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Abstract.:  This paper introduces two methodologies to provide an optimum sensor 

deployment layout, one based on a model-based approach and the other entirely data-driven. 

The first method is formulated as an integer optimization problem, an optimization criterion 

consisting of minimizing the average topological distance. The second method is a new 

methodology to provide an optimum sensor placement regarding how many sensors to install 

without using hydraulic information but just exploiting the knowledge of the topology of the 

Water Distribution Networks. The method uses the Girvan-Newman clustering algorithm to 

ensure complete coverage of the network and the study of the installation of pressure sensors in 

the central nodes of each group, selected according to different metrics of topological 

centrality. The approach is illustrated in the Modena WDN. 
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1.  Introduction 

Water Distribution Networks (WDN) are complex networks due to their size (thousands of pipes) and 

hydraulic behavior due to their nonlinearity. One of the main problems in these networks is leaks that 

may appear in the system due to different factors, like as weak joints, water hammers, utility 

construction or excavation, seasonal temperature changes, and other things. Therefore, a significant 

effort has been made to reduce the impact of leakage on the network, such as the leak localization 

study that indicates which area in the WDN there may be a leak.   

Several works on leak localization were released by applying model-based approaches and 

commonly used demand-driven (DD) hydraulic simulators. For example, in [1], the research is based 

on the analysis of pressure residues. Moreover, in [2], the authors use hydraulic models with AI 

methods. The results based on hydraulic models are excellent. Nevertheless, the main difficulties 



 

 

 

 

 

 

characterize are the calibration of accurate models and data availability for all possible complex 

scenarios. 

Thinking about these challenges, recent studies have proposed analyzing the problem using data-

driven methods [3,4] that combine the use of standard operation data and topological information. The 

particular method in [5] studies the effect of the extra flow when a leak occurs in the pressure sensors 

presented in the network. It aims at developing a relative incidence of a leak using network topology 

correlated with the flow and pressure measurement.  

An element that has the potential to significantly improve the localization of leaks is the sensor 

pressure configuration. In the last years, several strategies that tackle the problem of optimal sensor 

placement in WDNs for leak localization have been proposed. As a branch and bound searches [6], 

Genetic Algorithms [7], feature selection techniques [8], and game theory approaches [9]. 

This work presents two new methodologies for sensor placement in the WDN, one using hydraulic 

simulation formulated as an integer optimization problem solved with a Genetic Algorithm (GA). And 

the other uses only the topological network information to improve the leak localization methods that 

use residual analysis [1,3,5]. The second approach aspires to simplify the problem of sensor placement 

by eliminating the need to calibrate the hydraulic water models and reducing the computational 

burden. The methodology is based on the complex network theory applying the graph approach with 

the hydraulic information to represent the WDN.  

The rest of the document is organized as follows: Section 2 presents the leak localization 

methodology. Section 3 presents the sensor placement algorithms proposed in this work. Section 4 

shows the application and the results obtained in a real water distribution network. Finally, Section 5 

concludes this work. 

2.  Leak localization 

Using pressure measurements, the leak location methodology aims to detect and isolate leaks in a 

water distribution network. Normally, the methods are triggered when a leak is detected. Leak 

detection is usually done using inlet flow analysis. Considering that inlet pressure and flow sensors 

and other pressure sensors in inner nodes are installed in the WDN. Leak localization can be carried 

out by employing the analysis of pressure residuals generated by the comparison of inner pressure 

measurements and leak-free pressure estimations as 
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where ˆ,   ( )   and  ( )i i ir p c p c  are the residual, leak-free pressure estimation, and pressure measurement 

at inner node i. c is the operating condition defined by inlet measurements and s is the number of inner 

sensors installed in the WDN. Leak-free pressure estimations ˆ ( )ip c  can be computed by physical 

models or through of historical data. If a physical model of the WDN is available, a leak sensitivity 

matrix  
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ip c is the pressure in node i considering a 

leak in node j  denoted as jf
. Then, leak localization can be formulated as the maximum correlation 

