce the number of
false positive reports, a larger and more performant detection network (YOLOv4 [Bochkovskiy et al., 2020])
is used to update the detection confidence of each report. Then, the report is compared to previous reports
of the same class to identify repeat observations and observations of the same artifact instance reported
by other agents. This comparison uses both location proximity and a comparison of NetVLAD visual



Figure 20: Visualization of representative parts of the object detection pipeline. In the left pane, a sample of
detections for each of the four modalities (color, thermal, WiFi, and gas) is presented. In the middle pane,
the addition of a natural landmark observation into the pose graph is depicted. The right pane shows the
final operator view.

image descriptors [Arandjelovic et al., 2016]. The highest confidence report of each object is then saved to
a database and visualized for review by the human supervisor using the mission executive interface (see
Figure 20-Visualization block). When needed, to increase the confidence on the detected semantics, the
perception-aware motion planner seeks new measurements, e.g., from a closer or better angle to the target,
or by sending a di↵erent robot with complementary sensors to get multiple readings from the target.

7.1 Spatially Di↵use Localization

To detect and locate spatially di↵use phenomena, such as gas leaks and WiFi sources, the robotic team is
leveraged as a mobile sensor network, with distributed and moving ambient sensor measurements. Signal
strength (e.g. CO2 concentration or WiFi RSSI) is recorded at every robot position and is (i) used to
augment the global 3D semantic map (Figure 20-Detection block); and (ii) processed to produce an initial
location estimate at the area of peak signal strength. The combination of the spatially informative semantic
map with an initial location estimate seeds a local search for source locations, based on the 3D geometry.
Automation of this local search is ongoing work. In tests presented here, information is sent to the base
station for displaying to the operator, who performs the local search on inspection of the metric-semantic
map.

Detection performance: Figure 21 shows examples of a true and false positive detection for each visual
artifact type. We observed that spray paint markings and existing equipment in the environments, which
share the same gross features as the target objects, are incorrectly picked up. For spatially-di↵use detection
(gas and WiFi), we extrapolate the source location by measuring the signal strength gradient and move the
robot in directions that increase the detection confidence (see Figure 20-Detection block).

8 Risk-aware Traversability and Motion Planning

A fundamental component of NeBula is its risk-aware traversability and motion planning (see Figure 7). This
component, which we call STEP (Stochastic Traversability Evaluation and Planning), allows the robots to
safely traverse extreme and challenging terrains by quantifying uncertainty and risk associated with various
elements of the terrain. In this section, we briefly discuss NeBula’s traversability analysis, motion planning,
and controls. For more details please see [Thakker et al., 2020] and [Fan et al., 2021].



Figure 21: Examples of true and false positive detections of visual artifacts

8.1 Design Philosophy

Challenges in extreme terrain motion planning: Unstructured obstacle-laden environments pose large
challenges for ground roving vehicles with a variety of mobility-stressing elements. Common assumptions
of a benign world with flat ground and clearly identifiable obstacles do not hold; Environments introduce
high risks to robot operations, containing di�cult geometries (e.g. rubble, slopes) and non-forgiving hazards
(e.g. large drops, sharp rocks) [Kalita et al., 2018, Léveillé and Datta, 2010]. Additionally, subterranean
environments pose unique challenges, such as overhangs, extremely narrow passages, etc. See Figure 22 for
representative terrain features. Determining where the robot may safely travel has several key challenges:
(i) Localization error severely a↵ects how sensor measurements are accumulated to generate dense maps of
the environment. (ii) Sensor noise, sparsity, and occlusion induces large biases and uncertainty in mapping
and analysis of traversability. (iii) The combination of various risk regions in the environment create highly
complex constraints on the motion of the robot, which are compounded by the kinodynamic constraints of
the robot itself.

System Architecture: To address these issues, we develop a risk-aware traversability analysis and motion
planning method, which 1) assesses the traversability of terrains at di↵erent fidelity levels based on the
quality of perception, 2) encodes the confidence of traversability assessment in its map representation, and
3) plans kinodynamically feasible paths while considering mobility risks. Figure 23 shows an overview of the
local motion planning approach. The sensor input (pointcloud) and odometry is sent to the risk analysis
module, evaluating the traversability risk with its estimation confidence. The generated risk map is used
by hierarchical planners consisting of a geometric path planner and a kinodynamic MPC (Model Predictive
Control) planner. The planners replan at a higher rate to react to the sudden changes in the risk map. The
planned trajectory is executed with a tracking controller, which sends a velocity command to the platform.

Robot agnosticism: Our approach is highly extensible and general to our di↵erent ground robot types,
requiring only a change in the dynamics model of the system. Moreover, using this approach, we are able to
specify a wide array of constraints and costs, such as limiting pitch or roll of the vehicle on slopes, preferring
one direction of motion, keeping some distance from obstacles, fitting through narrow passages, or slowing
down / stopping around risky areas. This flexibility has proven important in achieving robust navigation



Figure 22: Mobility-stressing elements commonly found during testing in various tunnel, urban, and cave
environments, including 800ft underground at Arch Mine in Beckley, WV, Valentine Cave at Lava Beds
National Monument, CA, Satsop power plant in Elma, WA, and Mars Yard at JPL, Pasadena, CA.

Figure 23: Traversability and Motion Planning Architecture Overview.

across the extreme traversability challenges encountered in highly unstructured environments (see Table 6).

8.2 Uncertainty-aware Traversability

The importance of considering uncertainty: Precise traversability analysis and motion planning relies
heavily on sensor measurements and localization. However, the quality of state estimation can often degrade,
especially in perceptually challenging environments such as tunnels, mines, and caves. Additionally, sensors
are subject to noise of various types, as well as occlusion, restricted field of view, etc. Therefore a key idea is to
incorporate uncertainty-awareness into our mapping for traversability and motion planning. We accomplish
this by a multi-fidelity mapping approach in which we weigh more strongly high-confidence information from
recent sensor measurements which are closer to the robot. Older and farther sensor measurements from
the body of the robot are associated with higher uncertainties and decay more quickly. By aggregating
these sensor measurements in an uncertainty-aware way, we create a robust and resilient belief-aware local
map which is then used for traversability analysis. To reduce uncertainty and achieve higher levels of
resiliency, we rely on multi-sensor high-FOV measurements (dense depth camera data and LiDAR data)
to e�ciently update local maps and reduce sensitivity to localization uncertainties (similar, related work
include [Ahmad et al., 2021, Hines et al., 2021]).



Specification Skid-steer1,2 Tracked3 Ackermann2 Quadruped1

Model Husky A200 Telemax Pro X-Maxx Spot
Max. speed 1.0 m/s 1.1 m/s 22 m/s 1.6 m/s
Steering Skid-steer Skid-steer Ackermann Gait

Distance traveled 5.98 km 0.76 km 0.39 km 2.85 km
Avg. speed during traverse 0.93 m/s 0.57 m/s 0.83 m/s 0.65 m/s
Autonomous recoveries / km 6.9 0.16 0.0 13.0

Critical failures / km 0.2 0.0 0.0 1.1

Table 6: Specification of the di↵erent robots. Superscript on the robot type indicates location/source of data
used for computing statistics: 1DARPA SubT Urban Competition, 2DARPA SubT Tunnel Competition,
3Beckley Exhibition Coal Mine, WV.

VaR↵(⇣)E(⇣) CVaR↵(⇣)

Probability 1� ↵

⇣

p(⇣)

Figure 24: Comparison of the mean, VaR, and CVaR for a given risk level ↵ 2 (0, 1]. The axes denote the
values of the stochastic variable ⇣, which in our work represents traversability cost. The shaded area denotes
the 1� ↵% of the area under p(⇣). CVaR↵(⇣) is the expected value of ⇣ under the shaded area.

Traversability risk analysis: To assess traversability risks, we utilize the constructed multi-fidelity local
map. A ground segmentation method [Himmelsbach et al., 2010] is applied to the merged pointcloud to filter
obstacle and ceiling points. The ground pointcloud is used to build a 2.5D elevation map for e�cient query
of terrain geometry. The elevation map and segmented pointclouds are used to assess the risk of traverse
from various perspectives including collision, tip-over, traction loss, and negative obstacles. Individual risk
analysis is fused into a single risk value estimate with a confidence value, and sent to the planning module
(Figure 25). We define this risk value in terms of CVaR (Conditional Value-at-Risk) metric (Figure 24), which
quantifies the severity of the risk of a given path given all uncertainties ⇣ from the traversability risk analysis
according to a desired threshold of probability ↵. This threshold can be changed by mission-level decision
making in order to vary the level of acceptable risk during the mission. This risk metric is particularly
useful as it captures tail events with low probability of occurrence, which may have high consequences on the
success of the mission and should be taken into account. By approximating all uncertainties with a Gaussian
distribution, the CVaR is e�ciently evaluated to account for di↵erent types of terrain [Fan et al., 2021].

Semantic traversability factors: In addition to geometric traversability analyses, we can also identify
certain terrain features semantically and incorporate them into the risk map. Features such as water are
sometimes identifiable in LiDAR pointclouds due to di↵erences in reflectivity. Other features such as stairs
can be identified using computer vision methods, which locate stairs semantically and also identify stair slope,
angle, and height from known geometric priors. This information is useful for identifying non-geometric



mobility risks, as well as notifying our planners to approach certain hazards di↵erently (e.g. walking down
stairs).

Figure 25: Traversability risk analyses which consider di↵erent sources of risk, as well as uncertainties,
and fuses them into one CVaR metric costmap. Left: Raw sensor measurements are used to construct a
pointcloud map. Middle: Statistical properties of the map are identified as various sources of traversability
risk. Right: Risk sources are fused into one CVaR metric, which will be used for planning.

8.3 Uncertainty-aware traversability analysis and motion planning

E�cient Risk-aware Kinodynamic Planning: Using the computed CVaR metric values on the map,
we must search for a path which minimizes these values. This is done in a two-stage hierarchical fashion.
The first stage operates on longer distances (40 m) and takes into account positional risk. Using an A*
algorithm over a 2D grid, this first stage yields a global geometric plan that minimizes the risk of this path.
The second stage operates on shorter distances (8 m) and searches for a kinodynamically feasible trajectory
that minimizes CVaR, while maintaining satisfaction of various constraints including obstacles, dynamics,
orientation, and control e↵ort. This kinodynamic planner operates in a model predictive control (MPC)
fashion, and is based on a combination of stochastic trajectory optimization and gradient-based convex
optimization techniques [Fan et al., 2021]. It runs e�ciently in real-time at 20–50 Hz, requiring roughly
⇠ 20% of one CPU core, As shown in Figure 26, this accounts for a rich set of heuristics, making it robust
to local minima. Once a trajectory is optimized, it is sent to an underlying tracking controller for execution
on the platform.

Recovery Behaviors: In the real world, failures are unavoidable. While our risk-aware traversability and
planning architecture is meant to reduce the probability of failures, they do happen from time to time, as a
consequence of failure in localization, undetected edge cases in traversability, hardware failures, or unknown
unknowns. As a last line-of-defense, we design behaviors to recover the system from non-fatal failures.
Recovery behaviors are autonomously executed when we locally detect that a commanded motion is not
being followed, or no valid and safe path is found to move away from the current position. These behaviors
including clearing/resetting the local traversability map, increasing the allowable threshold of risk (to try
to escape an untraversable area), and moving the robot in an open-loop fashion towards the direction of
maximum known free space. In most cases these recovery behaviors are su�cient to recover the robot from
a stuck condition, as long as the robot has not su↵ered a catastrophic failure.

Learning and Adaptation: Over the course of a mission we often see changes in vehicle dynamics or
environmental factors. For example, decaying battery life, mechanical wear, or mud/water can all a↵ect
the vehicle’s intrinsic dynamics. Additionally, changes in surfaces in the environment can strongly a↵ect
vehicle motion. To adapt to these changes we employ learning-based methods using Gaussian processes
which adapt critical vehicle parameters and dynamics models based on the past history of performance
[Fan et al., 2020b] [Fan et al., 2020a]. By accounting for both the epistemic and aleatoric uncertainties of
these statistical models, these methods ensure safety and robustness even in light of changing dynamics



Figure 26: Schematic of our risk-aware kinodynamic trajectory optimization approach, which combines a
trajectory library-based search with convex optimization. Global path is determined by A* over a 2D grid.
Heuristic paths (including v-turns, random input, etc.) are not necessarily feasible but are used to initialize
the local trajectory optimization. Obstacles, constraints, and costs are convexified about the best initial
path and used to iteratively solve convex Quadratic Programming (QP) optimization problems in real-time.

models.

