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Abstract— 2D SLAM is useful for mobile robots that are
constrained to a 2D plane, for example in a warehouse,
simplifying calculations in respect to the 3D case. The use
of an IMU in such a context can enrich the estimation and
make it more robust. In this paper we reformulate the IMU
preintegration widely used in 3D problems for the 2D case,
making use of Lie Theory. The Lie theory based formalization,
first derived for a perfectly horizontal plane, allows us to easily
extend it to problems where the plane is not orthogonal to
the gravity vector. We implement the theory in a factor graph
based estimation library, and carry out experiments to validate
it on a mobile platform. Two experiments are carried out; on
a horizontal and a sloped environment, and the sensor data is
processed using our two 2D methods and a state-of-the-art 3D
method.

I. INTRODUCTION

Inertial Measurement Units (IMUs) can be useful as add-
on sensors to enhance the richness of the information the
robot has available for Simultaneous Localization And Map-
ping (SLAM), and also to add robustness to the estimation,
especially during highly dynamic events such as slippage.
They work at higher frequencies than most other sensors,
which introduces the need for IMU preintegration. The
problem of IMU preintegration in 3D is well studied [1]–[4]
using Lie theory, but to our knowledge hasn’t been developed
for the 2D case. In this paper we explore the 2D formulation
using Lie Theory and extend it to planar spaces on a slope.
We start by considering the case where the 2D plane is
perfectly horizontal, after that we move on to the case where
the plane is on an arbitrary slope.

Inertial measurements have been incorporated to SLAM
for some time now. One of the first examples is [5] which
fuses IMU data with monocular vision using EKF. A related
work [6] used stereovision visual odometry with IMU, and
was fused in a loosely coupled manner using also EKF.

More modern works in SLAM use smoothing over a
trajectory of keyframes for estimation, instead of EKF [7].
Incorporating IMU to these systems was possible thanks to
the preintegration methods pioneered by Lupton [1], and
improved later by Forster [2] with the use of Lie theory
for the rotational part SO(3). Indeed, the usage of Lie-
theoretic approaches improves performances and yields more
elegant designs. Barrau [8] proposed the SE2(3) matrix
group which is well adapted to the IMU as it considers
not only the orientation but also translation and velocity.
Using the terminology introduced by Sola in [9], this SE2(3)
group forms what we may call here a compact Lie group, as
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Fig. 1: In the sloped plane case, the free-falling, non-rotating
frame follows a parabolic trajectory (grey) governed by the
projected gravity ĝ and determined by the initial conditions
pi, vi and Ri at time i (blue). The IMU delta ∆ij between
times i and j is defined as the state of the IMU at time j
(red) expressed in the free-falling, non-rotating frame at time
j (green).

opposed to the composite form which would be the one in
[2]. Fourmy [4] proposed a similar matrix group for the IMU,
which incorporates also the notion of time, thus leading to
a more compact formulation of the algorithms.

Recently, other SLAM works such as [10] have consid-
ered a continuous-time representation of the trajectory using
splines on the appropriate manifolds, thus circumventing the
need for IMU preintegration. These systems come however
at other costs and we do not contemplate them here.

Regarding planar or 2D implementations, inertial measure-
ments have been used too but in a much simpler fashion.
Some low-cost differential drive robots use wheel odometry
only for measuring the translational motion, the rotational
part being provided by a single-axis gyroscope. The bias of
this gyro is calibrated each time the robot is stopped. Other
works like [11] use the gyro to identify and correct non-
systematic error sources like bumps and wheel slippage.

