
Proactive Learning of Cognitive Exercises with a Social Robot*

Alejandro Suárez-Hernández1 and Antonio Andriella2 and Guillem Alenyà1 and Carme Torras1

Abstract— We introduce INtuitive PROgramming 2 (IN-
PRO2), an improvement over our previous INPRO framework
for learning board exercises via demonstrations. INPRO2 makes
use of our Online Action Recognition through Unification
(OARU) algorithm, which maintains and extends as needed a
library of STRIPS action schemata that represent the dynamics,
rules and goal of the exercise. OARU operates on a sequence
of states shown by the user. Each state transition is either used
to learn a new action, or is recognized as an instance of one
action currently present in the library, possibly refining it. We
have extended OARU to support negative examples (i.e. invalid
moves that show forbidden state transitions) in order to increase
the complexity of the exercises that can be learned. This new
OARU’s feature is exploited through another crucial element
of INPRO2: its ability to proactively ask for the legality of
certain moves to the user in critical situations, and fix overly
permissive actions. We show an example of a typical INPRO2
learning session. We also outline a plan for a user study that
will serve to assess the proactive behavior of the robot.

I. INTRODUCTION

The field of Socially Assistive Robotics (SAR) studies
the applications of robotics to help humans through com-
munication and guidance, rather than physical means. One
such application is delivering cognitive training therapies to
patients affected by cognitive impairments (e.g. Alzheimer’s
or dementia) via board exercises [1].

To this end, Andriella et al. [2] designed a socially
assistive robot capable of providing in situ personalised
assistance to Persons with Dementia (PwDs) during their
daily cognitive training therapy. However, one limitation
of this approach was that it did not allow the therapists
to change exercises in an easy and intuitive way. Indeed,
the most straightforward approach for implementing such
a system relies on a hand-crafted description of the rules
of the exercise. In this scenario, technical skills beyond the
competence of a healthcare professional are needed to add
new exercises to the robot’s repertoire. This obstacle can be
circumvented allowing the robot to learn new exercises via
demonstrations provided by the caregiver. In the past, we
have tackled this robot-caregiver interaction, and proposed
the INtuitive PROgramming (INPRO) framework [3], [4] for
learning STRIPS [5] action schemata that encode the rules

*The research leading to these results receives funding from the
EU H2020 Programme under grant agreement ERC–2016–ADG–741930
(CLOTHILDE); ASH acknowledges the financial support of the Apadrina
la Ciencia association and of the Ford Spanish branch.

1Authors are with Institut de Robòtica i Informàtica Industrial,
CSIC-UPC, Parc Tecnològic de Barcelona. C/ Llorens i
Artigas 4-6, 08028, Barcelona, Spain {asuarez, torras,
galenya}@iri.upc.edu

2 A. Andriella is with Pal Robotics, C/ de Pujades, 77, 08005 Barcelona,
Spain. antonio.andriella@pal-robotics.com

113

1722

A B C D E

4

3

2

1

Fig. 1. Teaching an exercise consisting in moving the odd numbers
horizontally to the right column, and the even numbers vertically to the
top row, always one cell at a time (i.e. tokens must move to adjacent cells).

of the exercise in their preconditions. We now introduce IN-
PRO2, which features significant improvements over INPRO.
Fig. 1 depicts a learning session of INPRO2.

Unlike INPRO, INPRO2 relies on Online Action Recog-
nition through Unification (OARU) [6], an algorithm for
learning and recognizing STRIPS action schemata from a
stream of states given by the user (the caregiver, in this
case). While OARU was conceived to work under partial
observability (in particular, with the open world assumption),
in the present work we focus on the fully observable setting.

Our contributions are: (1) the use of OARU in INPRO2
allows the robot to learn much more complex exercises than
INPRO; (2) we have augmented OARU with the ability to
learn from forbidden state transitions (negative examples)
to fix overly permissive preconditions; (3) we have enabled
INPRO2 to learn goals, in addition to legal moves; and
(4) INPRO2 proactively intervenes in critical moments of the
teaching process, asking for the legality of certain actions to
potentially discover negative examples and learn from them.

