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A B S T R A C T

Detection, segmentation and tracking of fruits and vegetables are three fundamental tasks for precision
agriculture, enabling robotic harvesting and yield estimation applications. However, modern algorithms are
data hungry and it is not always possible to gather enough data to apply the best performing supervised
approaches. Since data collection is an expensive and cumbersome task, the enabling technologies for using
computer vision in agriculture are often out of reach for small businesses. Following previous work in this
context (Ciarfuglia et al., 2022), where we proposed an initial weakly supervised solution to reduce the data
needed to get state-of-the-art detection and segmentation in precision agriculture applications, here we improve
that system and explore the problem of tracking fruits in orchards. We present the case of vineyards of table
grapes in southern Lazio (Italy) since grapes are a difficult fruit to segment due to occlusion, colour and general
illumination conditions. We consider the case in which there is some initial labelled data that could work as
source data (e.g. wine grape data), but it is considerably different from the target data (e.g. table grape data).
To improve detection and segmentation on the target data, we propose to train the segmentation algorithm with
a weak bounding box label, while for tracking we leverage 3D Structure from Motion algorithms to generate
new labels from already labelled samples. Finally, the two systems are combined in a full semi-supervised
approach. Comparisons with state-of-the-art supervised solutions show how our methods are able to train new
models that achieve high performances with few labelled images and with very simple labelling.
1. Introduction

Detection and tracking of fruits and vegetables are two fundamental
tasks for precision agriculture, enabling robotic harvesting and yield
estimation application. As with any other automation task, detection
of vegetables benefits from controlled environments and well known
field conditions. The reduction of variability and uncertainty in fruit
position, occlusions, variety, illumination, to cite a few aspects of the
problem, have a huge impact on the successful implementation of a
learning based detection system. For this reason, many detection based
systems are designed with the aim of reducing the sources of variability.
For example, Wang et al. (2013) and Nuske et al. (2014) proposed
detection systems for fruit counting and yield estimation using a direct
illumination device to control ambient light. In both cases, the proposed
systems need to be run at night to be functional. In Pretto et al. (2021),
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an example of a straddle robotic platform is given, which is another
common way to control the environmental light and remove camera
intrinsics variabilities.

While these approaches are viable, they are also difficult to adapt
to different cultivations and require considerable economical and tech-
nical investment, which is often beyond the capacities of small and
medium agricultural businesses, which are often family based. While
the economic problems they face are generally the same as those of
bigger companies (e.g. lack of manpower to harvest vegetables), they
do not have the economic strength or knowledge to engineer the culti-
vation from the ground up for heavily automated processes. This means
that having more flexible approaches that are more algorithmic and
data oriented than hardware oriented would positively impact these
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businesses, allowing a range of possible applications of data driven
precision agriculture.

In this respect, modern computer vision, mostly based on deep
learning algorithms, has lowered the initial investment needed to inte-
grate advanced detection techniques for monitoring and managing the
crops. However, as discussed by Koirala et al. (2019) in their survey
on deep learning techniques applied to fruit counting, these algorithms
are data hungry and gathering the correct and right amount of data is
not always straightforward.

One way to face data scarcity is the use of algorithmic techniques
of semi-supervised, weakly-supervised and transfer learning, where
additional information is added to the training process as an external
training signal, or by leveraging what was learned in a different but
related task. An example of these approaches in agriculture is given
by Bellocchio et al. (2019) where the authors propose an olive counting
solution that is explicitly trained with weak labels and consistency
losses. The auxiliary signal in this case is the labelling obtained by
an external classifier that detects whether or not there are olives in
the picture. This work is close to ours for the focus on working on
data with minimal labelling. However, it is based on simple direct fruit
counting, which can lead to huge errors in cases where self occlusion
is typical. An example of transfer learning that can be used to reduce
the amount of data needed for training is shown in Güldenring and
Nalpantidis (2021). In this study, the authors show how pre-training
using contrastive learning as an unsupervised technique is able to im-
prove the performances of detection algorithms compared to standard
ImageNet pre-training. This result is a good starting point for training
a deep network, but some task specific training data is still needed.

In this context, it is interesting to consider the challenges that
detection and tracking algorithms face when the field is not prepared
for automation. Some of these challenges are: uneven distribution of
vegetables in the field, intra-species variability, illumination, occlusion
and clutter. From a technical point of view, all these aspects translate
to covariate shifts and lack of labelled samples. For example, a study
on the intra-species covariate shift of sweet peppers and its impact on
detection and segmentation algorithm is given in Halstead et al. (2020).
The authors explore the issue of generalizability by considering a fruit
that is grown using different cultivars and in different environments
(field vs glasshouse). Their results show how in single task learning
the performances drop significantly, as low as 0.323 of F1-score, on
cross dataset detection, and only by setting up a multi-task learning
problem they are able to increase this score by a good margin, thanks
to the multiple back propagation signals. Leveraging the cross-task
correlations can be seen in itself as a form of self-supervised learning.
Even with these approaches, all detection algorithms need some data
of the target distribution to train on, and it is often difficult to collect
a good amount of labelled images that catch the actual distribution
variability.

A good example of a crop with a wide range of varietal variability is
the grapevine. Wine and table grapes are different in sizes and bunch
structure, and the vines are trained in different ways. Even between
different varieties of each type of grapes the variability in size, shape,
colour, foliage and vine structure makes detection related tasks difficult
to generalize. With respect to these considerations, a number of works
are relevant for our discussion. Early approaches to grape detection
and counting are characterized by the use of fine-tuned hand crafted
features. For example, an early approach of grape detection is presented
in Skrabanek and Majerík (2016). Here the authors use histogram of
oriented gradients (HOG) descriptors together with a Support Vector
Machine to build a white wine grape detector. An approach that builds
on these early results and data is the one presented by Pérez-Zavala
et al. (2018). The authors use again a solution based on hand crafted
features, i.e. HOG, fast radial symmetry transform (FRST) and linear
binary patterns (LBP), to feed a support vector machine (SVM) based
detector, and use geometrical considerations to separate self-occluding
2

grape bunches. The yield estimation task is then a result of the com-
putation of the number of berries detected. Both these solutions show
some robustness to colour and illumination variability, but require a
good deal of tuning of the algorithms, which limits the reuse of trained
systems for other varieties. Another approach to grape yield estimation
that is based on geometrical considerations is that of Liu et al. (2017),
where the detection is done on the early stage buds that shoot from the
branches in an unsupervised fashion only by using Gaussian fitting. The
advantage of this method is the independence from labelled data and
the reliance on a simple camera as input. In this sense, this work is close
to ours, but the approach is usable only in the early stage season and
does not take into account the yield loss for malformed and diseased
grape bunches. We consider this kind of approach complementary to
ours, since it can be used to have early season prediction that can be
refined later by proper detection based methods.