In this work, we present a preintegration scheme to in-
corporate 2D IMU data (accelerations in the plane and yaw
rates) into a keyframe-based SLAM. We take for this a Lie-
theoretic approach in the flavor of [9] and draw from the
IMU works of Atchuthan [3] and Fourmy [4]. We propose
a matrix Lie group comprising 2D translation, velocity,
rotation and time. To study the validity and performance of
this approach we incorporate the pre-integrated factors to a



Lidar, ICP-based, pose-graph SLAM. We compare it against
our implementation of 3D preintegration [2], applied to 2D
with the addition of planar constraints, observing a much
quicker convergence of the biases for the 2D formulation,
leading to better accuracy at a much lower implementation
cost. We also present a variation of the system for non-
horizontal terrain, where the gravity vector projects to non-
zero values of acceleration in the plane, and show that we
are this way able to observe the terrain’s inclination.

II. SLAM AND IMU PREINTEGRATION

A SLAM smoothing problem can be modeled as the
following non-linear least-squares optimization problem:

x∗ = arg min
x

K∑
k=1

‖ek(x)‖2Ωk
-1 (1)

where the tuples {e(x),Ω-1
k} := Φ define the factors associ-

ated to each one of the sensor measurements.
In this context, IMU factors establish relative transforma-

tions between poses with velocity at consecutive keyframes.
Here arises the need to preintegrate the IMU data, as a
huge amount of measurements can be received between
two consecutive keyframes, so we need to avoid having to
reintegrate after each optimization step.

This section is devoted to the discussion of currently
available methods for 3D IMU preintegration. It revolves
around concepts proper to Lie theory, with key considerations
regarding the representation of uncertainty and therefore the
way to compute Jacobians for its propagation. We then
propose our design for a 2D implementation.

A. Generalized motion preintegration on Lie groups

We follow the generalized preintegration theory described
in [3, Chapter 4] and exploited in [12], [13], which is
sketched below.

Let us consider a set of keyframes xi, each defined as the
state of the robot at time ti. We refer by deltas to the motion
quantities ∆im linking two consecutive keyframes {xi,xm}.
This relation is expressed through the operators � and �,

∆im := xm � xi (2)
xm := xi � ∆im. (3)

These operators must be wisely defined so that the integral
of the motion data from time i to m depends only on the
stream of data Uim = {ui+1,ui+2, · · · ,um} and calibration
parameters bi, but not on the initial state xi,

∆im(bi,Uim) = f(bi,Uim)⊥⊥ xi. (4)

This usually boils down to defining the delta ∆im as the
motion between a frame at time m that has evolved from
time i following a trajectory for which the sensor would have
sensed no motion, and the current state at time m. In the case
of the IMU in 3D, this reference frame is the free-falling,
non rotating frame [3].

∆ij δkxi

ti

xj

tj
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tk t

Fig. 2: The delta ∆ij contains the information of the
movement from the keyframe xi until time tj , while the
small delta δk contains the information between xj and xk.
The IMU’s sampling time is δt = tk − tj .

1) Front end: preintegration: Interestingly, the space of
deltas has the structure of a Lie group. Motion preintegration
can therefore be explained in terms of Lie groups, starting at
the group identity ∆ii = ∆E and advancing incrementally
at each new step from j to k via the group composition ◦
(see Fig. 2),

∆ik = ∆ij ◦ δk, (5)

where δk is referred to as the current delta at time k. This can
be expressed as the exponential of a group velocity vector (a
vector in the tangent space of the group) times the sampling
time δt. This tangent vector is obtained from the measured
data uk calibrated using the calibration vector b, which we
sample at time i. The current delta is thus,

δk = Exp((uk − bi)δt). (6)

where Exp() is the retraction map for the Lie Algebra, using
the notation found in [9].

It is important to remark that, given that this exponential
is composed on the right side in (5), the involved tangent
vectors u and b are expressed in the local frame represented
by ∆ij . This allows us to easily identify them with the sensor
measurement and bias. Summarizing, the pre-integrated delta
between times i and m can be expressed as

∆im(bi,Uim) =

m∏
k=i+1

δk =

m∏
k=i+1

Exp
(
(uk − bi)δt

)
, (7)

where
∏

expresses repeated composition with ◦.
In practice, this integral is performed using the currently

available value of the calibration parameters, bi = bi,
which is a constant, obtaining a pre-integrated delta that only
depends on the data,