Ongoing Work: Our ongoing work lies in increasing the ability of NeBula to account for and handle un-
certainties in both perception and planning. One major thrust of ongoing work involves perception-aware
planning. By incorporating sensor models into our traversability maps, we can move towards perception-
aware behaviors which maximize sensor coverage, optimally reduce uncertainty, and automatically generate
active learning behaviors. This thrust is particularly important in perceptually degraded and complex en-
vironments filled with occlusion and traversability hazards. A second direction of ongoing work lies in
incorporating localization uncertainty into our traversability risk mapping in a more theoretically satisfy-
ing way, while remaining computationally tractable. We call this approach ”mapping using belief-clouds”,
and the idea is to propagate the uncertainty of the robot pose while taking sensor measurements into an
aggregated point cloud. The result is a belief-cloud, i.e a pointcloud which encodes uncertainty informa-
tion directly and e�ciently. Our ongoing work involves extracting traversability metrics and risks from this
uncertainty-aware mapping data (see Figure 27).

Figure 27: Belief-cloud: We aggregate uncertainties in sensor noise and localization into a belief point cloud.
(Ellipses describe uncertainties associated with points at the center of each ellipse.) This can be used for
accurate and e�cient uncertainty aware traversability analysis and planning.



9 Uncertainty-aware Global Planning

Autonomous global planning for environment exploration and coverage is a core part of the NeBula architec-
ture (see Figure 7). NeBula formulates the autonomous exploration in unknown environments under motion
and sensing uncertainty by a Partially Observable Markov Decision Process (POMDP), one of the most
general models for sequential decision making. This formulation allows NeBula to jointly consider sequen-
tial outcomes of perception and control at the planning phase in order to achieve higher levels of resiliency
during the mission operation. In this section, we discuss our POMDP-based global planning, referred to as
PLGRIM (Probabilistic Local and Global Reasoning on Information roadMaps). For more details, please
see [Kim⇤ et al., 2021, Bouman⇤ et al., 2020, CoSTAR Team, 2020a].

9.1 Problem Formulation

POMDP Formulation: A POMDP is described as a tuple hS,A,Z, T, O,Ri, where S is the set of
states of the robot and world, A and Z are the set of robot actions and observations, respectively
[Kaelbling et al., 1998, Pineau et al., 2003]. At every time step, the agent performs an action a 2 A and
receives an observation z 2 Z resulting from the robot’s perceptual interaction with the environment. The
motion model T (s, a, s0) = P (s0 | s, a) defines the probability of being at state s0 after taking an action a
at state s. The observation model O(s, a, z) = P (z | s, a) is the probability of receiving observation z after
taking action a at state s. The reward function R(s, a) returns the expected utility for executing action a at
state s. In addition, a belief state bt 2 B at time t is introduced to denote a posterior distribution over states
conditioned on the initial belief b0 and past action-observation sequence, i.e., bt = P (s | b0, a0:t�1, z1:t). The
optimal policy ⇡⇤ : B ! A of a POMDP for a finite receding horizon is defined as follows:

⇡⇤
t:t+T (b) = argmax

⇡2⇧t:t+T

E
t+TX

t0=t

�t
0�tr(bt0 ,⇡(bt0)), (1)

where � 2 (0, 1] is a discount factor for the future rewards, and r(b, a) =
R
s R(s, a)b(s)ds denotes a belief

reward which is the expected reward of taking action a at belief b. T is a finite planning horizon for a
planning episode at time t. Given the policy for last planning episode, only a part of the optimal policy,
⇡⇤
t:t+�t for �t 2 (0, T ], will be executed at run time. A new planning episode will start at time t+�t given

the updated belief bt+�t. The computational complexity of a POMDP grows exponentially with the planning
horizon [Pineau et al., 2003], and we tackle this challenge with hierarchical belief space representation and
planning as to be detailed in Section 9.2.

Application to Simultaneous Mapping and Planning (SMAP): To formalize our SMAP problem as
a POMDP, we define the state s = (q,W ) as a pair of robot q and world state W . We further decompose the
world state as W = (Wocc,Wcov) where Wocc and Wcov describe the occupancy and the coverage states of
the world, respectively associated with their uncertainties (e.g., [akbar Agha-mohammadi et al., 2019]). A
reward function for coverage can be defined as a function of information gain I and action cost C as follows:

R(s, a) = fn(I(Wcov, z), C(Wocc, q, a)), (2)

where I(Wcov, z) = H(Wcov) � H(Wcov | z) is quantified as reduction of the entropy H in Wcov after ob-
servation z, and C(Wocc, q, a) is evaluated from actuation e↵orts and risks to take action a at robot state
q on Wocc. Minimizing this cost function in Eq. (1)) simultaneously solves for the mapping and plan-
ning (SMAP), maximizing the coverage for artifact detection and minimizing the action risk (e.g., collision
chance). This reward function can be generalized to Simultaneous Localization and Planning (SLAP) prob-
lems (e.g., [Agha-mohammadi et al., 2018] or [Kim et al., 2019c]) by incorporating information gain based
on localization entropy reduction events, such as a loop closure or landmark detection.
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Figure 28: Illustration of PLGRIM framework for large-scale exploration in unknown environments. Over
the receding-horizon planning episodes, PLGRIM (i) maintains hierarchical beliefs about the traversal risks
and coverage states, and (ii) performs hierarchical value learning to construct an exploration policy.

9.2 Hierarchical Coverage Planning on Information Roadmaps

In this subsection, we introduce NeBula’s solution for uncertainty-aware global coverage planning, PLGRIM
(Probabilistic Local and Global Reasoning on Information roadMaps) [Kim⇤ et al., 2021]. PLGRIM proposes
a hierarchical belief representation and belief space planning structure to scale up to spatially large problems
while pursuing locally near-optimal performance (see Figure 28). At each hierarchical level, it maintains a
belief about the world and robot states in a compact form, called Information RoadMap (IRM), and solves
for a POMDP policy to generate a coverage plan over a non-myopic temporal horizon, in a receding horizon
fashion.

Hierarchical POMDP Formulation: First, we formulate the receding-horizon SMAP in Eq. (1) into a
hierarchical POMDP problem [Kaelbling and Lozano-Pérez, 2011, Kim et al., 2019a]. Let us decompose a
belief state b into local and global belief states, b` = P (q,W `) and bg = P (q,W g), respectively. W ` is a local,
rolling-window world representation with high-fidelity information, while W g is a global, unbounded world
representation with approximate information (see Figure 29). With ⇡` and ⇡g denoting the local and global
policies, respectively, we approximate Eq. (1) as cascaded hierarchical optimization problems as follows:

⇡t:t+T (b) ⇡ argmax
⇡`2⇧`

t:t+T

E
t+TX

t0=t

�t
0�tr`(b`t0 ,⇡

`(b`t0 ;⇡
g
t:t+T (b

g
t ))), (3)

where ⇡g
t:t+T (b

g) = argmax
⇡g2⇧g

t:t+T

E
t+TX

t0=t

�t
0�trg(bgt0 ,⇡

g(bgt0)). (4)

r`(b`,⇡`(b`)) and rg(bg,⇡g(bg)) are approximate belief reward functions for the local and global belief spaces,
respectively. Note that the co-domain of the global policy ⇡g(bg) is a parameter space ⇥` of the local policy
⇡`(b`; ✓`), ✓`2⇥ .̀

Hierarchical Belief Representation: For a compact and versatile representation of the world, we rely on
a graph structure, G = (N,E) with nodes N and edges E, as the data structure to represent the belief about
the world state. We refer to this representation as an IRM [Agha-mohammadi et al., 2014]. We construct
and maintain IRMs at two hierarchical levels, namely, Local IRM and Global IRM (see Figure 29). The
Local IRM is a dense high-resolution graph that contains high-fidelity information about the occupancy,
coverage, and traversal risks, but locally around the robot. In contrast, the Global IRM sparsely captures
the free-space connectivity. It encodes uncovered area by so-called frontier nodes, which allow for e↵ective
representation of large environments, spanning up to several kilometers. In addition to the map uncer-
tainty, IRM can be generalized to incorporate the robot localization uncertainty (e.g., [Kim et al., 2019c] or
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National Monument, Tulelake, CA, using a quadruped robot
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Figure 30: QMDP policy (red arrows displayed above breadcrumb nodes) for Global Coverage Planning
(GCP). A red sphere indicates the QMDP frontier goal.

[Agha-mohammadi et al., 2018]) in the planning framework when traversing narrow passages and challenging
environments where robot location uncertainty can hinder robot’s ability to navigate the environment.

Hierarchical Coverage Planning–GCP: Given Local and Global IRMs as the hierarchical belief rep-
resentation of W ` and W g, respectively, we solve the cascaded hierarchical POMDP problems. At first,
Global Coverage Planner (GCP) solves for the global policy in Eq. (4), providing global guidance to Local
Coverage Planner (LCP) of Eq. (3). The global guidance enhances the coverage performance and global
completeness. It is especially helpful when LCP has fully covered the local area and needs global guidance
to move to another area. In order for GCP to scale up to very large problems, we adopt the QMDP ap-
proach [Littman et al., 1995]. The main idea is to assume the state becomes fully observable after one step
of action under uncertainty, so that the value function for further actions can be evaluated e�ciently in an



Figure 31: Illustrative example of coverage path planning on the Local IRM with Monte-Carlo Tree Search.
The field-of-view of the robot’s coverage sensor is represented by a blue circle. Macro actions (6 steps on
Local IRM in this example) associated with the two tree branches, paths A and B, are shown. Note that the
final world coverage states in both branches are identical. Path A is evaluated to be more rewarding than B

since fewer actions were required to cover the same area.

MDP (Markov Decision Process) setting. This assumption is acceptable for GCP since its main role is to
guide the robot to an uncovered area and let LCP lead the local coverage behavior. In other words, GCP’s
policy search can terminate at frontier nodes of the Global IRM, and thus, we can assume no changes in
the coverage state during GCP’s planning episode and adopt QMDP for e�cient large-scale planning. The
complexity of GCP is O(Ng

iter |Ng| |Ng
nn|2), where Ng

iter is the maximum number of iterations for Bellman
update, |Ng| is the number of nodes on Global IRM, and |Ng

nn| is the number of nearest neighbor nodes for a
node connected by an edge on Global IRM which is bounded to a small finite number. Thus, the complexity
of GCP grows only linearly with |Ng|.

Hierarchical Coverage Planning–LCP: In the hierarchical optimization framework, LCP solves Eq. (3),
given a parameter input from GCP. LCP constructs a high-fidelity policy by considering the information
gathering (with visibility check given obstacles), traversal risk (based on proximity to obstacles, terrain
roughness, and slopes), and robot’s mobility constraints (such as acceleration limits and non-holonomic
constraints of wheeled robots). LCP has two phases: i) reach the target area based on GCP’s guidance,
and ii) construct a local coverage path after reaching the target area. In the first case, when the target
frontier is outside the Local IRM range, LCP instantiates high-fidelity motion commands to reach the
target frontier. In the second case, when the target frontier is within the Local IRM range, then LCP
performs the information-gathering coverage optimization, as described in Eq. (3). In order to solve the
coverage optimization problem we employ POMCP (Partially Observable Monte Carlo Planning) algorithm
[Silver and Veness, 2010, Kim et al., 2019b]. POMCP is a widely-adopted POMDP solver that leverages
the Monte Carlo sampling technique to alleviate both the curses of dimensionality and history. Given a
generative model (or a black box simulator) for discrete action and observation spaces, POMCP can learn
the near-optimal value function of the reachable belief space with adequate exploration-exploitation trade-
o↵. We limit the complexity of LCP process to O(N `

iterN
`
depth) of calling the generative model, where N `

iter

is the number of iterations for episodic forward simulation and N `
depth is the depth of planning horizon for

each iteration. Since it is a local rolling-window planner, there is no increased complexity with the total size
of the environment.