More recently, a good number of deep learning based detection
algorithms have been proposed. Palacios et al. (2022) present an early
yield prediction system based on berry counting using a SegNet seg-
mentation network to extract features from the bunches and canopy
images, such as the number of estimated visible berries, or the ratio of
leaves in the detection bounding boxes. The statistics on the variability
of the features of the 6 grapevine varieties stresses how cross-variety
distribution shifts are significant for learning techniques. The authors
show a normalized root mean squared error (RMSE) of 23.83% on their
data between the counted and real number of berries. However, the
whole system is still run at night with direct illumination. Another berry
detection system based on CNNs is presented in Zabawa et al. (2019)
and in the extended work (Zabawa et al., 2020). In these works, the
authors reach a very good 94.0% and 85.6% for the two grapevine
training systems considered, but again the images were collected with
a modified straddle grapevine harvester for illumination constancy.
This solution is then not applicable to, for example, table grapes, for
which a straddle machine is non viable. In Coviello et al. (2020), a
counting network inspired by density based crowd counting techniques
was presented. The authors show very interesting results, with mean
average error (MAE) ranging from 0.85% for Pinot Gris variety, to
11.73% for Marzemino variety. To achieve to these results, they had
to label more than 35000 berries, a very time consuming operation.
All these approaches have the common characteristics of leveraging
deep learning for increased performances, but limiting the variability
of the problem by using specific machines of huge quantities of labelled
data. These two aspects limit the applicability of such techniques to the
specific case for which they were conceived.

The aforementioned considerations inspired us to explore meth-
ods that could help in training detection and instance segmentation
algorithms with few labelled data. We explicitly consider the case
where a small amount of labelled data from a similar cultivation has
been collected and labelled (Source Dataset, SD), but which is not
enough to get acceptable detection and segmentation performances on
a different orchard with consistent covariate distribution shift (Target
Dataset, TD). We use as our test target data example table grape
vineyards cultivated in Aprilia, southern Lazio, while our source dataset
is the Embrapa Wine Grape Instance Segmentation Dataset (WGISD)
presented in Santos et al. (2020).

We present a combination of weakly and semi supervised techniques
that are able to significantly increase the performance of the algorithms
and we compare these newly trained algorithms with the state-of-
the-art approaches on the example application of tracking fruits for
yield estimation. The proposed solution is able to produce pseudo
labelled data in order to bridge the gap of covariate shifts that occur
whenever a new specific crop becomes the target of a computer vision
system for precision agriculture. We explicitly tackle the problem of
doing so with limited hardware and software resources, to address the
needs of small and medium businesses. For this reason, all the pseudo
labelling strategies presented are based on simple videos collected with
a cellphone camera.

With this in mind, the specific pseudo labelling strategies we pro-

pose are of two kinds:
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Fig. 1. An example of the four varieties present in the experimental field. The Black Pizzutello (d) is the most interesting for this work because it presents the highest variability
in shape and colour with respect to other rounded berry variants.
• Automatic bounding boxes generation for objects contained in
consecutive video frames, based on a starting estimate and 3D
structure geometrical considerations. We show that, leveraging a
simple initial labelling – which could be manual or automatic –
and the information that we can get from feature matching and
structure from motion, we are able to generate new labelled data
that greatly increases the performance of the detector.

• Pseudo mask generation for instance segmentation: we show how,
starting from a simple bounding box - which could be the one
automatically generated in the previous step - it is possible to
use a segmentation network together with a refining strategy to
generate new mask labels.

Self-supervised techniques have been frequently proposed to solve the
data scarcity problem in specific scenarios (see, for example, Granland
et al., 2022; Li et al., 2022 and Siddique et al., 2022 for some recent
detection or segmentation approaches), however, to the best of the
authors’ knowledge, this is the first time that a general self-supervision
technique for detection and segmentation in agriculture is proposed in
order to tackle a whole category of problems.

The structure of the paper is the following. In Section 2, the pseudo-
label generation system (PLG) is detailed, both for the detection (Sec-
tion 2.6) and for the segmentation tasks (Section 2.7). In addition,
a tracking task for yield estimation is discussed in Section 2.6.3. In
Section 2.2, we describe the data collected and used, and in Section 2.4
the specific metrics for multiple object tracking (MOT) are defined.
Experiments and discussion for all these systems are described in
Section 3 and conclusions are drawn in Section 4.

2. Materials and methods

In this Section, we discuss the data, the general architecture of the
system, and the algorithms on which it is based. We start by describing
the experimental field where the target data has been collected, and
then how it was collected, and how it compares to the source data that
was already available. Then, we describe the global system architecture
and introduce its components. The final sub-sections introduce the
metrics used for our experimental evaluation, and give more details of
each subsystem.

2.1. Experimental field

The experimental field is located in southern Lazio (Italy). The
vineyard is composed of two plots approximately 114 m × 51 m
(0,58 ha) and 122 m × 48 m (0,58 ha). Vineyards are structured as a
traditional trellis system called Tendone with a wide distance between
3

each plant, 3 × 3 m2. Plantations are all older than 3 years and so in full
production and health, thus representing a typical working condition
for the validation of agronomic activities such as fruit harvesting or
vine pruning. All structures are traditionally covered with plastic and
net to protect grapes from rain and hail. The average extension of each
plot is around 1 hectare and dimensions (length and width) are on aver-
age between 25 m and 50 m according to plot extension and geometry.
The selected vineyard in Aprilia has currently four different table grape
varieties which are described in the following: White Pizzutello, Black
Pizzutello, Red Globe and Black Magic. Fig. 1 shows some examples
of these grape varieties while Fig. 2 shows images of the experimental
field as well as the approximate extension of each grape variety in the
vineyard.

Of the four varieties that were present in the vineyard, Black Magic
was of very low quality and thus untended by the field owner. White
Pizzutello is identical in shape to the Black one, and the latter has
the same colour as the former when not ripe. Together, white and
black Pizzutello are a peculiar variety of the Lazio Region and present
the highest variability in shape and colour with respect to standard
rounded berry variants. For these reasons, while we collected images of
all the varieties, we finally concentrated our data labelling effort only
on Black Pizzutello.