∆im := ∆(bi,Uim). (8)

To complete the preintegration, the delta is accompanied by
its Jacobian with respect to the calibration parameters, J∆

b :=
∂∆/∂b, and the delta covariance, Σim. These are also pre-
integrated incrementally at each time k,

J∆ik

bi
= J∆ik

∆ij
J

∆ij

bi
+ J∆ik

δk
Jδk

bi
(9)

Σik = J∆ik

∆ij
ΣijJ

∆ik

∆ij

>
+ J∆ik

uk
ΣuJ∆ik

uk

>
, (10)

where Σu is the IMU’s measurements noise covariance, and
the different Jacobians are obtained from the Jacobian blocks
of (5–6), computed according to Lie theory [9], and applying
the chain rule. See Section III-D further on for important
considerations regarding these Jacobians.



2) Back-end: factor evaluation: The quantities ∆im,
Σim, J∆

b and bi are used to define the preintegration factor,
which will be repeatedly evaluated by the back-end or solver.
At each evaluation the pre-integrated delta is corrected for
updated values of the calibration bi 6= bi with the help of
the pre-integrated Jacobian J∆

b ,

∆im = ∆im ⊕ J∆
b (bi − bi), (11)

where the operator ⊕ retracts vectors from the tangent space
to the group as explained in [9]. The error is computed using
the reciprocal operator 	 between this corrected delta and a
predicted delta ∆̂im = xm�xi, yielding the final expression

eim(xi,xm,bi) =
(
∆im ⊕ J∆

b (bi − bi)
)
	 (xm � xi),

(12)

which is accompanied by the information matrix ΩI
im :=

(Σim)-1 to form the quadratic costs in (1).

B. IMU specializations

Any implementation of this algorithm must specify: the
delta group and tangent structures; all the operators �, �, ◦,
⊕ and 	; the mapping Exp; and all their Jacobians.

In particular, [2] uses a composite definition of the group
∆ = [∆p,∆v,∆R] with translation ∆p and velocity ∆v
treated as vector spaces, and rotations ∆R as members of
SO(3). Ref. [8] uses the compact matrix Lie group SE2(3)
containing the same parts, thus improving the interplay
between them. In both, the passage of time δt in the
integration step (5) is introduced as an extra parameter out
of the group. Finally, [4] also uses a compact Lie group
including time, therefore containing all the parts needed for
the preintegration. In this paper, we draw from this last
design and adapt it to 2D, as described in the following
section.

III. IMU PREINTEGRATION IN 2D

We consider here the case of a perfectly horizontal plane,
and will extend it to sloped terrain in the next chapter. This
constitutes a simple case because it eliminates the effects
of gravity, as gravity is orthogonal to the plane. Notice that
this does not assume a perfectly aligned IMU, as any (small)
misalignment will be absorbed by the IMU’s bias estimation.

A. Delta definition

We define the deltas ∆ = [∆p,∆v,∆R] as follows:
Consider keyframes xi = [pi,vi,Ri] and xj . Consider also
a reference frame Ft that started at Fi = xi and evolved
from times i to j following a trajectory that is such that
a perfect IMU without bias and noise would produce null
data. In the 3D case this trajectory is that of a free-falling,
non rotating frame [3], [4]. Since in our 2D case the gravity
effects are absent, this reduces to a constant velocity without
rotation. Thus at time j we have Fj = [pi+vi∆tij , vi, Ri].
The deltas are finally defined as the state xj expressed with

respect to Fj , yielding the definition of the operators �,�
as:

∆ij = xj�xi :=


∆pij = R>i (pj − pi − vi∆tij)

∆vij = R>i (vj − vi)

∆Rij = R>i Rj

(13)

xj = xi � ∆ij :=


pj = pi + vi∆tij + Ri∆pij

vj = vi + Ri∆vij

Rj = Ri∆Rij

(14)