9.3 Experimental Evaluation

In order to evaluate our proposed framework, we perform high-fidelity simulation studies with a four-wheeled
vehicle (Husky robot) and real-world experiments with a quadruped (Boston Dynamics Spot robot). Both
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Figure 32: Simulated environments for performance validation: (a) subway station, (b) maze (top-down
view), and (c) cave.

robots are equipped with custom sensing and computing systems, enabling high levels of autonomy and com-
munication capabilities [Otsu et al., 2020]. The entire autonomy stack runs in real-time on an Intel Core i7
processor with 32 GB of RAM. The stack relies on a multi-sensor fusion framework. The core of this frame-
work is 3D point cloud data provided by LiDAR range sensors mounted on the robots [Ebadi et al., 2020].
We refer to our autonomy stack-integrated Spot as Au-Spot [Bouman⇤ et al., 2020].

Baseline Algorithms: We compare our PLGRIM framework against a local coverage planner baseline
(next-best-view method) and a global coverage planner baseline (frontier-based method).

1) Next-Best-View (NBV): NBV is a widely-adopted local coverage planner that returns a path to
the best next view point to move to. It uses an information gain-based reward function as ours but
limits the policy search space to a set of shortest paths to sampled view points around the robot.
While NBV is able to leverage local high-fidelity information, it su↵ers from spatially limited world
belief and sparse policy space.

2) Hierarchical Frontier-based Exploration (HFE): Frontier-based exploration is a prevalent
global coverage planning approach that interleaves moving to a frontier node and creating new
frontiers until there are no more frontiers left (e.g., [Umari and Mukhopadhyay, 2017]). While it
optimizes for the global completeness of environment exploration but often su↵ers from the local
suboptimality due to its large scale of the policy space and myopic one-step look-ahead decision
making. The performance of frontier-based methods can be enhanced by modulating the spatial
scope of frontier selection, but it still su↵ers from downsampling artifacts and a sparse policy space
composed of large action steps.

9.3.1 Simulation Evaluation

We demonstrate PLGRIM’s performance, as well as that of the baseline algorithms, in a simulated subway,
maze, and cave environment. Figure 32 visualizes these environments. In our comparisons, in order to
achieve reasonable performance with the baseline methods in complex simulated environments, we allow
baseline methods to leverage our Local and Global IRM structures as the underlying search space.

Simulated Subway Station: The subway station consists of large interconnected, polygonal rooms with
smooth floors, devoid of obstacles. There are three varying sized subway environments, whose scales are
denoted by 1x, 2x, and 3x. Figure 33(a)-(c) shows the scalable performance of PLGRIM against the baselines.
In a relatively small environment without complex features (Subway 1x), NBV performance is competitive
as it evaluates high-resolution paths based on information gain. However, as the environment scale grows, its
myopic planning easily gets stuck and the robot’s coverage rate drops significantly. HFE shows inconsistent
performance in the subway environments. The accumulation of locally suboptimal decisions, due to its sparse
environment representation, leads to the construction of a globally ine�cient IRM structure. As a result,
the robot must perform time-consuming detours in order to pick up leftover frontiers.
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Figure 33: Exploration by PLGRIM and baseline methods in simulated subways of increasing size (a)-(c),
simulated maze and cave (d)-(e), and real-world lava tube (f). For (d) and (e), the covered area is the
average of two runs. Red dashed lines indicate 100% coverage of the environments, wherever applicable.

Simulated Maze and Cave: The maze and cave are both unstructured environments with complex terrain
(rocks, steep slopes, etc.) and topology (narrow passages, sharp bends, dead-ends, open-spaces, etc.). The
coverage rates for each algorithm are displayed in Figure 33(d)-(e). PLGRIM outperforms the baseline meth-
ods in these environments. By constructing long-horizon coverage paths over a high-resolution world belief
representation, PLGRIM enables the robot to safely explore through hazardous terrain. Simultaneously, it
maintains an understanding of the global world, which is leveraged when deciding where to explore next after
exhausting all local information. In the cave, NBV’s reliance on a deterministic path, without consideration
of probabilistic risk, causes the robot to drive into a pile of rocks and become inoperable. NBV exhibits simi-
larly poor performance in the maze. However, in this case, NBV’s myopic planning is particularly ine↵ectual
when faced with navigating a topologically-complex space, and the robot ultimately gets stuck. As was the
case in the subway, HFE su↵ers in the topologically-complex maze due to the accumulation of suboptimal
local decisions. In particular, frontiers are sometimes not detected in the sharp bends of the maze, leaving
the robot with an empty local policy space. As a result, the robot cannot progress and spends considerable
time backtracking along the IRM to distant frontiers.

9.3.2 Real-World Evaluation

We extensively validated PLGRIM on physical robots in real-world environments. In particular, PLGRIM
was run on a quadruped robot Valentine lava tube, located in Lava Beds National Monument, Tulelake, CA.
The cave consists of a main tube, which branches into smaller, auxiliary tubes. The floor is characterized
by ropy masses of cooled lava. Large boulders, from ceiling breakdown, are scattered throughout the tube.
Fig. 34 and 35 discuss how PLGRIM is able to overcome the challenges posed by large-scale environments
with complex terrain and e�ciently guide the robot’s exploration. Fig. 33(f) shows the area covered over
time.

10 Multi-Robot Networking

Multi-robot systems o↵er advanced capabilities to enable complex and time-constrained missions in large-
scale complex environments. Resilient wireless mesh networking solutions are a prerequisite for reliable
and e�cient multi-robot missions. NeBula is inherently a “networked” solution (Figure 7). While it can
be implemented on a single autonomous robot, it also allows for faster and more e�cient missions with
multiple potentially heterogeneous robots (see Figure 5). NeBula’s goal in the SubT challenge is to map
an unknown subterranean environment, locate artifacts, and communicate that information to the base
station via a wireless mesh network for submission to the DARPA Command Post. Inter-robot wireless



Figure 34: The Local IRM (yellow, brown, and white nodes represent uncovered, covered and unknown
areas, respectively) is shown overlaid on the Riskmap. A yellow arrow indicates the robot’s location. LCP
plans a path (red) that fully covers the local area (snapshot A). When p(W `) updates, the path is adjusted
to extend towards the large uncovered swath while maintaining smoothness with the previous path. Another
p(W `) update reveals that the path has entered a hazardous area—wall of lava tube (snapshot B). As
a demonstration of LCP’s resiliency, the path shifts away from the hazardous area, and the robot is re-
directed towards the center of the tube (snapshot C). One minute later, the robot encounters a fork in the
cave. The LCP path curves slightly toward fork apex (for maximal information gain) before entering the
wider, less-risky channel (snapshot D).

Figure 35: Portions of the Global IRM constructed in the lava tube are visualized–yellow nodes represent
frontiers, brown nodes represent breadcrumbs. Gray arrows associate a frontier with a snapshot of the robot
exploring that frontier. GCP plans a path (blue) along the Global IRM to a target frontier after the local
area is fully covered (snapshot E). The robot explores the area around the frontier (snapshot F), and then
explores a neighboring frontier at the opening of a narrow channel to its right. LCP plans a path (green) into
the channel (snapshot G). Later, after all local areas have been explored, the robot is guided back towards
the mouth of cave along the breadcrumb nodes (snapshot H).

communication in subterranean environments is particularly challenging and uncertain in the reliability,
capacity, and availability of communication links because of: i) limited line-of-sight opportunities, ii) the
complicated nature of the interaction of radio signals with the environment (e.g. reflecting, scattering,
multipath), and iii) the unknown nature of the environment. In this section, we will go over NeBula’s
CHORD (Collaborative High-bandwidth Operations with Radio Droppables) communication system for
comm-degraded subterranean environments. The objective of CHORD is to maintain high-bandwidth links
to multiple robots for e�cient commanding, autonomous operation, and data gathering in complex unknown
environments. For more details on the development of NeBula’s networking solutions, see [Otsu et al., 2020,



Figure 36: This figure shows how the mesh network is extended into the subterranean environment by
deployed communication nodes which form a backbone network. Robots inside the coverage area of the
backbone network can extend the network to robots in their communication range. Robots without a route
through the network to the base station must be fully autonomous and return to an area with communication
coverage to return data. Alternatively, (not pictured) multiple robots without a wireless route to the base
station may share data and have one act as a data-mule to carry the data back to communication range.

Ginting et al., 2021].

10.1 CHORD System Design

Architecture and ConOps: NeBula’s operations in the SubT Challenge consists of three general types of
agents: 1) static agents (e.g. base station), 2) mobile agents (e.g. robots), and 3) deployable static agents
(e.g. communication relay nodes). Each agent communicates by means of a wireless mesh network using
commercial o↵-the-shelf radios. We use a hybrid of ROS 1 and ROS 2 for the communication middleware
[Ginting et al., 2021, Ginting et al., 2020]. We use ROS 1 for intra-robot communications, and ROS 2 for
inter-robot communications. The mesh network can be extended, as shown in Figure 36, into the sub-
terranean environment by deploying communication nodes (Section 12.2) from robots to build a backbone
wireless mesh network. The decision of where to drop communication nodes is based on the 3D map, data
route, signal to noise ratio, and the estimated available bandwidth between each radio [Vaquero et al., 2020].
The exact coverage area of each node is dependent on many factors including surface materials, roughness,
and environment shape. Dropping communication nodes in range of another node with a route to the base
station reduces the uncertainty of getting data back from robots near that node. Robots may also be used to
extend the mesh network when they are in communication range of another asset (robot or communication
node) with a route to the base station. When a robot needs to send data to the base station, but has
no communication route to the base station, it can either return to the communication range of an asset
that does have a route to the base station (usually be backtracking to a node on the backbone network) or
communicate that data to another robot (referred to as a data mule) which is returning.

Intra-robot Communication: Each robot consists of a combination of computers and sensors (see Sec-
tion 12) connected by Gigabit Ethernet. Where possible (current generation Husky hardware) this network is
separate from the radio network and connects only through a single computer which is connected to a radio.
That computer runs the ROS 1 core, the ROS 1-2 bridge, and is responsible for handling inter-agent com-
munication. This further isolates intra-robot communication from inter-agent communication and prevents
inadvertent radio tra�c. Intra-robot communications are monitored using ROS 1 topic statistics.



Inter-agent Communication: Even with relatively high power/bandwidth radios, bandwidth is still a
shared, limited, and temporary resource. E↵orts must be taken to manage bandwidth usage and be robust
to communication loss when robots operate outside the range of the radios. CHORD uses ROS 2 over the
wireless mesh network for inter-agent communication. The advanced Quality of Service (QoS) features of
ROS 2 are used to guarantee delivery of important priority data while maintaining network stability over
low-bandwidth links. This configuration enables tra�c prioritization and resource control. We configured
two categories of QoS for inter-robot topics with di↵erent mission requirements. Topics that require full
message history transfer for post-processing or that deliver mission-critical information have higher priority
and are configured so that the messages are reliably delivered even though the network may be down for
periods of time. Estimated link capacities, data routes, and data tra�c are also monitored to ensure stability.

10.2 Evolution of CHORD

Tunnel Circuit: During the Tunnel competition we used ROS 1 in combination with a custom cross-master
messaging mechanism (multimaster-JPL) in combination with radios from Silvus Technologies and Persistent
Systems [Otsu et al., 2020]. While our communication system and radios supported our six robot operation
well during the tunnel competition, we observed some communication issues. We found that careful attention
was needed to avoid ROS 1 attempting to share global topics (like TFs and diagnostics) across all robots. In
addition, without better quality of service (QoS) controls, robots outside of the communication range of the
backbone network would bu↵er all data and flood the network on their return. Some of our data products
were also larger than expected. See [Otsu et al., 2020] for more details.

Urban Circuit: Before the Urban competition we switched to using ROS 2 for inter-agent communication
in combination with radios from Silvus Technologies. We observed better performance than our previous
ROS 1-only data sharing system. First, by using a di↵erent protocol for inter-robot communication, we
isolated the ROS 1 networks completely and avoided unintended data flows between agents. The network
isolation also helped to diagnose network issues easily as every inter-robot ROS topic passes through the
bridge node. Second, we were able to keep network tra�c inside our bandwidth budget, which contributed
to the stability of the dynamic network. For more details on the results, see [Ginting et al., 2021].