between the observed residuals and the different leak hypothesis   
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where j•  is the jth column of a sensitivity matrix (2) and r is the residual whose components are 

computed in equation (1). Alternatively, if it is not available any hydraulic model of the WDN the leak 

localization method can be formulated as the maximum residual component  
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The main disadvantage in the use of leak localization in equation (4) compared with leak 

localization in equation (3) is that the result of the leak localization is not a node, but a cluster related 

to one of the s inner pressure sensors. But as it is very simple, and it does not require any physical 

model, it is a good reference point to develop new data-driven leak localization methods. As in [1,5], 

where topological information was used to formulate equation (4) at the node level. In this work 

equation (4) is used to be the leak localization method. 

 

3.  Sensor placement 

This work aims to develop an approach to placing a given number of sensors, s , in a WDN to obtain a 

sensor configuration with a maximized leak localization performance. In order to cope with the 

combinatory complexity of the sensor placement problem, following the ideas of [10], a two-step 

suboptimal search algorithm is proposed: 

 

STEP 1: Divide the nodes of the WDN into s clusters  1,..., sC C C= , i.e., a cluster for every 

sensor to be installed in the WDN. 

 

STEP 2: Choose a node among all nodes of a cluster as the optimal place to install a sensor. 

 

In order to carry out the STEP 1, the WDN can be represented as a directed graph 
( , )G V E=

, 

with V as the set of vertices that represents the n  connections between the components of the network 

(junctions, reservoirs, and tanks), and E   are the edges, which represent the m  links (pipes, valves, 

and pumps) in the network. The edges are associated with a cost value based on the friction loss in 

pipes of the Hazen-Williams formula, that is, the pipe length divided by the pipe diameter, to 

guarantee a model closer to the real behavior of the water system. The Girvan-Newman (GN) 

clustering method [11] is proposed for STEP 1, GN clustering is an algorithm that focuses on edges 

mostly between communities, so clusters are defined by progressively removing edges from the 

original graph according to edge betweenness, which measures the importance of an edge in a network 

by counting the number of shortest paths that run through it. 

For STEP 2, two methods were developed: the first being the model-based approach which uses 

hydraulic models formulated as an integer optimization problem. This approach is only possible to use 

if the hydraulic model has high credibility. Furthermore, the second is a data-driven approach to locate 

sensors at the topologically most essential nodes of each cluster, ensuring a spatially uniform 

distribution of sensors. 

3.1.  Model-based approach 

STEP 1 gives the information of the  1,..., sC C C= clustering with the numbers of nodes that make 

up each one 
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where 1,..., sX X  are the groups of nodes that contain the cluster C , they are organized in crescent 

order with 
nC  represent the last node of each clustering and 

n

sC value is equivalent to the total n  

node numbers of  WDN. The goal in STEP 2 is to choose one node in each X to be the place to install 

a sensor. A performance index, Average Topological Distance (ATD) that displays the information on 

the node’s distance between the node predicted as leaking and the actual node with the leak can be 

minimized to perform the optimal sensor placement using the equation (3).    

To calculate the ATD is first necessary to create a matrix containing the minimum topological 

distance (in nodes) nxnD
. 

And the confusion matrix   depicted in Table 1 is used to assess the 

performance of equation (3). The rows of this matrix correspond to the leak scenario and the columns 

to which the leak is located by the leak localization method. 

Table 1. Confusion matrix  . 
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In this way, the ATD can be calculated as: 
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where  1,..., sx x x=  is the set of s  sensors, with the constraint of 1 1,..., s sx X x X  .  In addition, 

the optimal value is the minimal distance. Based on the performance index f  the sensor placement 

problem is cast as an integer optimization problem formulated as:
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where  ,l u

i ix x is the lower and upper bounds based on the equation (5). It should be noticed that the 

solution of the previous optimization algorithm provides the best sensor location when the operating 



 

 

 

 

 

 

conditions are similar to the one used to evaluate residuals in equation (1). If the operating conditions 

are different, the optimal sensor location could vary. 