2.2. Dataset

As we mentioned in the introduction, the proposed system deals
with the covariate shift from a generic source dataset to a target dataset
that is representative of the images that could be collected on the
field. We assembled our target dataset with two different kinds of
data. The first are videos recorded using a mid range cellphone camera
(MotoG8 Plus), which simulates a data collection operation that could
be performed by a farmer with ease. We collected videos moving along
the vineyard (i.e. tangential to the rows), without any requirement on
distance from the fruits or height from the ground. In this work, we
use HD (1280 × 720) videos at 10 Hz with a total of 1469 frames.
Examples of these frames are shown in Fig. 3. A short segment of 10 s
has been labelled for test use in the case of the tracking algorithm
evaluation, while the rest has been used without labelling thanks to the
semi-supervised nature of the system. We briefly call this target video
dataset TVid. Note that we collected the images using a neutral grey
card for white balance purposes, but this is meant for future uses, and
it is not a requirement for the methods presented in this work.

The second kind of data is composed of static images of Black
Pizzutello. This data simulates the images a farmer, or a robot, could
collect to perform some agricultural action on specific grape bunches
(e.g. quality estimation, disease detection, automatic harvesting). The
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Fig. 2. (a) Satellite view of the experimental vineyard. The image shows the varieties that are grown on each row. (b) A picture of the trellis (Tendone) structure.
Fig. 3. (a) and (b) Examples of the video frames collected for our target dataset (TVid): we stress that these are simple cellphone camera based videos and are the only new data
required for the system to be able to produce new labels without supervision. (c) Example of TImg dataset. (d) Example from the source dataset, the WGISD dataset (Santos et al.,
2020). It is possible to note the differences in shape, colour and general illumination conditions.
dataset consists of 134 images of 3000 × 4000 resolution, collected with
the same cellphone camera used for the videos, however the optics
and chip used for video and still images are different, as is often the
case with cellphones. This is intentional, since it adds a very common
source of covariate shift related to the device and capturing mode
(motion vs still images). All the images in this case have been labelled
for detection (bounding boxes), while a small subset has also been
labelled for instance segmentation (70 images), using the Innotescus
labelling application (Innotescus LLC, 0000). All these labels are used
for validation and testing of the algorithms described in this section.
4

We call this still images dataset TImg. Together these datasets (TVid
and TImg) constitute our Target dataset (TD).

As mentioned above, we work under the hypothesis that a small
amount of labelled data of the same fruit exists, but that it has consid-
erable covariate shift with respect to the TD distribution. In this work,
our Source Data is the one presented by Santos et al. (2020). For the
details about these data, the reader can check the cited work. Here we
give a short summary to underline the differences between SD and TD
in terms of:

• the grape varieties (wine vs table, berry shape and colour)
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Fig. 4. This figure shows the complete system architecture. The inputs are a source dataset (red cylinder) and a video collected on the field by the robot or a farmer (first green
cylinder, TVid, expanded as a sequence of frames to show the keyframe selection process). SDet and SSeg (light red blocks) are the initial detection and segmentation networks
trained only on the source dataset. All the intermediate computing blocks are depicted in orange, while the intermediate outputs are in blue circles. Both the pseudo bounding
boxes and pseudo masks produced are depicted in yellow, while the detection and segmentation networks trained on these new labels (TDet and TSeg) are depicted in light green.
The data flow in the system is also colour coded as per legend.
• the illumination conditions (full sun vs shadows)
• the camera device (Reflex vs cellphone camera)
• scale of the images (standard scale vs variable scale)

To quantify the covariate shift gap in Section 3, the performance drop
for detectors and instance segmentation networks trained on SD and
tested on TD are given.

2.3. System overview

An overview of the system is depicted in Fig. 4. The main inspiring
principle of this work is the economy of data labelling and data reuse.
For this reason, the only two sources of data are the source dataset
(data available from a similar task) and a video collected on the target
field. The source dataset is used to train the initial detection and
segmentation models, namely the Source Detector Network (SDet) and
the Source Segmentation Network (SSeg). SDet is not perfectly tuned
on the target environment, still it can be used on selected frames of the
video input that we call keyframes. To keep this solution simple, we
consider equally spaced keyframes starting from the first one, but other
strategies could be devised. A set of initial bounding boxes is extracted
from this keyframe, using a high confidence threshold, to limit the false
positives. Then, the whole video is passed in a Geometric Consistency
block (GC block) that extracts features from each frame and associates
them. We tested two different options for this block, as will be shown in
the following sections. Using this geometric information, together with
the initial bounding boxes extracted from the keyframes, it is possible to
interpolate the bounding boxes positions for the remaining frames with
5

high accuracy. These new bounding boxes are our pseudo-labels for
training the detector on the target environment, which we call Target
Detector (TDet).

The Detection Pseudo-Labels Generation (DPLG) sub-system could
be used independently by the Segmentation Pseudo-Labels Generation
(SPLG). To prove the effectiveness of the approach, we compare the
performance of TDet on the bunches tracking problem, i.e. counting
the number of grape bunches by counting the instances tracked along
a video. This problem is relevant since it can be used for yield esti-
mation purposes. We test two different tracking algorithms, which are
described in Section 2.6.3 and evaluated in Section 3.2.

The goal of the second part of the system is to generate pseudo
masks for training an instance segmentation network. This sub-system
can be seen both as an independent pseudo label generator, or as part of
a bigger system such as the one we describe here. As mentioned before,
the SSeg is trained only on source data and is not able to produce
good segmentation masks on the Target Data. However, it is possible to
give the network some information cues that can greatly improve the
mask estimates. The first one is the bounding box region in which the
instance should be segmented. This cue comes easily from the previous
step of pseudo bounding box generation, but it could be produced
otherwise. This generates the initial pseudo masks. It is possible to
use these pseudo masks for training the Target Segmentation Network
(TSeg) but this would lead to poor performances due to confirmation
bias. We need therefore to inject external information from other cues
that we have. In our system, this is the role of the pseudo masks refining
block. In Section 2.7.1, three different solutions for refinement will be
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described. Thanks to these refined pseudo masks it is finally possible to
train the TSeg Network. Section 3.3 reports the results of the refining
strategies and compares the performance of TSeg with SSeg.

Finally, the experiments of the whole system, trained only on videos
and tested for instance segmentation performance, are given in Sec-
tion 3.4.

2.4. Metrics

In this Section, we describe the metrics used to evaluate and com-
pare the detectors, the trackers and the instance segmentation al-
gorithms. To evaluate the detectors and instance segmentation algo-
rithms, the standard metrics of Precision, Recall and Intersection over
Union (IoU) have been used. In addition, for instance segmentation, the
Average Precision, as defined in the MS COCO challenges (Lin et al.,
2014), has been used.

Usually AP is computed for each class and then averaged to obtain
the mean average precision (mAP). In this work, since there is only one
class (grape), the AP coincides with the mAP. In the MS COCO metrics,
the AP is calculated by computing the precision at every recall level
from 0 to 1 with a step size of 0.01. The mAP is then computed by
averaging the AP over all the object categories and ten IoU thresholds
from 0.5 to 0.95 with a step size of 0.05.