11 Mission Planning and Autonomy

Having the capability to autonomously plan, reconfigure, and perform tasks for a multi-robot system is
a crucial component of the NeBula autonomy framework (see Figure 7), enabling exploration of large,
complex, and unknown environments. Especially in the context of the SubT challenge, when there is none or
unreliable intermittent communication between robots and a single human supervisor, autonomy is crucial
to achieve mission objectives, under time and resource constraints. In this section, we present NeBula’s
mission autonomy components, while integrating and allowing a single human supervisor to oversee and
interact with a team of more than five heterogeneous robots at the same time, under range-limited and
unreliable communication in challenging environments. For technical details, please see [Otsu et al., 2020,
Vaquero et al., 2020, Kaufmann et al., 2021].

11.1 Architecture

Figure 37 illustrates the components of the Mission Autonomy architecture and their interface to components.
In the following paragraphs, we describe key components of the system’s mission planning and autonomy.

• Mission Executive: The executive is responsible for stepping through the mission flow as defined and
specified in the Mission File (see next point). The executive triggers the robot’s autonomy behaviors
based on its mission state.



• Mission File: The Mission File defines a set of mission autonomy behaviors and their execution flow
during a mission.

• Autonomy Behaviors: Mission Autonomy Behaviors implement the logic to interact with world beliefs
and send commands to other modules or platforms. See Section 11.2 for specific behavior implementa-
tions.

• IRM Manager: The IRM is a key data structure to exchange information between humans and
machines. Certain robot autonomy behaviors and assistive capabilities utilize the latest belief states in
the IRM within autonomous decision-making and planning processes.

• Mission Watchdog: The Mission Watchdog monitors mission progress and communication links. It
is an external mechanism that ensures that the robots can transmit their world belief back to the base
station regardless of the Mission Executive states.

• Copilot and Assistive Behaviors: The mission autonomy assistant, Copilot for short, encompasses a
series of monitoring and assistive capabilities (e.g. system health monitor, comm node drop assistance)
that perform autonomous tasks and keep the human in the loop if possible and needed. The details of
Copilot, including its Assistive Capabilities, Planning and Scheduling, and human interaction via User
Interfaces, are explained in Section 11.3.

• User Interface: The User Interface consists of carefully designed web-based components and RViz
displays for increased situational awareness. It provides an e�cient interface to send various levels of
commands with minimal control.

11.2 Autonomy

Exploring unknown and complex environments with a team of multiple robots comes with several challenges.
The di�culty of operating a single robot under limited available communications bandwidth, let alone a team,
motivates the need for full autonomy during di↵erent phases of an exploration mission when communications
are not available. In situations where robots are outside of each other’s communication range, robots must

Figure 37: Mission Autonomy architecture and components (robot-side: yellow, base-side: orange).



remain fully autonomous and independently reason about their environment to determine their next task.
A subset of this problem arises when robots are within each other’s communication range and the robots
must devise a coordinated plan. This section describes how we utilize various levels of mission autonomy.

Planning and Scheduling: Mission planning and task scheduling constitute the highest layer of the plan-
ning modules and are integral components in achieving full autonomy outside and within a communication
range (Figure 4). The mission planner maintains a world belief, as described in Section 3, which comprises
the state of the robot team (e.g., robot health, robot location, detected artifacts on each robot), the state of
the world (e.g., geometric and semantic maps), the state of the mission (e.g., remaining mission time, margin
to desired mission output), and the state of communication (e.g., network connectivity, location of comm
nodes). As the world belief increases and improves, the mission planner dynamically re-tasks robots to new
goals or deploys new robots in order to achieve the mission goals defined in the mission specification. Ongo-
ing work focuses on using semantic information about the world (e.g., stair wells, door frames, intersections,
room volume) in the mission planner to provide additional belief of where critical information may lie to
help improve mission success. The task scheduler works in conjunction with the mission planner and robot
autonomy behaviors to actively schedule and assign agents for each task given various constraints. This is one
of the mission autonomy features that allows the system to actively deal with temporal uncertainties, depen-
dencies, dynamic resource constraints, and varying risks and mission strategies. The scheduling component is
modular and can be interchanged with a variety of existing planning and scheduling frameworks. Currently,
a planning problem is formulated using the Planning Domain Definition Language [Fox and Long, 2002] and
is solved using OPTIC [Benton et al., 2012]. The solver updates the task schedule at a fixed cadence.

Executive: The Executive is a task manager that ensures each scheduled task is dispatched to each respec-
tive agent at the correct time. It tracks the state of all tasks and requests the task scheduler to reschedule
when tasks fail, or relaxes temporal constraints when the current schedule is infeasible.

Mission Specification: A Mission File is used to describe a mission and combines several high-level
Robot Autonomy Behaviors to create the flow for more complex scenarios. For this, we use the Traceable
Robotic Activity Composer and Executive (TRACE) proposed in [de la Croix et al., 2017] and the Business
Modelling Process Notation (BPMN). Figure 38 shows one example “Exploration” Mission File that was
used in one of our Cave exploration scenarios. The mission starts o↵ in the upper-left corner with a prompt
for the user to begin the mission which ensures the robots can start moving autonomously in a safe manner.
Each rectangular box depicts a Service Task–they represent robot behaviors in our architecture. Once the
mission is started, the mission flow moves towards the Parallel Gateway. This gateway allows multiple flows
to branch o↵ of a single flow. In the case of the Exploration BPMN, this allows five behaviors to run in
parallel.

Robot Autonomy Behaviors: Behaviors used in the example Mission File (Figure 38) represent a subset
of NeBula’s robot autonomy behaviors; some are described here:

• Move to Next Frontier - Receives the current frontier as a goal from the global planning module and
commands the agent to move to it.

• New Roadmap Comm Node Monitor - Monitors the IRM for new mesh network extension requests and
interrupts the Move to Next Frontier behavior temporarily to initiate Comm Drop Autonomy.

• Comm Drop Autonomy - Autonomous selection of optimal target location to drop a communication node
to maximize communication coverage while minimizing the risk of violating safety and operational
constraints for the robots traversing the local environment [Vaquero et al., 2020].

• Transit to Comm Node Location - Commands the agent to move towards the dropping location
through the IRM.

• Drop Comm Node - Instructs the dropper firmware to drop a comm node immediately.

• Collision Avoidance - Prevents inter-robot collision by monitoring inter-robot distances. When robots
are too close, this behavior performs a prioritized motion planning to resolve the situation.
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Figure 38: Annotated Exploration Mission File used during the self-organized cave circuit.

• Comms Heartbeat Regain Monitor - Continuously monitors for heartbeat messages from the base sta-
tion and terminates successfully when a consistent stream of messages is detected.

• RTB (Return to Base) - Locates the agent within the current IRM and finds the shortest path to the
Base IRM node. Then sends this path to the Mobility Manager and terminates successfully when the
agent has reached the Base.

• Stairs Helper - Detects stairs and assists during a stair climbing procedure.

11.3 Assistive Autonomy and Human-Robot Interaction

In situations where there is su�cient communication bandwidth to interface with a team of multiple robots,
having the capability to provide situational awareness of all robot activities and the mission progress to the
operator becomes very useful. Assistive autonomy at the base station facilitates this human-robot interaction
especially under limitations like the single supervisor requirement of the SubT challenge, or available cognitive
workload.

Autonomy Copilot MIKE: TheMulti-robot Interaction assistant for unKnown cave Environments (Copi-
lot) is introduced in [Kaufmann et al., 2021] and supports the single human supervisor during the setup and
mission phases of complex multi-robot operations. Copilot treats the human supervisor as one node (or a
member) of the multi-robot system and it actively schedules and re-schedules the tasks for all members while
considering world beliefs, resources and other constraints (e.g. human cognitive workload, available comm
nodes, etc.). Some tasks can be automatically executed or resolved depending on the allowed autonomy
level. Currently, Copilot comprises assistive capabilites, robot behaviors, assistive task scheduling, and user
interfaces (Figure 37) used to autonomously control the robots and guide the human supervisor’s decision
making while keeping them in the loop if a communication link is established.

Assistive Capabilities: Assistive capabilities are distributed across the robots and the base station to
reduce the supervisor’s workload. These capabilities assist to (1) detect system anomalies, (2) create tasks
for the Copilot core module, (3) monitor the resolution of these tasks, and (4) resolve tasks autonomously or
inform the supervisor that actions are needed. The assistive capabilities run independently without knowing



Figure 39: Base station single screen setup and human supervisor interacting with the user interface (left).
Autonomy assistant Copilot MIKE’s interface component with task list and Gantt chart mission overview
(middle). Robot status component displaying the robot’s state in the exploration mission (compare Fig-
ure 38), real-time information regarding sensor hardware, current pose and other housekeeping data that
represents current beliefs (right).

the complete system status, which allows a modular extension of the autonomy functionality. Assistive
capabilities address human limitations and autonomously intervene during mission execution as needed and
when possible. Tasks created by these capabilities can inform the supervisor of the status of communication
links between the robots and the base (e.g. communication loss, communication node drop suggestions), a
robot’s sensor suite status or mobility status (e.g. stuck, tilted, undesirable oscillations), and the system’s
autonomy software status (e.g. process health).

Assistive Task Scheduling: The assistive task scheduler shares the implementation of the task scheduler
mentioned prior and considers the operator(s) as an agent (or resource) to which tasks can be assigned.
As more tasks become automated and can be assigned to the Copilot, the operator becomes more readily
available to assist with mission-critical tasks.

User Interface: The user interface consists of several web-based components and a configurable RViz
view showing a 3D or 2.5D map representation of the explored environment [Otsu et al., 2020]. Figure 39
illustrates the single screen interface which includes the Copilot and robot status components. The Copilot

component is designed to increase situational awareness, inform the supervisor of mission tasks, and dispatch
urgent system notifications. The limited interaction between the system and the single human supervisor
increases the supervisor’s trust in the system’s performance, as they are kept in the loop and may still
intervene if and when a communication link is established and if the mission strategy requires a change
(e.g, taking a more risky, more conservative posture). The user interface provides an additional robot status
component for each robot to directly interact with agents or conduct troubleshooting. Figure 39 gives an
example of this component which is used when communication links exist; the human supervisor needs
to shift their attention to a single robot to directly interact with it. This component comprises elements
to reflect real-time housekeeping data, such as current position, sensor health status, estimated battery
remaining and remaining comm nodes. It also integrates controls for changing a robot’s role to either act
as a vanguard explorer or provide support to the leading agents in the mission. Lastly, the component
integrates the current BPMN mission diagram and highlights an agents’ active autonomy behavior to reflect
the robot internal state of the Mission Executive.

Human Trust in Autonomy: Copilot has been deployed in multiple field tests and mission simulations
in diverse environments providing us with useful feedback regarding the interface design and multi-robot
operations. Previous to the implementation of Copilot, we learned that our human supervisors were over-
whelmed with remembering tasks instead of strategically overseeing the robots’ activities and overall mission
progress. Now our human supervisors let the Copilot handle several decision making processes and must



trust its autonomy capabilities [Kaufmann et al., 2021], even if a supervisor could make their own decisions.

12 Mobility Systems and Hardware Integration

As described in Section 3, to simultaneously address various challenges associated with exploring unknown
challenging terrains, we rely on a team of heterogeneous robots with complementary capabilities in mobility,
sensing, computing, and endurance. These assets are deployed in the mission as the robots learn about the
terrain specifications. Figure 40 shows four classes of our robots: (i) Wheeled rovers: to cover general and
relatively smooth surfaces and mild obstacles. (ii) Legged robots: to cover more challenging and uneven ter-
rains where surmounting obstacles or staircases are required [Bouman⇤ et al., 2020, CoSTAR Team, 2020a,
Miller et al., 2020, Jenelten et al., 2020]. (iii) Tracked robots: To complement legged platforms in handling
di↵erent surface material, and (iv) Aerial and Hybrid locomotion: to enable traversing vertical shafts, and
areas that are not accessible by ground robots.

Figure 40: Hardware specifications for some of CoSTAR robots



12.1 Ground robots

Our ground robots are able to carry heavy payloads. Hence they are equipped with high levels of sensory
and processing capabilities enabling complex autonomous behaviors and artifact detection. Their battery
capacity allows them to have longer operational time than flying vehicles. Below, we discuss the NeBula
Autonomy Payload on these ground robots.

Architecture: The NeBula payload (Figure 41) consists of the NeBula Sensor Package (NSP), NeBula Power
and Computing Core (NPCC), NeBula Diagnostics Board (NDB), and NeBula Communications Deployment
System (NCDS). Its electronics and software architecture is modular, to facilitate adaptation to varying
mechanical and power constraints of each platform in our heterogeneous robotic fleet.