 

3.2.  Data-driven approach 

As explained in the previous section, STEP 2 aims to select nodes in each 1,..., sX X  defined in 

equation (5). The core idea of the present section is to locate sensors without using any hydraulic 

simulations because data availability is often limited or not suitable. In addition, it reduces the 

computational burden. 

Thus, in order to define a criterion to approach the sensor placement problem, also in the case of 

unavailable or incomplete hydraulic information on the network, the topology most central nodes of 

each cluster are considered suitable sensors locations. For this purpose, three indicators of the 

importance of the nodes were used to select the positioning of the sensors: 

 

• Closeness centrality uses the inverse sum of the distance from a node to all other nodes in the 

graph, the more central a node is, the closer it is to all other nodes. 
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where ( , )d i j is the distance between vertices i  and j . And n is the number of nodes in the 

graph/clustering; 

• Betweenness centrality: measures how often each graph node appears on a shortest path 

between two nodes in the graph 
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 where st  is the total number of shortest paths from node s  to node t  and  ( )st i is the 

number of those paths that pass through i ; 

• Eigenvector centrality uses the eigenvector corresponding to the largest eigenvalue of the 

graph adjacency matrix.  

maxsA x x=
    (10) 

where sA is the adjacency matrix of the subgraph G and max is the largest eigenvalue.  It 

computes the centrality for a node based on the centrality of its neighbors, according to the 

coordinates ( )ce v of the eigenvector cx e= , associated with the largest eigenvalue of max  

matrix sA . 

 

3.3.  Performance indicators  

The proposed leak localization performance indicators to assess the sensor placement optimality in 

this work are the following: 

• Average topological distance (ATD): represents the distance in nodes between the centroid 

predicted as leaking with the true node leaks. The ATD index that presents a minimum value 

is preferable. First, it is necessary to create a matrix containing the minimum topological 

distance (in nodes), i.e., equation (6). This index is a suitable parameter for analyzing the 

improvement of the leak localization method;  



 

 

 

 

 

 

• F1-score is the weighted average of precision and recall, where precision is the analysis of all 

positive predictions, how many are  positive, and recall is the study of real positive cases, how 

many are predicted positives. The F1 score is a good indicator of imbalanced data [11]; 

• Cohen’s Kappa: represents the degree of accuracy and reliability, which is the difference 

between the observed overall accuracy of the model and the overall accuracy obtained by 

chance. It is a more practical measure to use on problems with an imbalance in the classes. 

The kappa has a range from −1 to +1. Values between 0.6 and 0.8 are considered good [12]. 

 

The indexes proposed to analyze the performance of sensor placement were presented to analyze 

the improvement of sensor location using the average topological distance of the coverage area where 

the sensor can identify a leak. Moreover, the ATD index is an excellent index to measure the 

improvement of leak localization methods. Furthermore, the F1 score and the Cohen’s Kappa were 

suggested to analyze the GM clustering method and the node importance centroids according to the 

residues, being the higher these indexes are, the better the GM performance. 

 

4.  Case study 

The case study selected to test the performance is the reduced model of the real water distribution 

network of the Italian city Modena. This large-scale network comprises 268 junctions (nodes) 

connected through 317 pipes and served by four reservoirs.  

 

Figure 1. Simplified Modena topological WDN. 

  

EPANET hydraulic simulator was used to generate a leak lasting 72h scenario data to analyze the 

performance of the proposed method. The following simulation conditions were used:  

• to reduce the uncertainty in the data, samples were collected every 10 minutes and filtered to 

24 hours values; 

•  the uncertainty of 10% (normal distribution) of the nominal demand value was considered; 

•  the leak size was randomly selected, with 3 to 6 l/s representing 1 to 2.5% of the network 

consumption. 



 

 

 

 

 

 

The minimization of the optimization presented in section 3.1 is carried out using Genetic 

algorithms (GA) based on principles of natural genetics and natural selection [13,14]. The GA can be 

used in the context of sensor placement in WDN to find the near-optimal placement of these sensors 

for leak localization. In that case, a chromosome corresponds to the possible presence or absence of a 

sensor at a given node. 