To evaluate the trackers, we follow the common practice of Multiple
Object Tracking (MOT) as defined by Wu and Nevatia (2006) and
the CLEAR MOT metrics (Bernardin and Stiefelhagen, 2008). MOT
is a difficult task to evaluate, since the performance metrics should
capture both the precision in detecting individual instances and the
accuracy in tracking each instance across multiple frames, without
losing track or switching between instances. Given a number of objects
𝑜𝑗 , 𝑗 ∈ [0…𝑚], the tracker produces a number of hypotheses ℎ𝑖, 𝑖 ∈
[0… 𝑛]. The performance of association of hypothesis and objects can
be measured frame by frame using the classic True Positive, True
Negative, False Positive and False Negative figures, together with their
direct descendants Precision and Recall. However, recently a number
of compound indexes have been proposed to better capture the general
tracker’s performance. The first one is the Multiple Object Tracking
Accuracy (MOTA), defined as follows:

𝑀𝑂𝑇𝐴 = 1 −
(𝐹𝑁 + 𝐹𝑃 + 𝐼𝐷𝑠𝑤)

𝐺𝑇
∈ (−∞, 1] (1)

where 𝐹𝑁 and 𝐹𝑃 are False Negatives and False Positives, 𝐼𝐷𝑠𝑤
represents the number of instances whose ID has been erroneously
switched, GT is the real number of instances in the video. This index
accounts for three sources of error, namely the false positive ratio, the
false negative ratio and the mismatch ratio. Together, they give an idea
of the general tracking accuracy. To evaluate the precision, a second
index was proposed:

𝑀𝑂𝑇𝑃 =
∑

𝑡,𝑖 𝑑𝑡,𝑖
∑

𝑡 𝑐𝑡
(2)

where 𝑐𝑡 denotes the total number of matches in frame 𝑡, and 𝑑𝑡,𝑖 in
eneral represent the distance of the hypothesis and the object, but in
ur case can be computed as the overlap of the ground truth and the
ypothesis bounding boxes. This second index gives only a measure of
he precision in detecting the instances without giving any information
n the tracking and association capability.

.5. Detection and segmentation network architectures

As explained in Section 2.3, the general pseudo label generation
ystem is based on pre-trained detection and segmentation networks
SDet and SSeg) and is meant to produce the pseudo labelled data to
rain new networks that are able to perform better on TD (TDet and
Seg).

The main parameters that influence the choice of the architectures
6

re speed and accuracy. It is well known (Liu et al., 2020) that SotA
detection networks can be divided into two main categories: two stage
and single stage. The first kind separates detection into two phases,
the first is called region proposal and gives object bounding boxes
candidates, while the second filters and refines these candidates to
produce the bounding boxes and classifies the objects. The second kind
instead extracts both region proposal and class prediction in one pass.
The main advantage of the single stage detectors is speed, which is
much higher than the two stage one, but at the cost of a general reduced
accuracy. The main examples of single stage detectors are the YOLO
variants, in particular the recent YOLOv5 (Redmon and Farhadi, 2018).
One of the best known and best performing two stage architectures is
Mask R-CNN (He et al., 2017), which is also a segmentation network,
more accurate than any YOLO variants, but slower and difficult to
tweak for real-time use.

In this work, we use the single stage YOLOv5s architecture for
the experiments on tracking, since real-time detection is needed for
this kind of application. In addition, some of the variants have a
small number of parameters, which makes them viable for embedded
applications, such as robotic harvesting. The pseudo bounding box
generation could be performed offline, thus allowing use of the better
performing Mask R-CNN, but we decided to use the YOLO detector to
keep this sub system self-contained. In addition, using an architecture
with lower detection performance stresses and tests the robustness of
the generation process. For segmentation and pseudo mask generation,
a segmentation network is needed, so the choice falls on Mask R-
CNN. The details of the pretraining and fine tuning of the detection
and segmentation networks are given in Sections 3.1.1 and 3.3.1,
respectively.

2.6. Detection pseudo-label generation sub-system and tracking application

In this Section, we detail the elements of the DPLG system depicted
in Fig. 5, i.e. the pseudo bounding box generation system, together
with the tracking algorithm used for yield estimation as a possible
application.

2.6.1. Geometric consistency block
The purpose of this block is to use geometrical correspondences

extracted through epipolar geometry to associate grape instances in
different frames of a video stream, i.e. , given a detected grape bunch,
by identifying 2D features belonging to it and matching, or triangulat-
ing, them across multiple frames, it is possible to find the same bunch
instance in the following frames. We use this strategy in two ways in
this work, first to extract pseudo bounding boxes, and then for tracking.
In this Section, we describe the general functional principles of SfM
algorithms and their computational costs.

We experimented with two approaches, the first is the same used
in Santos et al. (2020), which leverages a SfM software application,
namely COLMAP (Schönberger et al., 2016; Schönberger and Frahm,
2016). Since SfM is a well known problem, the interested reader can
find details of the solutions in Harltey and Zisserman (2006) and
Szeliski (2022). In brief, we used the COLMAP modality that extracts
sparse features from each frame and then runs a sequential all versus
all search and matching of the features extracted from the video. These
correspondences are then used to triangulate the 3D points by minimiz-
ing the 3D to 2D reprojection error. However, the nature of the problem
is such that even with the sparse setting, the computational costs
increase exponentially with the number of frames. Our experiments
required 5 h of computation for videos of 500 to 600 full HD frames,
on a computer equipped with an Intel-Core i7 3.4 GHz, a Nvidia GTX
950 m and 16 GB of memory.