Figure 41: High-level overview of the ‘NeBula Autonomy Payload’ architecture

Design Principles: The key design principles are:

• Durability: Shock proofing of the system increases longevity and self-recovery chances when exploring
challenging terrains.

• Lightweight materials: Payload reduction maximizes robot agility and battery life.

• Modularity: A critical feature when developing a heterogeneous fleet of robots with various capabili-
ties. For example, processors and sensors are adaptable across di↵erent mobility systems with di↵ering
mass/size constraints.

• Portability: Ease of transportation, minimize damage to valuable hardware.

• HW-autonomy co-design: Adaptable design process to enable reconfiguring sensors to adapt to autonomy
evolution.

NeBula Sensor Package (NSP): The NSP empowers the NeBula autonomy solution on the robots by
gathering sensory information in real-time from the environment. NSP is heterogeneous: on each robot NSP
consists of a subset of the following sensors: LiDARs, monocular, stereo, and thermal cameras, external
IMU’s, encoders, contact sensors, ultra high lumen LEDs, radars, gas sensors, UWB and wireless signal
detectors. NSP is protected by custom superstructures with impact protection. A combination of hard
resin urethane, semi rigid carbon-infused nylon, and aluminum were used. The NSP interfaces with the
NPCC via high-bandwidth USB and Ethernet for data and custom serial messages and push-pull connectors
for high-amp power. One version is depicted in Figure 42, which shows NSP payloads utilizing an array
of Velodyne Puck VLP-16, Intel Realsense d435i, and FLIR Boson 640, among several others; the sensors
are interchangeable and reconfigurable to accommodate di↵erent sensor arrangements, manufacturers and
sensing modalities.

NeBula Power and Computing Core (NPCC): The NPCC is an auxiliary payload which provides power
to all NeBula sensors and computers used for autonomy. Aluminum enclosures provide protection to the
internal electronics in the event of atypical loads and impacts such as falls and collisions. It is designed with



Figure 42: NSP equipped on Husky (left) and Spot (right).

considerations for thermal cooling and haptics due to extensive cycling of the connector interface panel. The
modular, auxiliary-mount design was tweaked to accommodate for the reduced flight-weight of the drones.
NPCC is powered from an external lithium high capacity battery to provide isolation and extended battery
life for the internal battery across the heterogeneous fleet. The payload uses two high-power computers
for sensing, autonomy, and semantic scene understanding and also hosts the low-level microprocessor. On
some robots, NPCC is equipped with a GPU-based system-on-module with a custom interface to the power
modules, cameras and sensors to accommodate machine learning and semantic understanding functionalities.
The various configurations of the NPCC can be seen in Figure 43.

Figure 43: NeBula Power and Computing Core. Wheeled/tracked vehicles (left), Legged (middle), Aerial
(right).

NeBula Diagnostics Board (NDB): The NDB implements the system diagnostics, which monitors the
vital power elements of the robot such as battery voltage, input current and individual regulator voltages.
When the robot boots initially, all voltage regulators are powered up in a staggered sequence to limit the
inrush loads to the NDB. After each voltage regulator is enabled, the processor checks that the voltage is
within the expected range and reports errors if any are found. In addition, the current monitoring checks
for high current draw when each of the regulators are enabled to detect possible short circuits in the various
robot sensors and mechanisms. The power module has an input protection circuit to protect against voltage
transients, reverse polarity and under voltage. A custom ROS message combines all these measurements and
is constantly publishing the hardware power status to a specific robot diagnostic topic using the rosserial



interface.

Figure 44: NCDS equipped on Husky (left) and Spot (right).

NeBula Comm Deployment System (NCDS): As discussed in our ConOps in Section 3, we construct
and expand a wireless mesh network near the environment entrance, to extend the reach of the base station.
In order to do so, ground robots are equipped with a Comm Deployment System (NCDS), which allow them
to carry and deploy communication radios (comm nodes) and static assets during the mission. The radios
are autonomously deployed using the NCDS which mounts at the rear of the robots seen in Figure 44. The
comm nodes are encased in aluminum until release, and the NCDS electronics are mounted locally on the
mechanism and sealed for ingress protection. The core protection and brake-lock/release mechanism was
modularized across the fleet though the deployment capacity was reduced for the legged and tracked vehicles
due to available mounting points, payload constraints and sensor occlusion. It is driven by a geared brushless
motor and activated via a custom embedded system communicating over rosserial. A ROS message provides
the status of each radio (loaded, dropped). The NCDS circuit board interfaces with the NPCC via serial
communication. It monitors the hard stop switches used for calibration and the switches responsible for
detecting if radios are loaded/released. A high level representation is depicted in Figure 45.

Figure 45: NCDS Software Architecture (left) and NCDS Hardware Architecture (right)

The NCDS software architecture relies on a finite state machine (FSM), with the following representative
activities:

• Start up: Checks for battery power. Enables motor power and establishes links with motors.

• Calibration: Servos is actuated until limit switches are contacted. Encoder positional values are then
stored in local memory.

• Load/Unload: Manual switches allows the user to load and swap radios.

• Deploy Radio: Perform radio deployment. Use sensors to detect if deployment was successful.

• Shutdown: Disables motor power.



12.2 Static assets

Static assets refer to hardware solutions which are not capable of changing their position after deployment.
Our static assets are composed of: comm nodes and UWB modules as pictured in Figure 46. The comm
nodes construct NeBula’s mesh network to enable more e�cient inter-robot information exchange, while
the UWB provide auxiliary landmarks and provides ranging measurement to assist the SLAM and global
localization modules, as explained in Section 6. Static nodes can be powered prior to the start of a mission
or prior deployment. They are carried by mobile robots and deployed by the NeBula Comm Deployment
System (NCDS).

Figure 46: Static asset (comm node and UWB)

12.3 Flying vehicles

NeBula has been implemented on several flying robots of varying sizes. Flying robots are responsible for
exploring vertical shafts, areas not accessible with ground robots, or relaying data from the ground robots to
the base station by quickly flying to regions with strong communication connectivity, e.g., for data muling
(see Section 10). Their processors and sensing capability is much more constrained than our ground robots.
The concept behind the drone development is to keep a balance between the payload, the size of the drone,
and the endurance. Thus, an iterative design has been performed in order to conclude in an optimal hardware
configuration [Jung et al., 2021]. Figure 47 shows several NeBula-powered aerial vehicles:

Figure 47: Flight time of similarly-sized vehicles with di↵erent autonomy capabilities. The general trend for
aerial robots is long flight times are possible at the expense of large vehicles with less access and agility.

A specific example is shown in Figure 48, a custom drone extensively utilized in this project that carefully
balances speed, weight, autonomy capability, and flight time. The vehicle’s weight is 1.5 kg and provides



12 minutes of flight time. A 2D rotating RPLiDAR A2 is mounted on top of the vehicle, providing range
measurements at 10 Hz and a monocular visual sensor at 30 FPS. The velocity estimation is based on
the PX4Flow optical flow sensor at 20 Hz, while the height measurements are provided by the single beam
LiDAR-lite v3 at 100 Hz, both installed on the bottom of the vehicle pointing down as indicated in Figure 48.
Furthermore, the aerial platform is equipped with two 10 W LED light bars in both front arms for providing
additional illumination for the forward looking camera and four low-power LEDs pointing down for providing
additional illumination for the optical flow sensor.

Figure 48: Drone equipped with a forward looking camera, a LED light bars, optical flow, 2D LiDAR and
single beam LiDAR looking upward and downward.

12.4 Hybrid

To extend the range of the flying drones, our team has been investigating and designing new hybrid
ground/aerial vehicles, referred to as “rollocopters”. Rollocopters are designed to mainly roll on the ground;
and when rolling is not possible, they can fly, negotiate a non-rollable terrain element, and land on the
other side, and continue rolling. The combined rolling/flying behavior can extend the operational lifetime by
several folds. Furthermore, the structure used for rolling the robot is designed to provide impact resilience
while flying which provides further robustness. Our hybrid platforms consist of an adapted version of the
above-mentioned NeBula payload along with the pixhawk firmware [Meier et al., 2015]. [Fan et al., 2019]
describes the details of integration of the NeBula autonomy stack on the rollocopter platform.

Design Evolution: Figure 50 shows di↵erent variations of the rollocopter platform. The Hytaq
version [Kalantari and Spenko, 2014] consists of a rotating cage, which encloses the drone to enable
rolling. Figure 49 shows a time-lapse for early hybrid mobility tests on reinforced versions of this plat-
form at JPL’s Mars Yard [CoSTAR Team, 2018a]. Its modular, multi-agent version, called Shapeshifter
[Agha-mohammadi et al., 2020, Tagliabue et al., 2020], self-assembles this shell using permanent electro-
magnets. Passive-wheeled-rollocopter (PW-rollocopter) [Fan et al., 2019, Lew et al., 2019] uses two inde-
pendent passive wheels to enable large sensory FOV and autonomy. To reduce propeller-generated dust,
Drivocopter [Kalantari et al., 2020] and BAXTER [Choi et al., 2020] implement dedicated wheeled actua-
tors, at the expense of a slight reduction in flight time. The latest work is focused on omnidirectional
spherical rollocopters that provide maximum agility and maneuverability while having the minimum friction
[Sabet et al., 2020, Sabet et al., 2019].

13 Experiments

In this section, we present Team CoSTAR’s multi-year e↵ort to validate NeBula technologies on physical
and virtual systems. We first briefly discuss our simulation-based validation approach, and then discuss the
performance of NeBula on heterogeneous physical robot teams in various challenging real-world environments.



Figure 49: Hybrid platform flying over an obstacle at the JPL Mars Yard [CoSTAR Team, 2018a].

Figure 50: Hybrid platform hardware evolution (top row: left to right) pre-challenge Hytaq design
[Kalantari and Spenko, 2014], Modular hybrid vehicle [Agha-mohammadi et al., 2020], (bottom row: left
to right) Autonomous Rollocopter [Fan et al., 2019, Lew et al., 2019], DrivoCopter [Kalantari et al., 2020],
BAXTER [Choi et al., 2020], Spherical Rollocopter [Sabet et al., 2020, Sabet et al., 2019].

The videos in [CoSTAR Team, 2020c, CoSTAR Team, 2020a, CoSTAR Team, 2020d, CoSTAR Team, 2021,
CoSTAR Team, 2020b] depicts some highlights of these runs.

13.1 Simulation Results

Simulator Configuration: We use simulations both for component development and integration testing.
NeBula relies on multiple simulator configurations at di↵erent fidelity levels to enable faster and more
focused development. Examples include a high-fidelity Gazebo simulator for testing ground vehicle behaviors,
flight stack software-in-the-loop simulations for analyzing flight performance, a docker-based multi-robot
networking simulator, and a low-fidelity dynamics simulator for Monte-Carlo analysis. Our simulator setup
is portable, and used in local and cloud environments depending on the computational resources it requires
and the number of agents that are deployed during the test.

Robot and Environment Models: Figure 51 shows selected examples of our simulated robot and envi-
ronment models. In addition to many existing open-source models including the ones available at SubT Tech
Repo [DARPA, 2018b], we build our custom robot and environment models, some of which are submitted to
and available on the same repository. For example, Figure 52 shows a comparative study of drone navigation
algorithms using the robot and environment models that are publicly available on the repository.



Figure 51: Robot and environment simulation models

Figure 52: Drone navigation performance comparison in low-light tunnel environment with perception-aware
nonlinear MPC, and heuristics-based junction sequence following.