II. RELATED WORK

Martı́nez et al. use Reinforcement Learning (RL) to learn
actions with stochastic effects [7] with the help of teacher
demonstrations. Unlike INPRO2, this approach requires ac-
tion signatures (i.e. the number of available actions and their
parameters) to be given. MuZero [8] has been used to learn
games like chess and go. Notwithstanding its ability to learn

both the rules of the game and play skillfully, it is not feasible
for a caregiver to provide the amount of required data.

Inverse RL (IRL) [9] makes use of the teacher demonstra-
tions to learn the reward of the different actions given the
current state. This can be used in principle to distinguish
between legal and illegal moves (actions with high and low
reward, respectively). While this does not require such an
exhaustive amount of training data as MuZero, it does not
provide precise action descriptions (e.g. in STRIPS format),
and thus lack INPRO and INPRO2’s explainability.

Algorithms for inductive learning of high-level action
models [10], [11], [12] observe interactions with the envi-
ronment, and refine planning operators to match the obser-
vations. System-centric algorithms like ARMS [13] gener-
ate deterministic planning operators with weighted MAX-
SAT solvers. SLAF [14] learns from partial observations.
FAMA [15] computes STRIPS operators from minimal
observations using classical planning. UDAM [16] uses a
similar approach, but removes the limitation of requiring
action signatures. INPRO [4] was inspired by the latter two
works. However, INPRO2 uses OARU [6], which is based
on a notably different principle of clustering actions more
suitable for online learning and recognition.

The motivation of Senft et al. [17] and Efthymiou et al.
is reminiscent of ours. In particular, they empower adult
educators to design the behavior of a robotic tutor for
children. The work of Winkle et al. [18] seeks to increase the
involvement of medical personnel in tuning the interaction
of SAR robots with patients. These methods, while adequate
for learning how to interact, are not meant to learn precise
logical descriptions of board exercises.

III. PRELIMINARIES

To properly explain INPRO2, let us first introduce some
concepts from First-Order Logic (FOL) and STRIPS.

We denote as D the domain of discourse, a set of world
objects. In Fig. 1, for instance, board locations a1 and b2,
and tokens 113 and 1722 are objects within D. A predicate
consists of a predicate symbol p and certain arity n. A
predicate variable is an n-ary predicate parameterized with
a list of n objects (e.g. p(x1, . . . , xn), with {x1, . . . , xn} ⊆
D), and evaluates to either true or false. An interpretation
of an n-ary predicate is a set of n-tuples from Dn for
which a predicate evaluates to true. In a slight abuse of
notation, from now on we will refer to predicate variables
simply as predicates. In FOL, we use formulas to express
statements over the objects in D. In this paper, we consider
restricted formulas that consist of either single predicates
or conjunctions (∧) of predicates1. Consider, for instance,
the predicates at(x, y) and empty(z), whose semantics are,
respectively, ”token x is at cell y” and ”cell z is empty”. In
Fig. 1, the following formulas evaluate to true:

• at(113, a3)
• at(1722, e1) ∧ empty(e4);

1Of course, the full specification of FOL includes negations, disjunctions
and quantifiers, but these are not considered here.

pick-and-place

params:
Token, Source, Destination

pre:
at(Token,Source), empty(Destination)

add:
at(Token,Destination), empty(Source)

del:
at(Token,Source), empty(Destination)

Fig. 2. Pick and Place action schema

while the following ones evaluate to false:
• empty(a3);
• at(113, a3) ∧ at(1722, a1);
A state s consists of a collection of assignments to a set

of binary variables. Alternatively, s can be viewed as an
interpretation over a set of predicates2, each one representing
a fact about the world. A state can be compactly represented
as the set of active predicates (i.e. predicates that evaluate to
true). The following is an excerpt of the state from Fig. 1:

s = {at(113, a3), at(1722, e1), empty(a4), empty(b4), . . .}

STRIPS is a formalism to specify actions. A STRIPS action
schema is a tuple a = ⟨heada, prea, adda, dela⟩, where:

• heada is the action signature. It consists in a duad
⟨Na, Pa⟩, where Na is a human-readable name for the
action, and Pa is a list of free variables which constitute
the action parameters that take values over D.