The second approach we experimented addresses this aspect in
order to have a real time solution that can be run on an online tracker,
such as the one that will be described in Section 2.6.3. The idea is that
in our context a full SfM solution (i.e. , the 3D position of the extracted
2D features in a world reference frame) is not needed, since the kind
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Fig. 5. This figure shows the detection pseudo-label generation (DPLG) sub-system alone. The source dataset is used to train an initial coarse bounding box detector (SDet) that
is then used, together with the SfM system, to generate a large number of new labelled images from the frames of continuous videos of the vineyard. This same system can be
applied to other fruits with relative simplicity.
Fig. 6. Feature matching and geometric verification using RANSAC: COLMAP SfM in its lightest form still requires considerable computational time and it is viable only for offline
elaborations, while 2D feature matching requires much less computation and potentially runs in real time. (a) The matching of surf features with brute force matching (b) the
same matching refined with homography computation combined with RANSAC selection.
of videos that are collected in the vineyard are simple walks without
closed loops. This means that each table grape bunch is present, at
most, in a few consecutive frames, except for the occasional occlusion.
For this reason, we found that extracting 2D features from a frame 𝑖 and
from a small number of subsequent frames 𝑖+1,… , 𝑖+𝑛, and then match-
ing them was enough to map the grape instance correspondences along
the video stream. The features and descriptors used are SURF (Bay
et al., 2006), while the matching is a simple brute force (all-vs-all)
distance computation between the corresponding feature descriptors.
Since these initial match proposals contain some mismatched features,
a RANSAC verification step is used to filter them out. Given that for
small camera motions, image transformation could be approximated
by a homography transformation, we repeatedly random sample four
matches, compute the relative homography, and check how many other
matches are correctly predicted by it. The homography with the highest
consensus is selected and all matches whose displacement is not com-
patible with the selected homography, are discarded. An example of
this process is given in Fig. 6. The parallel lines left in Fig. 6(b) show the
matches that agree with the homography estimated through RANSAC.
Using this approach, even using brute force matching, we were able
to reach, without particular optimizations and working only on CPU, 3
frames per second on the aforementioned video and hardware.

2.6.2. Bounding box interpolation and pseudo label generation
Bounding box interpolation can be better understood by looking at

Fig. 7.
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Starting from a bounding box found by SDet at frame 𝑖, thanks to the
GC Block, it is possible to have an association between the 2D features
contained inside the box with some features in frame 𝑖 + 𝑛. Since the
camera is moving, both the position of the grapes and the illumination
conditions in frame 𝑖 + 𝑛 will be different, consequently the features
matched will have a different position. The question is then how to
draw the new bounding box in frame 𝑖+ 𝑛. We use the hypothesis, that
the camera is slowly moving, and that the motion is tangential to the
direction of the vineyard. Thanks to this hypothesis we can assume that
the new bounding box will have the same size as the one found in frame
𝑖.

The position of the new bounding box is computed by setting the
centre of the box to coincide with the centre of gravity of the features
in frame 𝑖 + 𝑛, as depicted in Fig. 7(a). Another aspect to consider in
evaluating the pseudo bounding box generation scheme is the effect
of camera velocity combined with frame rate. If the frame rate of
the video is high, or the camera velocity is low, the change in view
will be minimal, and consequently the information added by such
a sample will be minor. For this reason, we considered it useful to
explore the effect of the ratio between keyframes and other frames.
We call this parameter skip value, since it is the number of frames in
which the bounding boxes predicted in frame 𝑖 are interpolated, before
taking a new prediction by SDet. Our ablation experiments showed
that using skip 1 (i.e. using only SDet to produce pseudo-labels) gave
lower performance than using skip 2. However, increasing the skip
value seems not to give more advantages. This aspect is explored in
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Fig. 7. The bounding box interpolation process. (a) Shows the updating principle: the bounding box (blue) predicted in frame 𝑖 is moved to frame 𝑖 + 𝑛; while the size remains
the same, the position of the new bounding box (orange) is updated by computing the new centre of gravity of the features extracted and making it coincide with the box centre.
(b) Pseudo-labels generated by means of the SfM algorithm: the green boxes are the predictions produced by SDet at frame 𝑖 transposed in the current one (𝑖 + 𝑛), while the red
boxes are interpolated ones according to the features matched (represented as red points).
Fig. 8. This figure shows the segmentation pseudo-label generation (SPLG) sub-system.
Section 3.2, where we show on the tracker application the results of
using different skip values.

2.6.3. Tracking for yield estimation
Multi Object Tracking of the grape bunch instances is a preliminary

step in yield estimation, as it is possible to estimate the number of
bunches by counting the number of trajectories tracked by the algo-
rithm. The main approach to tracking by detection that we consider is
the one presented by Santos in Santos et al. (2020) which is based on
detection and SfM. However, no metrics were given there to formally
describe the performances of the approach. Therefore, we replicated
the experiments and computed the metrics using as a target the test
sequence of TVid, described in Section 2.2 and depicted in Fig. 3. In
addition, we tested another detection based State-of-the-Art tracker,
DeepSORT (Wojke et al., 2017), designed to work in real-time using
a deep association metric. We chose this tracker since the computation
involved in estimating even sparse correspondences between the frames
using COLMAP (Schönberger and Frahm, 2016) requires considerable
time and are not feasible for edge or robotic devices. In addition, the
computation of the full SfM solution takes a long time and limits the
length of the video to a few hundred frames, while for the second
approach there is no such limit. In Section 3, we compare the tracking
solutions using the MOT metrics with the tracking graphs to gain more
insights on what the tracker does and how to improve it further. An
example of these graphs is given in Fig. 15.

2.7. Segmentation pseudo-label generation sub-system

While detection is enough for counting tasks, for quantitative yield
estimations or for tasks that require a physical interaction with the
volumes of the grapes (e.g. harvesting), segmentation, and in partic-
ular instance segmentation, is required. Instance segmentation requires
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labels that are ideally pixel perfect masks, however Bellocchio et al.
(2019) showed how, even with minimal labelling signal (e.g. presence
or absence of an object in a image), the task network is able to learn
representations that are close to masks of the object of interest. For this
reason, we again adopt a pseudo-labelling approach to this problem,
starting with a pretrained network on the WGISD source dataset and
then using simple external cues to work as our external information
signal that helps in refining the label. The overview of this sub-system
is depicted in Fig. 8.

Our SSeg network is Mask R-CNN trained on WGISD, as usual. Mask
R-CNN in its basic form extracts region proposals and uses them to
predict bounding boxes and instance segmentation masks. However,
it is possible to use the segmentation subnetwork of Mask R-CNN
as the pseudo mask initial generator. In particular, Mask R-CNN is
wired differently at inference time than at training time, since the
bounding boxes predicted by the detection head are directly fed to the
mask head. The network will use this bounding box as a cue, or as
an attention mechanism, which helps the segmentation subnetwork to
output a useful pseudo mask. This is depicted in Fig. 9. This strategy
will mitigate the problem of confirmation bias, since the box comes
from an external information source. In our system, the bounding boxes
could come from the output of the DPLG sub-system. At the same time,
in Section 3 we show the performances of the pseudo mask generation
starting from ground truth bounding boxes so as to better isolate the
performance contribution of the mask generation process. In this way,
the number of pseudo-masks will coincide with the actual number of
grape clusters in the image, and the measured error will only be due to
the mask generation process. The qualitative difference of segmentation
mask between the standard wiring of the Mask R-CNN network, and the
one with an external attention mechanism, is shown in Fig. 10.