(a) Run Summary

Exploration statistics
Distance traveled 2056 m
Sector covered 12 / 17
Rate of area covered 557 m2/min
Cumulative stop time 165 secs
Operator intervention 3 times
Localization statistics
Mean translational error 0.001%
Mean rotational error 0.00003 rad/m
Max memory 9.1 GB
Artifact statistics
Artifact scored 8 / 18
Missed artifacts
Out of FOV 1
No robot nearby 9

(b) Run Statistics

(c) Exploration E�ciency
(d) Localization Accuracy

Figure 53: Sample result from Team CoSTAR’s regular virtual demos

Self-organized Simulation Events: We regularly organize simulation-based events (“virtual” demos em-
ulating the virtual DARPA SubT Challenge, see [Chase and Kitchen, 2020]) to track performance statistics
over time. In each virtual demo, we evaluate the latest system performance based on several evaluation
metrics. We developed a set of automated analysis tools to evaluate statistics on exploration, localization,
mapping, artifact scoring, and human intervention. Simulation enables us to measure the statistics from
large-scale tests which cannot be obtained easily with hardware experiments. Figure 53 shows exploration
and operation statistics of a single robot simulation in the Gazebo simulator. The competition statistics
(Figure 53-a) provide high-level evaluation with the number of sectors covered, number of artifacts scored,
and robot trajectories in the course. The exploration statistics (Figure 53-b,c) evaluate how quickly and
e�ciently the autonomous exploration behavior covered the large-scale environment. The human supervisor
intervention is monitored to measure the reliability of the autonomous system (Figure 53-b). The localization
and mapping performance (Figure 53-b,d) is evaluated against the ground-truth dataset generated from the
simulator. Finally, the artifact scoring performance is quantified with detection and localization evaluation
(Figure 53-b).

13.2 Field Tests and Demonstrations

Our system has been rigorously field-tested in over 100 field tests in 17 di↵erent o↵-site locations, from
lava tubes to mines 240m underground as well as numerous on-site locations including JPL’s Mars Yard.



This testing regime is a fundamental part of field-hardening our system to perform robustly in real-world
challenging environments. A snapshot of some of our field test locations is shown in Figure 54. In this section,
we discuss highlights of our system’s performance at these self-organized field tests and demonstrations.

Figure 54: Locations and snapshots from field test activities. Each blue circle is a di↵erent field-test location.

Mine and Tunnel Field Tests–Ground Vehicles: Field tests in tunnel environments as well as various
underground mines stressed a variety of system capabilities, from dusty silver mines with narrow passages,
to muddy coal mines with multiple decision points and massive scale. Figure 55 presents three maps from
these tests. The Arch Mine tests (Figure 55-center) were in a portion of an active coal mine, and included
extreme traversability hazards (see Figure 22), complex topology, and severely degraded communications.
The multi-robot map is the result of a 30 minute operation, with a total of 400⇥ 100 m2 of area covered by
the two-robot team. Eagle Mine and Beckley Exhibition mine are maps from a single robot.

Tunnel Field Tests–Aerial Vehicles: Aerial vehicles are deployed to perform fast navigation and ex-
ploration, while providing a rough topological map and collecting data from areas inaccessible to ground
robots. Figure 56 shows two of the several hundred successful flight experiments conducted in tunnels lo-
cated in the United States, South Korea, and Sweden. One specific example of drone flight is shown in
Figure 57 [CoSTAR Team, 2018b]. In this example the drone shows successful flight autonomy capability
with local planning method in confined and cluttered environment. The reliability of the developed system
is best exemplified with the well over a thousand logged minutes of safe autonomous flight in complex and
perceptually challenging tunnel environments.

Urban Field Tests–Ground Vehicles: Urban field testing provides more abundance of possible locations,
but also a large variety of challenging conditions. We tested our system, in narrow cubicle farms of multi-level
o�ce buildings, with regions of self-similar corridors (Figure 58-top-left); in multi-level parking structures
with wide open spaces (Figure 58-bottom-left), and in large, open industrial buildings with high ceilings,
narrow stairways and narrow doorways (Figure 58-right).



Figure 55: SLAM point cloud maps from field tests in di↵erent mine locations. Left: a silver mine in
southern California. Center: a portion of a large coal mine in West Virginia, 800ft underground. Right: A
near-surface historic coal mine in West Virginia.

Figure 56: Autonomous flights in Mjölkuddsberget Mine, Sweden (left) and Hwasoon Mine, Korea (right).

Urban Field Tests–Hybrid Vehicles: Hybrid ground/aerial mobility shows its benefit in the urban
environment where there are plenty of easy-to-roll flat surfaces as well as vertical openings to navigate in
multi-level environments. Autonomous hybrid mobility testing results [Fan et al., 2019] show the benefit of
hybrid mobility compared to pure ground or flying vehicles. The hybrid mode allows the robot to fly over
obstacles that block the way for ground robots (Figure 59a). In comparison to the pure aerial vehicles, the
hybrid mode shows better energy consumption profile by rolling on easy flat terrain (Figure 59b).

13.3 DARPA Organized Events

This section outlines results from testing NeBula in the series of DARPA facilitated test events as part of
the Subterranean Challenge [Orekhov and Chung, 2021]. The timeline of these events is summarized in Fig-
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Figure 57: Autonomous flight test at Beckley Mine, Morgan Town, WV. In this example, the drone flies
approximately 50m over 45s. While flying, the drone meets the dead-end and return to the communication
range to deliver the map and artifact data before explore other branches of the mine.

Figure 58: SLAM point cloud maps from field tests in di↵erent locations. Top Left: an o�ce building at
JPL. Bottom Left: A multi-level parking structure at JPL. Right: Eagle Rock substation and surrounds
(pictured at top right)

ure 60, with substantial developments over each of the 6 months intervals between tests by all teams, includ-
ing (but not limited to) [Tranzatto et al., 2021, Issacs et al., 2021, Hudson et al., 2021, Rouček et al., 2021,
Scherer et al., 2021, Ohradzansky et al., 2021, Lu et al., 2021].



(a) Time sequence of planned hybrid transition from rolling to flying and back to rolling. Colored blocks are occupied
voxels colored by z height. Blue/Red path indicates hybrid planned path where blue is rolling and red is flying. Pink
sphere is goal waypoint. Motion primitives from local planner are shown. Note that as the vehicle moves forward,
an obstacle is revealed and a small hop over it is planned and executed.

(b) Power-energy consumption comparison with hybrid (green), rolling-only (blue), and flying-only (red) mobility
modes. The hybrid mode flies over three obstacles, while rolling-only mode was tested without any obstacles.

Figure 59: Rollocopter mobility mode comparison

Figure 60: Overview of the timeline of DARPA organized test activities, with the expectation of increasing
capability from one event to the next.

13.3.1 SubT Integration Exercise (STIX)

Environment and Robots: STIX was held in April 2019 at the Edgar Experimental Mine, Idaho Springs,
CO. The participating teams were o↵ered two practice sessions and one simulated scored run in an environ-
ment representative of the Tunnel Circuit. For Team CoSTAR, one of the primary objectives was to quantify
the capability and limitation of various mobility systems through the evaluation in a real mine environment.
To that end, we deployed four di↵erent types of mobility platforms shown in Figure 61, including Clearpath
Husky wheeled vehicle, Flipper tracked vehicle, Scout quadcopter, and Rollocopter aerial/ground hybrid
vehicle.

Performance: Each platform demonstrated autonomous exploration capabilities in the mine. Husky au-
tonomously traversed 200 m until it reached the first fork. During the drive, Husky detected 5 artifacts
and reported back to the base station: two of which were correct in types and locations. Soon after Husky
turned into a side passage, the communication to the base station was lost, which triggered the return to
base behavior as designed. The robot successfully returned to the base by following the breadcrumb nodes
in IRM. Rollocopter performed four 3-minute runs during the practice sessions, each of which consisted of
autonomous take-o↵, exploration, and landing operations. The robot exhibited robust navigation capabil-
ities, traveling over 100m in cumulative distance. Dust was a major issue for drone flight in the narrow
passageways, causing vision-based state estimation failures. Our approach of using heterogenous odometry



Figure 61: Four heterogeneous mobility platforms deployed at the STIX event. Clockwise from top left::
Rollocoper (with Husky in the course), Husky, Flipper and Scout.

sources enabled us to be resilient to these failures to a large degree [Santamaria-Navarro et al., 2019]. Dust
largely obscured all cameras after a few minutes into each run. With no measurement updates from odom-
etry sources, we relied on IMU-only inertial odometry to safely land the vehicle. These results led to future
work on improving state estimation resilience in the presence of dust and variable lighting. It also helped
us to improve the camera placement design for the various scales of environments. The Flipper was able to
navigate over the train tracks in the tunnel because of its tracked design but it was much slower than the
Husky. This is because of greater contact area of the tracks that causes slower turning behavior compared to
di↵erential drive (wheeled) robots for the same commanded track/wheel speeds [Dixit and Burdick, 2020].
This is why we decided to incorporate a hybrid vehicle that had both wheels and tracks (Telemax) in the next
circuit. We extensively tested Telemax in the Arch mine [Thakker et al., 2020] and were able to navigate
over di↵erent types of terrain (in tracked mode) while maintaining speed when the robot was on flat terrain
(in wheel mode).

13.3.2 Tunnel Circuit

Environment: The Tunnel Circuit took place in August 2019 at the NIOSH mine complexes in Pittsburgh,
PA. There were two courses, Experimental (EX) and Safety Research (SR), focusing on di↵erent aspects of
the tunnel environmental challenges. The EX course is composed of long straight corridors with featureless
flat walls. The SR course has a grid-like structure that provides many decision points and loop closures.

Robots: Team CoSTAR staged seven robots at the starting gate (see Figure 62). The robot roster includes
four Clearpath Husky robots (Husky 1-4), one Telerob Telemax track/wheel hybrid robot (Telemax 1), one
high-speed RC car (Xmaxx 1), and one aerial drone (Scout 1). Our strategy was to adaptively deploy
the heterogeneous robot team based on the complexity and challenges of the unseen course elements. The
information from vanguard robots told that the environment is benign and mostly accessible by the ground
vehicles, leading the decision to rely more on wheeled platforms that show higher endurance.



Figure 62: Robot team deployed at the Tunnel Circuit event. Top Left: Four Huskies at the Staging Area,
Top Right: Drone deployed at the Experimental Mine, Bottom Left: Husky deploying a communication
node, Bottom Right: RC car deployed at the Experimental Mine.

Figure 63: Driving distance statistics during the Tunnel and Urban Circuits. Prefixes refer to di↵erent robot
types: D - Drone, H - Husky (wheeled robot), S - Spot (legged robot), X - XMax (1/5 scale RC car).

Performance: In each run, we sent 3 to 4 robots to the course and achieved more than 2 km combined
traversal (Figure 63). The video in [CoSTAR Team, 2020c] depicts some highlights of these runs. The
longest single-robot drive was 1.26 km by Husky 4 at the SR mine on Day 3, including long periods of
no-communication autonomous exploration and successful returning to the communication range at the end
of the mission. Figure 64 shows the map created by Husky 4 in this run, with an error under 1% of the
distance travelled. Four communication nodes are deployed from the robots to build a backbone network,
covering the areas near the mine entrance and extend the reach of base station for faster data retrieval. We
detected 16 artifacts during our four runs of the Tunnel Circuit, leading to a circuit score of 11 and the
second-place finish among 11 teams (Table 7).



Table 7: Number of scored points for each competition run.

Circuit Tunnel Urban

Run SR R1 SR R2 EX R1 EX R2 A R1 A R2 B R1 B R2
Run scores 4 7 2 4 5 7 4 9

Course scores 7 4 7 9
Circuit scores 11 16
Circuit rank 2nd 1st

Figure 64: SLAM point cloud map from a single Husky robot run in the Safety Research run of the Tunnel
Circuit. The robot starts from the bottom left, and completes the top loop in a clockwise direction.

Challenges: During the Tunnel Circuit event, we faced many real-world challenges which contributed to
improve our system toward the next Circuit events. The flat featureless walls of the EX course a↵ected
our localization performance which was purely LiDAR-based as of the Tunnel Circuit. This motivated
the development of multi-modal method (Section 5 and Section 6). Multi-robot operations in a comm-
degraded environment also posed challenges to our networking system. Based on the analysis of the Tunnel
experience, we carefully redesigned the inter-robot networking protocol and deployed it in the Urban Circuit
(Section 10). The drone traveled 35 m in 43 seconds before it experienced critical state estimation error
due to poor lighting. To eliminate this single-point failure in the future flights, we put more e↵orts on
multi-modal sensing and parallel estimation (Section 5).

13.3.3 Urban Circuit

Environment: The Urban Circuit took place in February 2020 at the Satsop Business Park in Elma, WA.
The unfinished power plant in the park was chosen for the place of the second circuit event where the robots
were exposed to challenges from urban structures. The two courses, Alpha and Beta, covers two floors of the
power plant with size around 90 ⇥ 90 ⇥ 15 m3. There are many small rooms and narrow corridors divided
by thick walls that prevent direct wireless communications.