The delta blocks ∆p,∆v,∆R can be organized in different
Lie group flavors by defining the group composition. For
the sake of reference, the classical flavor 2D-equivalent to
[2] would deal with the blocks directly, having composition
◦ defined as:

∆ij ◦∆jk :=


∆pik = ∆pij + ∆vij∆tjk + ∆Rij∆pjk

∆vik = ∆vij + ∆Rij∆vjk

∆Rik = ∆Rij∆Rjk

(15)
identity ∆E = [0,0, I2], and inverse ∆-1 defined by:

∆
-1 :=


∆p

-1
= −∆R>(∆p−∆v∆t)

∆v
-1

= −∆R>∆v

∆R
-1

= ∆R>
(16)

Further, it defines the current delta δ from the unbiased 2D
IMU data (a, ω) through the mapping

δ =


δp =

1

2
aδt2

δv = aδt

δR = exp
(
[ωδt]×

) (17)

leading when considering the bias to the recursive integration
scheme,

∆pik = ∆pij + ∆vijδt+
1

2
∆Rij(ak − abi)δt

2

∆vik = ∆vij + ∆Rij(ak − abi)δt

∆Rik = ∆Rij Exp((ωk − ωbi)δt)

(18)

where abi and ωbi are the accelerometer and gyroscope biases
respectively.

With these definitions and the generic algorithm presented
earlier, it is possible to build a functioning 2D preintegration
scheme. However, we opt for a compact Lie group flavor as
described below.

B. The 2D IMU matrix Lie Group

The derivation of the deltas is done in the same way as in
[4], but in 2D instead of 3D.

We can instead think of the IMU deltas as matrices of the
following form:

∆ =

∆R ∆v ∆p
0 1 ∆t
0 0 1

 (19)

It is easy to see that the previous composition rule ◦ (15)
coincides with the matrix product when we add the ∆t



element with a sum as composition. The inverse (16) and
identity also coincide, with ∆E = I4.

To characterize the tangent space we follow the method
described in [9]. For this, we define the instant rates v :=
∂∆p
∂t , a := ∂∆v

∂t , s := ∂∆t
∂t , and the skew-symmetric matrix

[ω]× := ∆R> ˙∆R. With these we find that the tangent
elements satisfy:

τ∧ = ∆
-1
∆̇ =

[ω]× ∆R>a ∆R> (v − s∆v)
0 0 s
0 0 0

 (20)

where [ω]× is the 2×2 skew-symmetric matrix. By looking at
(20) around the identity, ∆ = ∆E , we find the Lie algebra’s
structure τ∧ and its isomorphic Cartesian representation τ :

τ∧ = ∆̇|∆=I =

[ω]× a v
0 0 s
0 0 0

 , τ =


v
a
ω
s

 (21)

We now have from (20) an ODE ∀∆: ∆̇(t) = ∆(t)τ∧. For
a small enough time lapse where we can take τ∧ as constant
this solves to:

∆(t) = ∆(0) exp (τ∧ · t) = ∆(0) Exp (τ · t) (22)

where ∆(0) = I and Exp is developed below.
Defining for convenience [θ]× := [ω]×∆t, ν := a∆t,

ρ := v∆t we find the following closed form for the
exponential:

∆(∆t) =

R Qν Qρ+ sPν∆t
0 1 ∆t
0 0 1

 (23)

where R :=
∑
k≥0

1

k!
[θ]

k
× = exp

(
[θ]×

)
, Q :=

∑
k≥1

1

k!
[θ]

k−1
× ,

and P :=
∑
k≥2

1

k!
[θ]

k−2
× . The closed forms for R, Q and P

can easily be found to be:

R = cos(θ)I + sin(θ) [1]× = R(θ) (24)

Q =
sin(θ)

θ
I +

1− cos(θ)

θ
[1]× (25)

P =
1− cos(θ)

θ2
I +

θ − sin(θ)