2.7.1. Pseudo mask refining block
To refine the pseudo masks, in order to reduce or remove con-

firmation bias, an external source of information is needed. Some
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Fig. 9. Mask-RCNN internal wiring at training and inference times. At training time,
the mask prediction head uses the same inputs as the other two heads, i.e. the RoI
cropped features. At inference time, the cropping is done only using the bounding
boxes proposals of the bounding box prediction head. Our system uses only the
feature extraction part and drops the bounding box regression, using instead either
the bounding boxes coming from ground truth or the bounding boxes pseudo-labels
generated by the DPLG sub-system. The dashed blue line in the lower diagram shows
where the wire is cut and our bounding boxes proposals are injected.

Fig. 10. Left image: pseudo mask produced by Mask-RCNN trained only on the Source
Dataset and without a bounding box cue. Right image: same image showing the effect
of giving a bounding box cue at inference time.
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earlier works worked on this aspect, such as Khoreva et al. (2017). We
tried three different strategies to refine the initial masks, using simple
computer vision techniques that work on different principles from the
convolutional filters contained in SSeg and that use simple geometrical
considerations.

• Dilation: the first method originates from the observation that
SSeg tends to underestimate the masks on the target data. For
this reason, a simple morphological dilation that expands the
mask until it touches the reference bounding box is able to add
valuable information to the label. The dilation is applied with a
5 × 5 circular-shaped kernel. An example of the result is given in
Fig. 11(a).

• SLIC: Simple Linear Iterative Clustering (SLIC) (Achanta et al.,
2012) is a method for super-pixel segmentation of the image.
Super-pixels are contiguous regions of the image that are clus-
tered together by a KMeans algorithm running on both colour
and space (5-dimensional). We apply this super-pixel division to
the entire image and compare it with each pseudo mask. The
SLIC algorithm that was used was the one implemented in the
Python scikit-image library (Van der Walt et al., 2014) with
2000 segments and compactness 0.1. All the super pixels that are
covered by more than an upper threshold 𝑡𝑢 = 70% are added
to the mask, while all the pixels that are covered by less than
a lower threshold 𝑡𝑙 = 30% are removed from the mask. The
rationale is that in this way we should be able to remove also
the background pixels erroneously contained in the initial pseudo
mask. An example of the result is given in Fig. 11(b).

• Grub Cut: this is an iterative segmentation technique introduced
by Rother et al. (2004). It represents the image as a graph where
foreground and background pixels are modelled as Gaussian Mix-
ture Models and have to be separated iteratively by cuts to the
graph edges. We used the OpenCV (Bradski, 2000) implementa-
tion where it is possible to initialize the algorithm with the pseudo
mask defining four pixel categories, i.e. sure foreground, sure
background, probable foreground, and probable background. The
pseudo mask is used as probable foreground. Dilation is applied
to the pseudo mask for a number of iterations proportional to the
smallest dimension of the reference bounding box to obtain the
probable background. Erosion is applied for the same number of
iterations to obtain the sure foreground, while the rest is set to
sure background. A sample of the effects of Grab Cut is shown in
Fig. 12.

In Section 3, we show how each of these refinement methods
performs compared to the baseline (pseudo mask with no refinement).

3. Results and discussion

3.1. Detection experiments

In this Section, we describe the results of the detection experiments.
Table 1 shows our preliminary experiments to compare different ver-
sions of the detector. All models in this initial comparison are trained
and tested on WGISD. Results show that the models with a large
number of parameters offer a minimal performance increase on basic
detection, compared to the lightweight versions S and N. This can be
explained by a general homogeneity of the distribution of the grape
images in WGISD, which does not require huge number of parameters
to learn a good estimator. This is expected, since in agriculture we do
not work with huge amounts of data. For this reason, we decided to
base all the trackers on the S and 𝑁 variants to reduce overfitting.
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Fig. 11. (a) Example of application of the dilation method to the mask of a grape bunch. The yellow area represents the starting pseudo mask, while the green area represents
the expansion done by the dilation operation. (b) Example of the super-pixel segmentation (clustering) done by SLIC.
Fig. 12. Examples of images refined with Grabcut. The colour of the overlay defines the pixel as sure foreground (blue), probable foreground (yellow), probable background
(green) or sure background (purple).
Table 1
Comparison of the YOLOv5 models tested to be the tracker engine, trained and tested
on WGISD. The models with the highest number of parameters do not have a significant
performance advantage over the lightweight versions S and N.

Model 𝑚𝐴𝑃0.5∶0.95 𝑚𝐴𝑃0.5 Speed (ms) Params (M)

YOLOv5n 58.2 89.4 6.3 1.9
YOLOv5s 62.5 89.7 6.4 7.2
YOLOv5m 61.9 89.5 8.2 21.2
YOLOv5l 64.0 90.5 10.1 46.5
YOLOv5x 61.5 87.5 12.1 86.7

3.1.1. Training details
All the training experiments conducted on YOLO have been done on

the Nvidia DGX-1 Station, since it offers an appropriate computational
power for the training. All the training runs are composed of 300
epochs with a batch size of 4 and the patience parameter for early
stopping set to 30 epochs. The learning rate (𝑙𝑟) strategy used is
one cycle (Smith and Topin, 2018), with initial 𝑙𝑟 = 0.01 and final
𝑙𝑟 = 0.001. The optimizer is SGD, with momentum 0.937 and weight
decay 5 × 10−4. The time required for training was highly influenced
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by the specific version of YOLO and by the number of images used,
meaning that using 3368 images for training, the smaller version of
YOLO (YOLOn) required just under 3 h for all the epochs, while the
bigger one (YOLOx) took more than 24 h to converge. All the detection
networks were pretrained on MS COCO dataset (Lin et al., 2014) and
then finetuned on the source and target datasets. The baseline model
was trained only on the source dataset, while the proposed models
were trained on the target using the methods described in 2.6.2. In
order to help generalization to different conditions, the 242 training
images of the source set were augmented with random crop, random
contrast, Gaussian blur, Gaussian noise and horizontal flip. During our
experiments, these random augmentations have been applied offline
four times, generating 726 augmented images.

Table 2 shows the difference on the images of the target set (𝑇𝑖𝑚𝑔)
between the detector trained only on the source data (SDet) and also on
the pseudo-labels generated from the videos (TDet). It is possible to see
that the 𝑚𝐴𝑃0.5 increased by 8% despite the fact that the videos have
a different distribution with respect to the images, due to the different
process followed to collect them.