• prea is the precondition, a restricted FOL formula that
must evaluate to true in the current state in order for
the action to be applicable.

• adda is the add list, the list of predicates that will be
set to true (or added to the compact form of the state)
after the execution of the action.

• dela is the delete list, the list of predicates that will be
set to false (or deleted from the compact form of the
state) after the execution of the action.

Predicates in prea, adda, and dela may be parameterized
with objects and free variables from D ∪ Pa. The action is
grounded when every parameter in Pa takes a value from D.
Fig. 2 shows an example of a STRIPS action schema. Such
action allows the move of any token to any empty position
of the board. As a convention in this paper, names starting
with uppercase letters are action parameters.

IV. METHODOLOGY

When INPRO2 starts learning a new exercise, it starts with
an empty action library and follows the next flow:

1) Before receiving demonstrations, the tokens available
for the exercise are specified by the user (this is to
establish the domain of discourse D).

2) The initial position for a new run of the exercise is set.

2Since predicates are statically evaluated, in dynamical domains the
concept of fluent (facts that vary over time) is often used instead. Despite this
technicality, for simplicity we will adhere to the use of the term predicate.

3) INPRO2 manipulates its internal library of learned
STRIPS action schemata to accommodate the demon-
strations made by the user.

4) If certain criteria are met, INPRO2 asks for the legality
of a move different from the user’s. If the move is
illegal, the action library is refactored to disallow it.

5) Once the user has finished demonstrating one run of
the exercise, they either conclude the teaching process
or go back to 2 to show another run of the exercise.
At this point, INPRO2 uses the last state of the run to
learn or refine the goal of the exercise.

For each each run Ri of the exercise, INPRO2 receives
a stream of states Ri = {si1, si2, . . . , sili}, where li is
the length of the run. We denote each pair of consecutive
states (sij , si(j+1)) as observation oij . Internally, INPRO2
uses the OARU algorithm to process each observation. In
particular, for each observation OARU may: (1) simply
recognize the transition as the result of a grounding of one of
the actions in its library; (2) introduce parameters and relax
the precondition of one of the actions in its library to allow
the observed transition; or (3) add an entirely new action
with a stringent precondition, with the intention of relaxing
it when future similar transitions are observed.

OARU does not require the action signatures to be given
beforehand, as it builds its action library in an online
fashion. It merges together similar actions through a process
called Action Unification (AU). To merge two actions, AU
introduces parameters and relaxes preconditions. Therefore,
AU can be seen as a tool for generalizing actions. OARU
uses AU as a subroutine to perform hierarchical clustering
over the learned actions. The details of this approach can be
seen in the original paper [6].

One of the original limitations of OARU is that it always
merges actions with equal effect. This is undesirable when
the only correct way of accurately reflecting the rules of
an exercise using STRIPS is with two actions with identical
effects but different preconditions. We overcome this by
enhancing OARU with the ability to undo previously merged
actions via negative examples (forbidden transitions). When-
ever OARU registers a new negative example, it refactors its
action library so none of the actions can produce the shown
transition. Fig. 3 depicts this mechanism. Like in Fig. 1,
the odd numbers are meant to move one cell at a time to
the right and the even ones one cell at a time to the top.
Since these two kinds of move have the same effect, OARU
merges them together into a single generic ”pick and place”.
However, after just one negative example, OARU is able to
fix this mistake. This feature allows OARU to learn much
more complex domain mechanics than before.

Another important feature of INPRO2 is its ability to learn
goals of moderate complexity. This has been achieved by
appending a new state si(li+1) = sili ∪{goal-achieved()} at
the end of each run Ri. Effectively, this leads OARU to learn
a special action to assert the achievement of the goal. The
only effect this special action has on the state is setting the
goal-achieved() predicate to true and, once learned correctly,
the precondition reflects the goal of the exercise.