θ2
[1]× (26)

where R(θ) is the rotation matrix of angle θ.1.
1) Incorporation of the IMU measurements: The IMU

gives us its linear acceleration a and angular velocity ω,
which are the same instant variations defined previously to
characterize the tangent space. The previous closed form of
the exponential depends on these two magnitudes, as well
as on v, which is not part of the IMU’s measurements.
Let’s remember though that for the ODE integration we’ve
supposed that τ is constant, thus v is constant too. As
the deltas are defined as the motion relative to the non-
rotating constant velocity frame defined at the start of the

1If we were to apply the small angle approximation on these functions
we would get the current delta described in (17)

integration period, and at this time the relative velocity is
zero by definition, we conclude that v = 0 during the full
integration step.

Let us also consider the meaning of s = ∂∆t
∂t : it gives us

the speed at which ∆t evolves, so if we take s = 1 we’re
saying that ∆t evolves as fast as our time t.

We can thus write the tangent vectors measured by the
IMU in the following way:

τ =
[
0 a ω 1

]>
(27)

In this case, through the expression of the exponential our
delta is:

∆(∆t) = Exp(τ∆t) =

R Qν Qρ
0 1 ∆t
0 0 1

 (28)

C. Incremental preintegration in the Lie group

As seen before, the incremental delta preintegration is
given by the group composition. In terms of the Lie ex-
ponential:

∆ik = ∆ij ◦ δk = ∆jk ◦ Exp(τkδt) (29)

Where τk = [0,ak−abi, ωk−ωbi, 1]> is in the tangent space
of ∆ij expressed locally. This preintegration depends only
on the IMU’s measurements (ak, ωk), biases (abi, ωbi) and
on the sampling time δt.

D. Jacobians

The trivial Jacobians are the ones related to the IMU
measurements, biases and noise: Jb

bm
= I3 and Jb

bb
=

Jb
bn

= −I3, where bm = (am, ωm), bb = (ab, ωb) and
bn = (an, ωn).

The Jacobian of the current delta in respect to the tangent
vector is

J∆
τ =


Qδt sPδt2 Q′ [1]× vδt2 + P ′ [1]× aδt3 0

0 Qδt Q′ [1]× aδt2 0
0 0 −Rδt2 0
0 0 0 1


(30)

and in respect to the body magnitudes vector it’s

J∆
b =


Pδt2 P ′ [1]× aδt2

Qδt Q′ [1]× aδt
0 −Rδt
0 0

 (31)

For the composition ∆ik = ∆ijδjk, we have the follow-
ing Jacobians:

J∆ik

∆ij
=


I2 I2δtjk δpjk 0
0 I2 δvjk 0
0 0 δRjk 0
0 0 0 1

 (32)

J∆ik

δjk
=


∆Rij 0 0 ∆vij

0 ∆Rij 0 0
0 0 ∆Rij 0
0 0 0 1

 (33)
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Fig. 3: Root Mean Squared Errors (RMSE) of the compared preintegration methods respect to the integration time δt in the
horizontal test (left) and sloped test (right).

IV. IMU PREINTEGRATION IN 2D ON A SLOPE

The IMU delta definitions and equations for a sloped
surface are very similar to the 3D case. We add to the state a
gravity vector ĝ that corresponds to the real gravity projected
on the plane in which the robot moves. The equations used
then are the same as in the 3D case as described in [3], but
with the 2D objects described in this article and using ĝ
instead of g. We now quickly describe how we derived this.

In the horizontal 2D case we made away with g as it was
orthogonal to the plane where we projected. On a slope this
is not true and the projection ĝ is nonzero. Our case can be
thought of as a free-falling, non-rotating 2D frame (on our
sloped plane) that follows an arbitrary ĝ 2D gravity vector
contained in the plane (because its direction and magnitude
depend on the slope’s angles). Thus, the equations for this
case are analogous to the 3D case, but use 2D objects and
ĝ instead of g. An illustration of this can be seen in Fig. 1

The �, � operators are thus defined as:

∆ij =xj�xi :=


∆pij =R>i

(
pj−pi−vi∆tij−

1

2
ĝ∆t2ij

)
∆vij = R>i (vj − vi − ĝ∆tij)

∆Rij = R>i Rj

(34)

xj =xi�∆ij :=


pj = pi + vi∆tij + Ri∆pij +

1

2
ĝ∆t2ij

vj = vi + Ri∆vij + ĝ∆tij

Rj = Ri∆Rij

(35)
and the deltas form a Lie group with the same same
composition, inverse and identity elements as our 2D case.
The work done to find the tangent space, exponential, and
Jacobians is identical here as the addition of the ĝ part to the
delta has no effect on the procedure, only the dimensions of

its parts, which are identical. The errors are calculated using
the same equation described in (12).

V. EXPERIMENTS

To validate the 2D preintegration methods presented we
propose two different experiments:
• Horizontal test: This first experiment was performed

inside our laboratory, where the floor can be assumed
to be completely flat and orthogonal to gravity.

• Sloped test: The second experiment was carried out
right outside of the building our institute is in, as there’s
a nice and steady slope there that was measured with
an inclinometer as ranging from 3.1 to 3.8 degrees at
different points.

To execute the experiments we used an skid-steer platform
equipped with a 360 degrees field-of-view LIDAR sensor
and a Microstrain IMU.

In each experiment, the trajectories are estimated in three
different ways:
• As a 2D SLAM problem using the 2D IMU preintegra-

tion (Section III).
• As a 2D SLAM problem using the 2D IMU preintegra-

tion on a slope (Section IV).
• As a 3D SLAM problem using the state-of-art 3D IMU

preintegration [2] implemented in WOLF [13].
In all three cases, one frame is added to the problem every 5
seconds. Along with the IMU preintegration factors, relative
pose factors between consecutive frames are added using
a Iterative Closest Point algorithm (ICP) [14]. The ICP
measurements provide observability of the IMU biases.

To restrict the 3D case to the plane, we force the ICP-
based relative pose factors to be horizontal transformations
by imposing zero measurement and small covariance values
on the displacement in Z, as well as on the rotations in roll
and pitch.
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Fig. 4: Evolution of the estimation of the biases by the three
different methods in the horizontal test.

A. Drift analysis

To validate the proposed formulation, we compare the
drift of the state-of-art 3D preintegration against the two 2D
preintegration methods proposed.

The ICP measurements give us a relative pose with respect
to the last frame given by the ICP algorithm. Taking ICP
result as baseline, we compare this pose with the one given
by the corrected delta resulting from the IMU preintegra-
tion (11). This comparison gives us the IMU’s drift. Trivially,
when a new frame is added to the problem, the relative pose
w.r.t. the last frame is zero, and so is the drift. For each
experiment we will have several samples of the evolution of
the drift along the 5 seconds between all consecutive frames.

For each value of time integration ∆t, we compute the
RMSE values of the translation and rotation drifts. Plotting
these values with respect to ∆t illustrates the average drift
evolution of a preintegration method. The data of the first 5
frames is discarded to avoid errors due to unobserved bias.

1) Horizontal test: The average position and angular drifts
of the three compared methods are depicted in Fig. 3. We
observe that the 2D preintegration methods are equivalent
to the 3D preintegration. In fact, the 2D methods slightly
outperform the 3D method. This is expected, as firstly the
3D SLAM problem’s dimension is twice the 2D problem’s
dimension. And secondly, in the 3D method the solver has
to estimate the 2D nature of the solution while it is already
imposed in the 2D method. The bias dynamics and the noise
of the X and Y gyroscopes, as well as the noise of the Z
accelerometer, cause the 3D preintegration to leave the plane.

Comparing the 2D preintegration with the 2D preintegra-
tion on a slope, we can observe that the results are practically
identical, although the added necessity of estimating the
slope causes the latter to take a little longer to correctly
discriminate between the biases and gravity. This is shown

in Fig. 4, where we can see the evolution of the biases
estimation for the 3 methods. Only biases of the gyroscope
Z and accelerometers X and Y are shown, since these are
the only ones estimated during 2D preintegration.