An example of how the detection changes is given in Fig. 13. In the

upper row, are present the detections made by SDet, while in the lower
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Fig. 13. Examples of how the detection improves on the same images when the model is trained without the pseudo-labels (SDet) in the upper row (a, b, c, d), and with the
pseudo-labels (TDet) in the lower one (e, f, g, h).
Table 2
Comparison of the source detector (SDet) with the target one (TDet) that has been
trained also using the pseudo-labels generated from the videos. The numbers shown
are the performance on the test set of the TImg data.

Detectors performance on the TImg dataset

Model Precision Recall 𝑚𝐴𝑃0.5 𝑚𝐴𝑃0.95

SDet 0.90 0.56 0.69 0.46
TDet 0.98 0.68 0.77 0.47

Table 3
Comparison of the source detector (SDet) with the target one (TDet) that has been
trained also using the pseudo-labels generated from the videos. The numbers shown
are the performance on the test set of the TVid data.

Detectors performance on the TVid dataset

Model Precision Recall 𝑚𝐴𝑃0.5 𝑚𝐴𝑃0.95

SDet 0.62 0.59 0.55 0.21
TDet 0.74 0.60 0.65 0.23

one there are the predictions made by TDet. It is possible to see that
not only the bounding boxes are tighter around the instances, but also
more grapes are detected, meaning that both precision and recall have
improved.

Since TImg and TVid have different distribution, we also applied
TDet on the test data from TVid. The results are shown in Table 3,
where it is possible to see that the network trained with the pseudo-
labels gained 10% in 𝑚𝐴𝑃0.5 compared to the one trained without them.
In this case, the increase is higher due to the minimal covariate shift
between TVid test and training data.
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3.2. Tracking experiments

In this Section, we describe the results of the tracking experiments.
Each tracker is built on a YOLOv5 detector version. As explained in
Section 2.6.3, we compare two tracking schemes combined with two
pseudo label generation strategies. Pseudo-labels depend, among other
intrinsic and extrinsic variables, on the frame rate combined with the
skip value, as was described in Section 2.6.2. As mentioned in that
section, with the bounding box interpolation system we use the best
performing skip value which is 2, as shown in Fig. 14. This is to be
expected, because if too many frames are interpolated, the motion
becomes too large to be compensated. In addition, from the same results
it is clear that the SfM approach has higher MOTA than DeepSORT at
most skip values due to its use of the geometrical representation of the
scene. However, it is not meant for real time computation. In Table 4,
the MOT metrics for the best models have been summarized.

Among the MOT metrics described in Section 2.4, the MOTA and
MOTP give a general idea of the tracking performances. However, to
use trackers as yield estimators, one of the figures of interest is the
number of IDs that the tracker finds, which could be considered an
estimate of the number of bunches found. However, during the tracking
process, some of the bunch IDs are switched. This can happen, for
example, when two bunches are occluding each other and the IDs are
inverted after the occlusion situation disappears, or when there are
errors in feature association in the SfM block (Fig. 15). Whatever the
reason, this situation is captured by the 𝐼𝐷𝑠𝑤 metric, together with the
MOTA score. More details on these challenges of MOT can be found
in Bernardin and Stiefelhagen (2008). For all these reasons, we focus
our attention on MOTA for the tracking accuracy, and on the number
of IDs for the yield estimation.

From Table 4 it is evident that the pseudo label generation is highly
beneficial, with an increase of more than 10% compared to the source
dataset WGISD. Looking closely at the performance metrics, it can be
seen that the capacity to track the same IDs for the entire trajectory is
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Fig. 14. Comparison of trackers performances as the skip value changes. The skip value is the number of frames skipped between a keyframe and the next in the process of
generating pseudo-labels. The extracted pseudo-labels influence the detector performance, both due to quantity and quality of the labels, and consequently also the tracker is
influenced. In this chart, we show the degradation of performances as the hyper-parameter is increased. While the best performances are obtained on skip 2, the degradation with
skip 5 could be tolerable considering that it requires only 20% of labelled frames instead of 50%.
Table 4
The upper half of this table shows some performance metrics for two types of trackers. Both trackers are based on a YOLOs detector, trained
with two different datasets: WGISD is the baseline, while the Pseudo-labels is trained on pseudo-labels generated as described in Section 2.6.2.
The lower half shows other common MOT metrics, notably 𝐼𝐷𝑠 is the one used to compute yield estimation. It can be seen that for both
tracking strategies there is a consistent advantage in using the pseudo-labels. In particular, the error in yield estimation for the SfM tracker
drops by 29%.

Method MOTA↑ MOTP↑ MT↑ ML↓ 𝐼𝐷𝑠𝑤 ↓ FM↓ Pr↑ Re↑

SfMTrack WGISD 46.741 72.545 9 9 5 29 91.304 52.427
SfMTrack Pseudo-labels 55.756 74.557 11 8 9 22 89.143 64.91

DeepSort WGISD 40.499 72.229 8 8 16 19 87.198 50.069
DeepSort Pseudo-labels 50.624 72.941 9 6 17 18 85.634 63.662

Method TP↑ FP↓ FN↓ Dets GT Dets IDs GT IDs Yield est. Err

SfMTrack WGISD 344 70 377 414 721 19 31 38%
SfMTrack Pseudo-labels 431 94 290 525 721 28 31 9%

DeepSort WGISD 299 115 422 414 721 46 31 48%
DeepSort Pseudo-labels 380 156 341 536 721 39 31 26%
stronger in DeepSORT. This is probably due to Kalman filtering, since
taking into account the bounding box movement dynamics implicitly
avoids errors such as the one shown in Fig. 15.

3.3. Segmentation experiments

In this Section, we show the results of the experiments concerning
the performance of the SPLG sub-system. The pseudo-mask generator
can be seen either an independent system or in conjunction with
the DPLG sub-system. In the following, the experiments of the SPLG
sub-system are described, while the results of the whole system are
described in Section 3.4.

3.3.1. Training details
The implementation of Mask R-CNN we chose is Detectron2 (Wu

et al., 2019), using ResNet 101 as backbone network. Again, the
experiments were performed on the NVidia DGX cluster. The training
started from the MS COCO weights, then was fine-tuned on the source
and target dataset. For all the training, common data augmentation was
performed by applying Gaussian blur, Gaussian noise, random changes
in brightness and contrast, pixel dropout, random flip, and random
crop. In addition, the trainings were executed using a learning rate of
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0.001, weight decay of 0.0001 and a momentum of 0.9. Each training
proceeded for a maximum of 100 epochs, but early stopping was used
while monitoring the segmentation AP on the validation set of the table
grape dataset, with a patience value of 20.