Robots: Team CoSTAR staged seven robots and deployed four of them during this event (Figure 65),
including the newly introduced Boston Dynamics Spot quadruped robots (Spot 1 and 2). The other two
robots are Clearpath Husky (Husky 1 and 4) with major upgrades in onboard electronics and sensor stack.



All robots are deployed in each run, acting in the vanguard and supporting roles based on the assignment,
their location, and time of the mission. One Spot was dedicated to climbing stairs to explore the floor at a
di↵erent level.

Figure 65: Robot team deployed at the Urban Circuit event. Left: Robot fleet and communication node
deployment, Right: A snapshot of Spot stair climbing (DARPA TV).

Performance: We detected 25 artifacts during our four runs of the Urban Circuit, leading to a circuit score
of 16 and the first-place finish among 10 teams (Table 7). Figure 66 shows a multi-robot map generated at the
Beta course, including details on scored artifacts at multiple levels and at the furthest extent of exploration.
The four-robot team traversed a combined total of 2.3 km (Figure 63), including a large closed loop by the
two husky robots around the central round structure. The video in [CoSTAR Team, 2020a] depicts Spot
robots exploring the multi-level courses autonomously.

Figure 67 shows the breakdown of scoring in the two highest scoring runs of the Urban competition, sum-
marizing the reasons for not scoring the remaining artifacts. In addition to the artifacts missed due to the
robot not reaching the artifact locations (Figure 66), we missed artifacts due to the limited field of view of
the sensory suite on the robots (Figure 66) and other challenges in the artifact detection pipeline.

Challenges: Overall, the Team CoSTAR’s system showed significant improvement from the Tunnel Cir-
cuit. Nonetheless, the circuit identified numerous ongoing challenges calling for further development. These
development areas include: improved depth and breadth of coverage, enhanced sensor field-of-views for ar-
tifact detection, aerial robot developments, autonomous fault recovery, and careful attention to comm node
placement/configuration to maximize wireless link quality for fast data retrieval.

13.4 Self-Organized Cave Circuit

Environment overview: We self-organized a Cave Circuit event at the Valentine Cave of the Lava Beds
National Monument, Tulelake, CA. The cave, a class of lava tubes, was formed from volcanic flows, and an
active research target for the future lunar/Martian cave exploration [Blank et al., 2018, Blank et al., 2020].
The length of the cave is approximately 300 m with an elevation change of 20 m. The tortuous and steep
terrain in the cave limited the range of operations of wheeled platforms, hence tests were focused on the
Spot quadrupeds (drone testing was not possible due to regulatory challenges).

Circuit Event Organization: The test was run as close to the competition setup as possible. The global
frame and artifact locations were determine based on a pre-existing, high precision Faro scan of the cave. A
fiducial gate was surveyed into the cave frame and used to calibrate the robots. All artifact classes other than
CO2 and Vent were placed throughout the cave, with a prioritization on ropes and helmets (the cave-specific
artifacts).

Results: The cave demonstration was remarkable in that entire runs were fully-autonomous with zero



Figure 66: Multi-robot map, trajectories, scored artifacts and ground truth artifacts. All robots start from
the star on the bottom right with trajectory colors cycling from red through yellow to blue and back to
red based on distance travelled. RED inset shows multi-level exploration and scoring (upper-level survivor
and lower-level backpack) by Spot1 with a stair descent (green part of trajectory). GREEN inset shows the
furthest extent of lower-level exploration where a cell phone was scored by Spot1. YELLOW inset shows
an instance of an unscored artifact, where it is placed out of view of ground robots, requiring flight. Other
unscored artifacts are seen in the center of the map where no robot arrived near to them.

Figure 67: Scoring breakdown for the two highest-scoring Urban Circuit runs.

human intervention: the operator only started the mission. Figure 68 shows a map from one such run.
Spot traversed 400 m on average over 4 runs. Each mission was ended not by a time limit, but by the full
accessible environment being covered, with side passages limited by traversability hazards (very low ceilings,
cli↵s). The videos of the cave demonstration are available at [CoSTAR Team, 2020d, CoSTAR Team, 2021,
CoSTAR Team, 2020b].

14 Lessons Learned

At the time of submission, NeBula’s uncertainty-aware and perception-aware principles are implemented
in a number of modules throughout our autonomy solution. The module interactions have been tightly co-
designed and joint probability distributions across some of the modules are incorporated to bolster the overall
system’s resiliency. This uncertainty-aware architecture is verified through intensive field testing campaigns



Figure 68: A pointcloud map from the SLAMmodule and traversability maps during autonomous exploration
in the Valentine Cave at Lava Beds National Monument, Tulelake, CA.

using heterogeneous platforms with di↵erent variations of mobility, sensing, and computing capabilities.
We observed that the joint perception-planning approach brought resiliency to the system behaviors in
challenging real-world environments, where uncertainty is ubiquitous. This section summarizes the lessons
learned from developing and fielding the NeBula autonomy solution.

14.1 Heterogeneous system design and integration

Designing a system with heterogeneous robots is a non-trivial task. Accomplishing the objectives of complex
real-world operations (such as the one in the SubT) with constraints on time, resources/cost, robot size,
weight, power, etc., can be too di�cult or impossible for a single robot. This calls for multi-robot solutions.
An important lesson learned and a major future direction is: “It is critical to have principled tools that can
translate the design choices to overall mission metrics”. These design choices range from the selection of
type and number of robots to the selection of sensors, instruments, and algorithms, to the type of wires and
connectors, and batteries. As some concrete examples that our team has encountered: “A slight change in
the weight (and hence operation time) of one single robot” or “selection of a specific wire that can slightly
a↵ect the data tra�c”, can have a significant e↵ect on the overall aggregated performance of the robot team
and mission metrics. There are 100s if not thousands of such design parameters and choices (both in HW
and SW), which calls for systematic tools to quickly abstract them and translate them to high-level mission
metrics.

An important observation is that for the fast-paced development of a very large autonomy architecture for
a multi-robot system, the architecture should be highly modular and adaptive. Since the architecture must
incorporate robots’ heterogeneous capabilities (mobility, sensing, and compute), appropriate abstractions
need to be implemented to operate robots in a unified framework. We have performed many iterations of the
architecture redesign as our entire system capabilities grow. A key lesson learned is that integration testing



at a regular interval is essential to maintain the stability of such a growing system. Team CoSTAR has
organized monthly virtual and physical integration demonstrations with competition-like set-ups. Regular
testing enforces the new module to comply with the system interaction rules, ensuring functionality despite
constant augmentations by multiple subteams throughout the development. Regular performance tracking
also allows us to understand the current technology state and highlights the next domain to be studied.

14.2 Resilient state estimation

In challenging real-world robotic operations, perceptually-degradation is common, and state estimation can
su↵er from deterioration of sensor measurements and estimation quality. In addition, physical systems are
exposed to the risk of sensor failures that are made prevalent by frequent field testing. These failures are
di�cult to model in many cases, yet systems must be able to react to these uncertain events to ensure system
stability is not lost. One key lesson from our experience is to let the system predict a failure and quickly
adapt to it. We observed that adding redundancy (e.g., HeRO at Section 5) in a principled way shows a
lot of potentials to improve the resiliency of an odometry system by incorporating multi-modal sensors and
algorithms. HeRO’s built-in health check mechanism allows for preliminary detection of various types of
failures and adapting the system to mitigate the e↵ect. This proactive approach has been e↵ective in our
field tests and circuit events, providing the foundation to support high-level autonomous behaviors.

Another critical observation is on “how and when to trust the sensor models”. Following NeBula’s philosophy
of uncertainty-aware predictive planning, the planner needs to be able to predict the joint distributions over
the system’s future actions and estimated states. To predict the future performance, we divide unknowns into
“known unknowns” and “unknown unknowns”. Known unknowns refer to uncertainties that can be reason-
ably modeled using probability distribution functions. Unknown unknowns refer to unmodeled uncertainties
resulting from unexpected events in the system operation. To be resilient and robust to these uncertainties,
we have observed that a cascaded framework (like HeRO) of loosely-coupled and tightly-coupled layers is
promising. The cascaded framework first copes with unknown unknowns, by relying on a loosely-coupled
layer and checking the consensus across di↵erent sensory modalities to detect anomalies and reject faulty
estimation channels. Once left with inliers, it handles “known unknowns” by tightly fusing the estimation
channels using their predicted probabilistic models.

14.3 Large-scale positioning and mapping

The SLAM design and deployment e↵orts presented in this paper highlight the importance of using com-
plementary sensor information for localization and mapping. In complex environments, various sensors have
their own advantage and disadvantages. For example, wheel-encoder-based odometry or visual odometry
provides a useful source of information in long corridors where LiDAR scan matching is subject to drift;
IMU data allows for accurate short-term relative rotation estimation while history-based scan matching can
resolve longer-term displacement estimation. This need to fuse heterogeneous sensors also emphasizes the
importance of a flexible SLAM framework where one can easily define and fuse sensor data when available.
In this sense, the use of a factor graph framework reduced the integration e↵orts and allowed us to design
a unified SLAM back-end that can be easily reconfigured. The importance of developing a reconfigurable
framework is further exacerbated by the desire of running our SLAM solution on a heterogeneous set of plat-
forms (e.g., robots with di↵erent sensor suites and di↵erent computational capabilities), which demanded
our framework to be sensor agnostic (e.g., adjust to di↵erent sensors with minimal parameter tuning) and
reconfigurable (e.g., enable and disable sensors to fuse via configuration files).

While having a reliable odometry solution is critical in large-scale mapping, even the most accurate odom-
etry systems accumulate error over long distances across extreme terrains. This remarks the importance
of loop closures to keep the localization errors bounded. However, when it comes to complex, large-scale
environments, with perceptually-degraded conditions, a key lesson learned is that loop closure needs to be
incorporated in a resilient manner into the overall framework. Computational constraints will limit the



ability to search the map history and find correct loop closures in a reasonable time. Even after loop closures
are found, it is crucial to maintain multiple hypotheses or at least remove incorrect loop closures resulting
from perceptual aliasing. In this paper, we observed that graph-based outlier rejection (e.g., a variation of
[Mangelson et al., 2018]) is helpful in filtering some of the incorrect hypotheses. This family of methods rely
on approximate max clique solvers for consistency maximization, which becomes computationally expensive
due to the size and density of the SLAM graphs in competition settings. Unfortunately, they often fail to
select inlier loop closures, inducing “jumps” in the robot trajectory when the solver is stuck in suboptimal
maximal cliques. Future work includes improving loop closure detection (e.g., prioritizing the most infor-
mative loop closures, using di↵erent sensors for place recognition) and adopting more recent methods for
outlier rejection based on graduated non-convexity.

Computational aspects can be also improved by sharing the workload across robots. Centralized multi-robot
SLAM methods require increasing computational resources for larger teams of robots. Adopting a distributed
SLAM system can improve scalability and reduce communication bandwidth. In general, distributing the
overall computation across various robots (based on their capabilities) can better scale to large teams of
robots.

An important lesson learned is: Augmenting geometric information with semantics can increase the resiliency
of the SLAM system. For instance, incorporating semantic information such as intersections, stairs, man-
made objects in the graph can increase the robustness of the loop closures. Further, identifying a set of stairs
in the environment provides a readily usable prior on the geometry of the stairs; similarly, identifying doors
provides actionable information for navigation. Metric-semantic mapping is an active research area and a
tight integration of geometric, semantic (and physical) reasoning has the potential to improve the robustness
and accuracy of the map built by the robots.

Finally, while this section is concerned with localizing the robots and building a map, the quality of the map
reconstruction is highly a↵ected by the trajectories covered by the robots. Following NeBula’s uncertainty-
aware planning perspective, performing active loop closures to reduce the uncertainty in the robot location
has a major impact on the SLAM accuracy. Active loop closures can be enabled by guiding robots to
rendezvous points to create inter-robot measurements or by visiting parts of the environment that have
unambiguous detection signatures. Towards this goal, quantifying and actively reducing uncertainty is
crucial and is a fundamental trait of the NeBula framework. Active localization and mapping go beyond
loop closures, and tightly couples perception, action, and communication.