Table 2 shows the results obtained in three different scenarios: with 3, 5, and 10 possibilities of sensor 

placement. The number of nodes chosen to have a sensor is exhibited in all scenarios for the GA 

solution and each node importance method. As the optimization of equation (7) is based on the 

optimization of the ATD index, the results presented in Table 2 show that the solution obtained by the 

GA will be the best, in any case, even if the proposed data-driven methodology is not the optimal 

solution of the sensor network, the obtained values are not far from those of GA. Note that even 

getting the best optimal value of the  ATD, the solution obtained by the GA does not guarantee the 

best result for the F1 score and the kappa. The Eigenvector centrality is the results that present the 

worst results, principally in the scenario with three sensors, having the Cohen's Kappa with the worst 

value, inferior a 0.6. 

On the other hand, the Betweenness and the Closeness centrality had a similar result. However, 

analyzing the ATD index, the Betweenness metric improves the scenario with 3 and 5 sensors. In the 

scenario with ten sensors, the Closeness centrality has the better performance. Whereas in a general 

case, the Betweenness centrality is the best choice in the data-driven methodologies. 

Table 2. Average evaluation metrics. 

Criterion Nodes with sensors ATD F1 score (%) Kappa 

3 sensors scenario 

GA  88 109 207 6.82 82.43 0.74 

Closeness 91 147 207 7.50 82.01 0.71 

Betweenness 7 63 109 7.37 79.63 0.70 

Eigenvector 4 83 119 8.05 67.48 0.48 

5 sensors scenario 

GA 5 41 80 110 164 5.80 47.01 0.71 

Closeness 49 91 135 147 207 6.50 82.01 0.75 

Betweenness 7 63 49 91 135 6.54 81.91 0.75 

Eigenvector 4 83 92 119 134 6.70 75.64 0.65 

10 sensors scenario 

GA 
10 31 47 78 129 171 

129 183 225 258 
4.45 28.97 0.62 

Closeness 
11 31 49 83 91 105 137 

129 180 258 
4.70 73.36 0.68 

Betweenness 
1 11 31 35 49 83 91 

129 135 180 
4.68 69.60 0.64 

Eigenvector 
1 4 31 83 92 102 119 

129 134 180 
4.71 83.36 0.79 

 

Figure 2 shows the result of the second scenario with 5 sensors. Each cluster C  is highlighted with 

a different shade. The position of the sensors obtained with the proposed methods is shown with a 

circle with different colors. Clustering generated with GN provides a division focused on edges 

between communities that do not guarantee a homogeneous distribution of nodes. As the nodes are 

more communicated, the effect on the residue in a leak between these nodes will affect more the 

sensor installed in that region. 

 



 

 

 

 

 

 

 

Figure 2. WDN of Modena and the four sensor layouts according to the three topological centrality 

metrics and GA solution. 

5.  Conclusions 

The quality of sensor placement in WDSs impacts leak identification efficiency, and sensor-placement 

optimization remains one of the top issues in related research. In this work, a new full sensor 

placement method utilizing just the topological information of the WDN based on the high connection 

density of the graph representation of the system in association with the node importance has been 

presented in this study. It employs only the topological characteristics of a WDN, combining the 

identification of clusters of nodes and topological centrality metrics for the design without carrying out 

any hydraulic simulation. It was proposed to provide a tool specially adapted for the frequent case 

where only partial information about the system is available. 

 In addition, a new approach to sensor placement that minimizes the average topology distance of 

leak isolability has been proposed, formulated as an integer optimization problem. However, the 

method uses a hydraulic model to simulate all node leaks based on the system's demand pattern and 

uncertainties. 

The proposed approaches have been explained, and an example is presented using the Modena 

Network simplified version of the real WDN as a case study. They demonstrate that the methodology 

using only the system topology information obtained a good result, ideal for cases where partial details 

on the system are available. To define the most appropriate procedure for the design of sensor 

placement, future work will investigate how different objective functions can improve the selection, 

and the effect of other stressing conditions (i.e., sensor failures) in the network can change the result of 

sensor placement. 
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