Action after merging

pick-and-place

params:
Token, Source, Destination

pre:
at(Token,Source),
empty(Destination)

add:
at(Token,Destination),
empty(Source)

del:
at(Token,Source),
empty(Destination)

move-odd-piece-right

params:
Token, Source, Destination

pre:
at(Token,Source), empty(Destination),
odd(Token), right(Source,Destination)

add:
at(Token,Destination), empty(Source)

del:
at(Token,Source), empty(Destination)

move-even-piece-up

params:
Token, Source, Destination

pre:
at(Token,Source), empty(Destination),
even(Token), up(Source,Destination)

add:
at(Token,Destination), empty(Source)

del:
at(Token,Source), empty(Destination)

Actions before merging

113

1722

A B C D E

4

3

2

1

113

1722

Negative example (forbidden transition)

A B C D E

4

3

2

1

1. First, OARU merges the
two actions, removing the
predicates in red from
the precondition.

2. A forbidden move is shown to OARU

3.OARU splits pick-and-place
back to the original actions,
which will not be merged
again.

Fig. 3. Undoing an overly relaxed action thanks to a negative example.
The human-readable names of actions and parameters have been chosen by
us for the purpose of clarity in this paper, not by INPRO2.

To elicit and exploit negative examples, we take advantage
of the learned goals. Actions that are learned incorrectly usu-
ally have overly relaxed preconditions. Therefore, INPRO2
may find plans towards the goal significantly shorter than the
length of the demonstrated runs. When the user demonstrates
a move that does not agree with the optimal move found by
INPRO2, this is an indicative that one of the learned actions
is too lax. The robot, then, asks the user about the legality
of alternative moves and gather potential negative examples.
In addition, INPRO2 periodically asks about the legality of
alternative moves to gather negative examples in situations
when the overly relaxed actions do not allow shorter plans.

Fig. 4 shows an example execution, with two runs. During
the first run, R1, INPRO2 learns a generic, and incorrect,
pick and place action schema, like the one from Fig. 3. It
also learns the goal of the game: the token 113 must be in
the right column, while 1722 must be in the top row. During
the second run, R2, after the first move of the user, the robot
asks why they did not move the token 1722 directly to the
top row. After the user declares that that is illegal, INPRO2
splits the pick and place action into two correct actions for
moving separately the odd and even pieces. In the bottom
right corner we show the final set of learned actions.

V. PLANNED EXPERIMENTS

We pose the following research questions:
• (R1) Does our selective intervention criteria harm learn-

ing speed?
• (R2) Does our selective intervention criteria result in a

better user experience than more frequent interventions?

113

1722

113

1722

113 1722 113

1722

113

1722

113 1722

In the previous state, could I have
moved 1722 directly to e4?

No

113

1722

113

1722

113

1722

113

1722

Robot Intervention

Restart

R1

R2

move-odd-piece-right

params:
Token, Source, Destination

pre:
at(Token,Source), empty(Destination),
odd(Token), right(Source,Destination)

add:
at(Token,Destination), empty(Source)

del:
at(Token,Source), empty(Destination)

move-even-piece-up

params:
Token, Source, Destination

pre:
at(Token,Source), empty(Destination),
even(Token), up(Source,Destination)

add:
at(Token,Destination), empty(Source)

del:
at(Token,Source), empty(Destination)

Learned actions

achieve-goal

params:

pre:
fourth-row(1722),
column-e(113)

add:
goal-achieved()

del:

Fig. 4. Execution example: teaching the robot to move odd numbers to the right and even numbers to the top of the board.

We hypothesize that the answer to these questions is no
and yes, respectively.

We plan to perform a user study with several participants
with diverse backgrounds. We will give the participant a
brief tutorial on the usage of INPRO2, and then we will ask
them to teach the robot two different exercises. We assume
that all the demonstrations made by the user are correct, so
we will ask them to undo moves if they commit a mistake.
The participants will be split into three groups: (1) one with
occasional, planned robot interventions as explained in this
paper; (2) one with occasional robot interventions, but in
random moments; and (3) one final group with exhaustive
questioning after every move. We will measure how many
demonstrations it takes before the robot learns the rules of
each exercise, and after each experiment, we will ask the
participants to fill a series of user experience and cognitive
load questionnaires. In the future, we also plan to compare
INPRO2 with IRL in simulation.