Uncertainty-aware traversability analysis: Navigating over perceptually-degraded challenging terrains re-
quires a radical departure from systems designed to operate in known environments with clear landmarks and
easily distinguishable obstacles. Designed to detect complex geometric hazards at various scales, traversabil-
ity analysis highly depends on the quality of local mapping and state estimation. As such, an important
lesson has been that accounting for the “perception uncertainty” in planning is a key to building a reli-
able traversability system operating on challenging terrains and perceptual conditions. We learned that
multi-fidelity mapping approaches (similar to the one presented in Section 8) improve the balance between
computational constraints and accuracy in the presence of degraded state estimation and sensor measure-
ment uncertainty. Uncertainty-aware estimation trusts and accumulates measurements in the world belief
based on measurements’ accuracy and quality. Using this world belief, the traversability layer precisely
quantifies the perception-aware traversability risks and costs when negotiating challenging terrains. Finally,
a critical lesson in traversability algorithm design and development is constant field testing: The presented
uncertainty-aware approach has been field-hardened in over 100 field test sites with diverse traversability-
stressing elements.

14.4 Scalable belief-space global planning

Global planning for area coverage and exploration behaviors is one of the modules where the awareness of
uncertainty plays a critical role in achieving high performance in the real world. We remark several key



dilemmas encountered while developing and testing the global planner, related to uncertainty representation
and uncertainty-aware decision making: i) scalability vs. information fidelity in world belief representation,
ii) planning horizon vs. planning time for each receding-horizon planning episode, and iii) the consistency
of plans for smooth motions vs. resiliency to sudden changes in world belief over time. We learned that
hierarchical approaches (similar to the ones described in Section 9) have the potential to address the above
challenges. Our method, PLGRIM, leverages i) hierarchical IRMs, ii) longer-horizon, higher resolution
POMDP solvers with manageable computation load, and iii) receding horizon planning with resiliency logic.
However, those are still open problems. An important future direction is “quick online adaptation” of
parameters that balance the environment scales and complexity with the computing system and sensor
limitations. Another important open problem is related to encoding and capturing a more accurate and
reliable representation of the high-dimensional world belief.

14.5 Semantic understanding and artifact detection

Detecting objects and understanding the semantics of the environment in perceptually-degraded subterranean
settings is a challenging task. In the DARPA subterranean challenge, artifacts have multiple signatures,
ranging from visual, thermal, auditory to gas-based, and radio-based artifacts. These various signatures and
payload constraints (size, weight, power, etc.) on di↵erent heterogeneous platforms call for a method that
assesses the value of adding various sensors and sensing modalities to each vehicle. Further, the choice and
configuration of each sensor on each robot have a significant impact on the scoring performance (see Section
7). For example, for artifacts that can be detected visually, the salient camera parameters include field of
view, reliability, image quality, resolution, and frame rate. Hence an important lesson has been that the
artifact collection system needs a tight co-design of software and hardware. This includes the whole pipeline
from the sensors, cables, to the processors and algorithms. For example, a change in a USB hub or cable
can significantly impact the choices of other hardware and algorithms by removing certain data chocking
elements in the pipeline. A related unexpected failure mode (which was occurred in one of our competitions)
at the system level was sensor data transfer and communication, caused by both USB driver and networking
bandwidth limitations. Correcting this problem required a thorough analysis of the hardware configuration,
including the development and testing of custom driver software by our team.

The second major lesson was related to data. While the existing standard object detection datasets are
quite large and diverse, learning to detect objects in the perceptually-degraded environments (e.g., variable
lighting and with obscurants), such as the ones in the DARPA subterranean challenge-like environments, are
still out-of-distribution in relation to mainstream datasets.

Finally after these trade-o↵s, there are still many limitations in the perception side of the artifact detection
architecture. So the third, and the most important, lesson learned is that the planning and perception for
artifact detection need to be tightly co-designed. In other words, active perception is required where the
planner needs to take actions that compensate for perception shortcomings. Examples of such actions are:
(i) executing local search maneuvers where the robot sweeps the larger parts of the scene with it sensors to
compensate for its limited field of view, (ii) actively getting closer to certain targets or making measurements
from various angles to increase the detection confidence. This mode might also include deciding which robot
and which sensor should gather more information to increase the confidence. It also includes (iii) changing
perception pipeline parameters such as the camera resolution, input rate, etc. to handle computational
constraints by focusing and limiting the attention of the system on the important parts of the input channel.
Active perception for semantic understanding is highly open area, with a lot of future work in these domains.

14.6 Bandwidth-aware communication system design

Communications between computational units (e.g. ROS nodes) should ideally take into account the pre-
dicted available bandwidth in the link whether that link is on the same computer, via a high-speed Ethernet,
a larger wired network, or radio/wireless. We took a number of successful steps in this direction: i) separating



inter-agent (ROS 2) and intra-agent (ROS 1) communications, ii) using di↵erent QoS settings for di↵erent
classes of topics, iii) monitoring inter-robot communications and estimated bandwidth, and iv) monitoring
intra-robot communications. As future multiagent projects move away from ROS 1 and towards ROS 2
(or another middleware/communication solution) the same principles apply. We see that there is a need
for continued improvements and autonomy in routing and QoS systems to optimally use communication
resources in these future systems.

Another important lesson learned is that due to the communication-degraded nature of the subterranean
environments, the planner needs to support and improve the communication and multi-robot networking
performance by dropping communication nodes at the optimal locations and by actively carrying (mulling)
data using mobile robots between the various nodes. Hence, aligned with NeBula’s philosophy, (1) taking
networking uncertainties into account, (2) evaluating and predicting the potential value of the communi-
cated information, and (3) co-designing the planning system and networking system are that critical obser-
vations to increase the robustness and performance of the overall multi-robot robot networking system in
communication-degraded environments.

14.7 Supervised autonomy to full autonomy

Achieving mission success depends heavily on the mission-level autonomy from both single and multi-robot
perspectives. This is especially the case in contexts such as the SubT Challenge where large robot teams must
intelligently coordinate themselves under strict communication, time, and resource constraints to explore and
map km-scale environments and find objects of interest.

Closer to the course entrance a communication link with the human supervisor can be established. Thus
the system must be capable of autonomously balancing between deeper exploration, operational risk, the
value of the collected onboard information, and the cost of bringing the systems closer to the surface for
the data retrieval. A key lesson learned is that even when robots are close to the course entrance and a
communication link with the human supervisor is established, with a large heterogeneous multi-robot team,
a single human supervisor becomes a bottleneck in the control loop due to excessive cognitive workloads
of the supervisor. Hence, for successful operations, NeBula’s mission executive and Copilot assistant are
designed to support such tasks by adjusting the system autonomy levels, gradually delegating human tasks
where the human is viewed as a resource, and providing suitable instructions and feedback to reduce the
cognitive load of the single supervisor. Integral to the e↵ort is maintaining a world belief that can be easily
interpreted by the system or supervisor, and trigger behaviors or sequences of actions that bring the system
closer towards achieving mission completion.

However, there is a lot of future research in this area. Our ongoing e↵orts have been focusing on some of these
areas, including e�cient ways of specifying more complex tasks and missions, balancing human-machine task
distribution, planning using semantic information, and scheduling under uncertainty in task execution and
future event occurrence.

14.8 Simulator-based development

The development of our system was greatly accelerated by the use of di↵erent computer simulation environ-
ments, discussed herein. The challenges inherent to real-world robotics in uncertain and fully autonomous
settings pose tremendous risks to naive robots and algorithms in the early stages of development. Taking
development into a simulation and out of hardware has a↵orded us numerous opportunities to pursue and
achieve high-risk-high-gain algorithmic strategies. Many safety-critical features are di�cult to test with phys-
ical hardware. By carefully modeling di↵erent fleet and hardware configurations, we were able to develop,
test, and eventually deploy our heterogeneous multi-robot team in the real world, with optimal networking,
hardware, and software payloads. Although simulators o↵er an enormous benefit to robotic systems develop-
ment, there are significant di↵erences between simulations and real-world system which must be accounted



for. It is important to understand simulator limitations and always perform proper validation and testing
on physical hardware platforms.

15 Conclusion

Team CoSTAR’s approach to the DARPA Subterranean Challenge lies in our autonomy solution, NeBula
(Networked Belief-aware Perceptual Autonomy), which emphasizes resilience and intelligent decision making
through uncertainty-awareness. NeBula has led to 2nd and 1st place in DARPA Subterranean Challenge’s
Tunnel (in 2019) and Urban (in 2020) competitions, respectively. When dealing with exploration and opera-
tion in unknown environments, uncertainty is inherent to all decisions. As the main principle, NeBula focuses
on quantifying and taking advantage of uncertainty at multiple levels of our autonomy stack, including state
estimation, mapping, traversability, planning, communications, and other state domains. We combine these
technologies in a synergistic way, which examines the interaction between interrelated modules.

During this competition we have and hope to continue to demonstrate autonomous exploration in extreme
environments on multiple platforms (including wheeled, legged, and aerial). Solving this problem remains of
paramount interest in a wide range of applications, especially when it comes to missions to explore unknown
planetary bodies beyond our home planet. We believe the uncertainty-aware and platform-agnostic nature
of most NeBula components is a step towards resilient and safe robotic autonomy solutions in unknown and
extreme environments with both single and multi-robot systems.
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16 Glossary: Acronyms

APE Absolute Position Error
AUV Autonomous Underwater Vehicle
BPMN Business Modelling Process Notation
BRM belief roadmap
CHORD Collaborative High-bandwidth Operations with Radio Droppables
CIO Contact-Inertial Odometry
Comm Communication
ConOps Concept of Operations
CoSTAR Collaborative SubTerranean Autonomous Robots
CNN Convolutional Neural Network
CVaR Conditional Value-at-Risk
DARPA Defense Advanced Research Projects Agency
DLT Direct Linear Transform
EdgeTPU Edge Tensor Processing Unit
FGA Flat Ground Assumption
FIRM Feedback-based Information Roadmap
FOV Field of View
FPS Frames Per Second
GCP Global Coverage Planning
GESTALT Grid-based Estimation of Surface Traversability Applied to Local Terrain
GICP Generalized Iterative Closest Point
GO-LLC Geometric-Only LiDAR Loop Closures
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU Graphical Processing Unit
GTSAM Georgia Tech Smoothing and Mapping
HeRO Heterogeneous and Resilient Odometry Estimator
HFE Hierarchical Frontier-based Exploration
IMU Inertial Measurement Unit
iSAM2 incremental Smoothing and Mapping
IRM Information RoadMap(p30,31 dups)
JPL Jet Propulsion Laboratory
LAMP Large-scale Autonomous Mapping and Positioning
LCP Local Coverage Planner
LIO LiDAR-Inertial Odometry
LION LiDAR-Inertial Observability-aware Navigation for vision-denied environments
LO Lidar Odometry
LOCUS Lidar Odometry for Consistent operations in Uncertain Settings
MAV Micro Aerial Vehicle
MDC Motion Distortion Correction
MER Mars Exploration Rover
MIKE Multi-robot Interaction assistant for unKnown cave Environments (aka ‘Copilot’, ‘Copilot MIKE’)
MPC Model Predictive Control
MSL Mars Science Laboratory
MSR Mars Sample Return



NBV Next-Best-View
NeBula Networked Belief-aware Perceptual Autonomy
NCDS NeBula Communications Deployment System
NDB NeBula Diagnostics Board
NPCC NeBula Power and Computing Core
NSP NeBula Sensor Package
PLGRIM Probabilistic Local and Global Reasoning on Information roadMaps
POMCP Partially Observable Monte Carlo Planning
POMDP Partially Observable Markov Decision Process
QoS Quality of Service
RA-LLC Range-Aided LiDAR Loop Closures
RC Remote Control
RF Radio Frequency
RHC Receding Horizon Control
RIO RaDAR-Inertial Odometry
RRT Rapidly-exploring Random Trees
QP Quadratic Programming
ROAMS Rover Analysis Modeling and Simulation
ROS Robot Operating System
RSSI Received signal strength indication
SLAM Simultaneous Localization and Mapping
SLAP Simultaneous Localization and Planning
SMAP Simultaneous Mapping and Planning
SOG Sum of Gaussians
STEP Stochastic Traversability Evaluation and Planning
STIX SubT Integration Exercise
TIO Thermal-Inertial Odometry
TRACE Traceable Robotic Activity Composer and Executive
UAV Unmanned Aerial Vehicle
UWB Ultra Wide-Band
VIO Visual-Inertial Odometry
VO Visual Odometry
WIO Wheel-Inertial Odometry
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