As for the detector, we give an idea of the initial performance gap of
SSeg when directly applied to the target dataset TImg in Table 5, using
the MS COCO (Lin et al., 2014) metrics as described in Section 2.4. We
performed data augmentation on the WGISD dataset, in particular, crop
and resize to mitigate the difference in scale with the TD. Nonetheless
in all metrics there are more than 20 points of decrement in Average
Precision.

3.3.2. Pseudo-mask generation experiments
The first set of experiments are an ablation study to evaluate the

performance of TSeg in isolation from TDet in order to quantify the
effectiveness of generating pseudo-labels when no other mask labels
on target data are provided. As before, SSeg is our baseline and in this
case TSeg is trained on both the source dataset and the training set of
TImg, whose labels were generated as pseudo masks by SSeg with the
successive refinement.

We performed comparison experiments between the three refine-
ment strategies presented in Section 2.7.1, namely dilation, SLIC and



Computers and Electronics in Agriculture 205 (2023) 107624T.A. Ciarfuglia et al.
Fig. 15. Examples of failure cases in SfM tracking: The sequence of frames shows some examples of fragmented trajectories and ID switches. It can be seen how ID#12 is occluded
and disappears in frames I2 and I3, but it is correctly associated in frame I4. It is occluded again in frames I5 and I6, and erroneously switched with ID#13 in frame I7, but
recovered in frame I8. These count for two ID switches, while the total number of tracks remains the same, so the final yield count is not affected by these errors.
Table 5
Evaluation of covariate shift for SSeg: SSeg is a Mask R-CNN model trained on the
Source dataset (WGISD) and in this table we show the performance comparison when
it is tested on WGISD test set (27 images) and on the test set of our TImg dataset (20
images) using some of the COCO metrics.

Test data Task 𝑚𝐴𝑃 𝑚𝐴𝑃0.5 𝑚𝐴𝑃0.75

WGISD Detection 53.40 87.02 57.36
Segmentation 53.60 89.44 55.41

TImg Detection 32.65 60.40 30.37
Segmentation 32.88 65.40 34.77

GrabCut. We show in Table 6 the average performance of five trials for
each experiment, as evaluated on the TImg test set. In the same table,
we show the results obtained by TSeg trained with and without the
Refining Block. The additional pseudo masks are able to considerably
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Table 6
Comparison of the Mask R-CNN model trained with different pseudo-mask processing
methods.

Training Data 𝑚𝐴𝑃0.5∶0.95 𝑚𝐴𝑃0.5 𝑚𝐴𝑃0.75

WGISD (baseline) 32.88 65.40 34.77
WGISD + TImg 48.43 83.06 53.12
WGISD + TImg w/ Dilation 48.67 81.54 54.87
WGISD + TImg w/ SLIC 47.78 80.41 53.54
WGISD + TImg w/ Grabcut 49.56 81.03 57.70

improve the performance on the target data in terms of AP, with an
improvement of almost 50% on the baseline performance. Moreover,
our results show that the best performing refining method is GrabCut.
The additional refinement increases the 𝑚𝐴𝑃0.5∶0.95 by 𝟏.𝟏𝟑 and the
𝑚𝐴𝑃 by 𝟒.𝟓𝟖 with respect to TSeg trained without refinement, but
0.75
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Table 7
Comparison of the Mask R-CNN model trained on different training sets with bounding
boxes generated by YOLO (TDet). The number of images in the training set are shown
in parenthesis.

Training Data 𝑚𝐴𝑃0.5∶0.95 𝑚𝐴𝑃0.5 𝑚𝐴𝑃0.75

WGISD (baseline) (88) 32.88 65.40 34.77
WGISD + TImg (182) 44.45 75.68 49.78
WGISD + TImg (182) w/ Grabcut 46.41 78.09 51.74
WGISD + TVid (687) 45.99 78.30 52.59
WGISD + TVid (687) w/ Grabcut 46.66 77.38 52.22
WGISD + TImg + TVid (781) 47.44 76.63 56.06
WGISD + TImg + TVid (781) w/ Grabcut 47.81 77.23 53.27

decreases in 𝑚𝐴𝑃0.5, showing that the refinement process is more
effective at higher IoU levels.

3.4. Complete system experiments

In this Section, we describe the results obtained by using the detec-
tor described in Section 3.1 to generate the bounding boxes required
by the SPLG sub-system described in the previous Section 3.3. First
the best YOLOv5 detector, namely that obtained with the use of the
pseudo-labels generation method, was used to predict the bounding
boxes that are used to generate the pseudo-masks by Mask R-CNN. This
was done both for TImg training set and for TVid. The test data for this
experiment is the TImg test set, so the training and test distributions,
although they are target data, are different. Table 7 again shows the
comparison of TSeg with and without the Refining Block. In the case
of refined TImg, the improvement is still substantial, more than 40%
over the baseline. Moreover, TVid is able to give an even greater
improvement thanks to the greater number of images in the training
set. Despite the fact that the video frames present many differences
with respect to the target dataset, the TSeg still manages to increase
the performance by 42% with respect to the baseline. Finally, the
increase in mAP is even greater when considering TImg and TVid as
training data. Also in those experiments, the Refinement Block gives
an improvement over the non refined counterpart. From the values of
𝑚𝐴𝑃0.50 and 𝑚𝐴𝑃0.75 we deduce that the increase is mainly due to an
improvement at IoU higher than 0.75.

4. Conclusions

In this work, a system for producing pseudo-labels for detection
and segmentation tasks has been presented. This system is particularly
aimed at agricultural applications, where data scarcity is a common
challenge. The system has two components, the Detection Pseudo-Label
Generator and the Segmentation Pseudo-Label Generator. Both sub-
systems require a starting coarse detection, or segmentation learning
algorithm, respectively, to find the initial labels estimates. This is
not a difficult requirement to fulfil, since the initial performances do
not have to be high, and a limited amount of data, even from a
different dataset, have been shown to be sufficient. The detection PLG
is able to label any data collected from simple continuous videos of
the target objects by leveraging the 3D structure extracted from the
video motion. The segmentation PLG is able to work on any image, and
uses other segmentation strategies to refine the pseudo-labels produced
by the initial segmentation algorithm. The two subsystems can be
chained in a single PLG system able to extract both bounding boxes
and segmentation masks from the video provided. New detection and
segmentation algorithms can be trained on the pseudo-labels and the
experiments show that their performances surpass the initial algorithms
performances by a large margin.

Although demonstrated on the problem of table grape labelling with
covariate shift, the system can be applied to other fruits. This approach
could be used also as part of more sophisticated and expensive agro-
nomic solutions, such as robotic harvesting systems, leading to savings
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in the labelling costs and in development time. Future development
will address iterative pseudo-label refinement and the removal of initial
requirements to make the system fully unsupervised.
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