REFERENCES

[1] A. Andriella, C. Torras, and G. Alenyà, “Cognitive System Framework
for Brain-Training Exercise Based on Human-Robot Interaction,”
Cognitive Computation, vol. 12, no. 4, pp. 793–810, 7 2020.

[2] A. Andriella, C. Torras, C. Abdelnour, and G. Alenyà, “Introducing
CARESSER: A framework for in situ learning robot social assistance
from expert knowledge and demonstrations,” User Modeling and User-
Adapted Interaction, 3 2022.

[3] A. Andriella, A. Suárez-Hernández, J. Segovia-Aguas, C. Torras, and
G. Alenyà, “Natural teaching of robot-assisted rearranging exercises
for cognitive training,,” in Social Robotics. Springer International
Publishing, 2019, pp. 611–621.

[4] A. Suárez-Hernández, A. Andriella, A. Taranović, J. Segovia-Aguas,
C. Torras, and G. Alenyà, “Automatic learning of cognitive exercises
for socially assistive robotics,” in 2021 30th IEEE International
Conference on Robot Human Interactive Communication (RO-MAN),
no. 1, 2021, pp. 139–146.

[5] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
1971.

[6] A. Suárez-Hernández, J. Segovia-Aguas, C. Torras, and G. Alenyà,
“Online Action Recognition,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 13, pp. 11 981–11 989, 2021.

[7] D. Martı́nez, G. Alenyà, and C. Torras, “Relational reinforcement
learning with guided demonstrations,” Artificial Intelligence, vol. 247,
pp. 295–312, 6 2017.

[8] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap,
and D. Silver, “Mastering Atari, Go, chess and shogi by planning with
a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 12 2020.

[9] S. Arora and P. Doshi, “A survey of inverse reinforcement learning:
Challenges, methods and progress,” Artificial Intelligence, vol. 297, p.
103500, 8 2021.

[10] Y. Gil, “Learning by Experimentation: Incremental Refinement of
Incomplete Planning Domains,” in Machine Learning Proceedings
1994. Elsevier, 1994, pp. 87–95.

[11] S. Benson, “Inductive Learning of Reactive Action Models,” in Ma-
chine Learning Proceedings 1995. Elsevier, 1995, pp. 47–54.

[12] X. Wang, “Learning by Observation and Practice: An Incremental
Approach for Planning Operator Acquisition,” in Machine Learning
Proceedings 1995. Elsevier, 1995, pp. 549–557.

[13] Q. Yang, K. Wu, and Y. Jiang, “Learning action models from plan
examples using weighted MAX-SAT,” Artificial Intelligence, vol. 171,
no. 2-3, pp. 107–143, 2007.

[14] E. Amir and A. Chang, “Learning Partially Observable Deterministic
Action Models,” Journal of Artificial Intelligence Research, vol. 33,
pp. 349–402, 11 2008.

[15] D. Aineto, S. Jiménez, and E. Onaindia, “Learning STRIPS Action
Models with Classical Planning,” ICAPS, 2018.

[16] A. Suárez-Hernández, J. Segovia-Aguas, C. Torras, and G. Alenyà,
“STRIPS Action Discovery,” in AAAI 2020 workshop on Generaliza-
tion in Planning. arXiv, 2020.

[17] E. Senft, S. Lemaignan, M. Bartlett, P. Baxter, and T. Belpaeme,
“Robots in the classroom: Learning to be a Good Tutor,” in Robots
for Learning Workshop at HRI 2018, 2018.

[18] K. Winkle, S. Lemaignan, P. Caleb-Solly, P. Bremner, A. Turton,
and U. Leonards, “In-Situ Learning from a Domain Expert for Real
World Socially Assistive Robot Deployment,” in Robotics: Science and
Systems XVI, vol. 10. Robotics: Science and Systems Foundation, 7
2020.