2) Sloped test: The average evolution of position and
angular drifts of the three compared methods are depicted
in Fig. 3. We observe that in this case the horizontal 2D
method is significantly worse than the other two, while the
sloped 2D method outperforms the 3D method. When we use
the horizontal method on a plane with a slope, there appears
a global bias that corresponds to ĝ that can’t be explained in
the IMU’s bias estimation, leading to higher errors. The same
explanation as before applies again as to why the sloped 2D
method outperforms the 3D method.

As we can see in Fig. 5 the 2D sloped biases converge
faster than the rest and agree in value to the ones estimated
by the 3D method, while they take longer for the horizontal
2D method.

B. Slope estimation

The slope of the environment and its orientation can be
calculated from the resulting projected ĝ vector estimated
by the 2D sloped preintegration method. The slope of the
estimated trajectory produced in the 3D method can also be
easily computed from the frames estimated orientation.

In Fig. 6 and Fig. 7 we can see the evolution of the
estimation of the slope and its orientation for our two
methods where orthogonal gravity is not assumed. The range
of slope inclinations manually measured is depicted by the
dotted line.

In the case of the experiment with a slope, both the 3D
method and the 2D method on a slope manage to estimate
a slope angle within the band measured by an inclinometer
on multiple points. They also both converge towards a very

Fig. 5: Evolution of the estimation of the biases by the three
different methods in the non-horizontal test.
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Fig. 6: Evolution of the estimation of the slope for the horizontal (left)
and sloped (right) tests
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Fig. 7: Evolution of the estimation of the plane
orientation in the sloped test

similar orientation of the slope, which is relative to the initial
pose of the robot.

C. Computational cost

IMU capture process Solver TimeMethod
Avg. (µs) Max. (ms) Avg. (ms) Max. (ms)

H
or

iz
. 2D 28.9 2.38 0.800 14.9

2D sloped 31.1 2.25 0.875 18.4
3D 34.2 4.23 1.79 67.4

Sl
op

ed 2D 32.8 1.96 0.526 32.6
2D sloped 34.1 2.08 0.556 21.8

3D 33.5 3.82 1.00 31.9

TABLE I: Computational cost of processing IMU mea-
surements and solving the problem for all three compared
alternatives on horizontal and sloped experiments.

One justification for considering the 2D problem instead
of working directly with the 3D problem is that the reduced
dimension impacts the computational cost favorably. We
can observe that this is indeed the case in Tab. I. The
average IMU capture process is practically the same in both
experiments, but the peak slowest is significantly higher for
the 3D method. When looking at the solver’s iteration needed
for convergence though, the picture is much clearer as the
average iteration took double as long for both experiments,
and the maximum iteration times paint a similar picture,
as the 3D problem’s dimension is double that of the 2D
problem. Another thing to note is that, although the average
number of iterations to reach convergence is 1 in all cases,
the Horizontal 2D method boasted a 100% convergence rate.
Similarly, the rest of the methods also had a near-100%
convergence rate, with a negligible number of instances, of
order 10−5%, where the max number of solver iterations was
reached without convergence.

VI. CONCLUSIONS

In this paper we applied the Lie formalism described in [9]
to develop a preintegration pipeline for an IMU in a 2D
problem, in the style of [4]. The resulting formulation was
implemented in the WOLF [13] library, and experiments
were carried out on a skid-steer platform to validate the
method.

We found that both our 2D methods are equivalent to the
3D method when used on a plane orthogonal to gravity, and
that our sloped 2D method outperforms the other two when
applied to a sloped plane.

On the computational side, we observed that using the 2D
methods on their appropriate case is more efficient than using
the 3D method, thus justifying the use of 2D methods when
we are solving a 2D problem.

Future work on the topic could include extending this work
to multi-incline surfaces, as well as exploring the limits of
the 2D method.
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