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Abstract:
Maintaining a good quality of service under a wide range of operational management is
challenging for water utilities. One of the significant challenges is the location of water leaks in
the large-scale water distribution networks (WDN) due to limited data information throughout
the system, generally having only flow sensors at the entrance of the system and some pressure
sensors in some selected nodes. In addition, most systems do not have a hydraulic model of
the network. Therefore, when using the hydraulic model, the presence of model errors such
as nodal demand uncertainty and measurement noise can interfere with the performance of
the leak location method. This work presents a fully data-driven technique to reduce the
area of the leak localization in the WDN, using Graph theory to represent the network. To
do so, we have developed a distance clustering with pre-defined centroids that are the sensor
pressure information and some selected nodes. Furthermore, some extra pressure information of
leaks events in the selected centroids is studied to develop a correlation between the pressure
measurement and the event. Finally, the approach is evaluated in real-world water systems and
discusses graphical results and key performance indicators.

Keywords: Water Distribution Network, Flow Analysis, Pressure Analysis, Graph theory, Data
models

1. INTRODUCTION

WDNs are essential infrastructures in modern cities for
several socioeconomic reasons. They are complex networks
due to their size (thousands of pipes) and hydraulic
behavior due to their nonlinearity. One of the concerns to
be managed in these systems is water leakage, which may
account for up to 30% of the total amount of distributed
water (Puust et al., 2010), being significant because water
is a limited resource. Leakage causes several problems such
as difficulties with contamination, health problems (Ali
and Choi, 2020), and the loss of water at a time when
the world’s demand for water is only increasing . Different
factors can cause a leak in the system, such as weak
joints, water hammers, utility construction or excavation,
seasonal temperature changes, heavy traffic, and other
things. Fault diagnosis and safety in water systems are
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vital challenges that will become even more crucial in the
coming years (Eliades and Polycarpou, 2009).

Several works on leak localization were released by ap-
plying model-based approaches, commonly used demand-
driven (DD) hydraulic simulators, like EPANET (Ross-
man, 2000). For example, in (Soldevila et al., 2016) the
research is based on the analysis of pressure residues.
Moreover, in (Javadiha et al., 2019), and (Wachla et al.,
2015),the authors use hydraulic models with AI methods.
The results based on hydraulic models are excellent. How-
ever, they require strong assumptions on the quality of the
model, knowledge of the water demand, limitation of noise
in the measurements to obtain good performances. When
hydraulic models are not available, or these assumptions
cannot be guaranteed, another line of research is to use
data-driven methods where only information from the
system and sensors is used. For example, the (Soldevila
et al., 2016) research is hybridized using model-based and
data-driven to locate leaks. Furthermore, the (Sun et al.,
2020; Romero et al., 2021) use interpolation methods to
do the leak location, demonstrating that the sensor data



interpolation analyses in WDN are just starting and need
a continuous and deep study.

For a large-scale network, the leak localization is more
complex and requires more time for the maintenance
operator to solve the problem. For this purpose, this
article proposes a new data-driven leak location method
in large-scale WDNs. It is divided into two parts: the first
part is the clustering of the WDN to minimize the area
considering fault. One represents the system by using the
Graph theory and defining the minimum path distance
connecting the nodes to the pre-defined point in the
network that will be the centroids of the clustering. The
second part analyzes the correlation pressure residuals
obtained simulating in the real WDN a leaky scenario
in each pre-defined point set to be a cluster center, with
the actual correlation pressure residual measurement. This
study will provide the clustering with the highest chance
of having the fault. The contributions of this paper are:

• Network topology clustering: a new clustering
topology is proposed using the hydraulic information
to define the distance between the pre-defined node
and the centroids reference to each clustering. The
clustering will reduce the fault location area and help
the water utilities locate the correct place of the leak.

• Leak localization method: a new approach is
presented fully data-driven that uses the study of
pressure residual and the correlation of how they are
affected in a different leaky scenarios.

• Real-world water systems evaluation: it is per-
formed in a benchmark WDN with 268 nodes and
four reservoirs. The Average Topological Distance in
node and kilometer are applied. Discussions about the
costs and benefits of the proposed approach are also
presented.

2. METHODOLOGY

Water distribution networks worldwide have different
structures, sizes, demand patterns, components, etc. In ad-
dition, the distribution, quantity, and properties of meters
installed in networks vary from one location to another.
Additionally, as already mentioned, some water networks
do not have hydraulic models to represent them, or when
they do, they lack measurements or demand estimates.
Therefore, these networks must conduct a leak localization
study that only needs sensors measurements and hydraulic
information.

The proposed leak location method is fully data-driven. It
requires hydraulic information such as pipe diameter and
length, measurements from pressure sensors installed in
the system, and events simulated in the field by the water
utilities of leak-free and leak scenarios in some selected
nodes. First, the system is divided into k clusters using the
graph theory, then the location of the leaks is determined
by comparing the actual hydraulic state of the network
and a reference without leaks indicating which zone is most
probably to have the fault. The proposed method has the
following features:

• It is applicable to measurements temporal informa-
tion using Bayesian time reasoning.

• A clustering of k numbers is proposed, with the
clustering centers being a predetermined nodes. In
each k node, the water utilities must simulate leak
events in the real system.

• Leak-free information can be obtained using historical
data provided by the water company. In addition,
nominal information can be used from the days prior
to the appearance of the leak to deal with the uncer-
tainty of water demand between different scenarios.

• It provides the cluster most likely where a leak is
identified. It makes it easy to locate the leak in the
real network.

2.1 Clustering

A water distribution network can be described by a di-
rected graph G = {V, E}, (Deo, 2017), where V is the set of
n nodes (junctions, reservoirs, and tanks) and E is the set
of m links (pipes, valves, and pumps). A node is referred
to as vi ∈ V, and an edge eij = (vi, vj) ∈ E connects source
node vi with sink node vj .

An edge eij is associated with a cost value, related in
this case to the diameter and length of the pipe. Edge
costs are exploited to generate weighted adjacency matrix
W (G) ∈ Rn,n:

wij =
lij
D5

ij

(1)

where lij and Dij are the length and diameter of the pipe,
connecting nodes i and j, both in meters [m]. It refers to
the friction loss in pipes of Hazen-Williams formula (see
(Pérez and Sanz, 2017).

The network clustering process is divided into two phases:
the first is the clustering study with k equal to the number
of sensors s present in the system. The objective is to
divide the n (nodes) observations into s(≤ n) sets C =
{C1, C2, . . . , Cs} concerning the hydraulic distance of the
sensors. For this, the set of data points x = [x1, ..., xs] is
generated for each node with the minimum distance from
the node to the sensors:

xj = dW (i, j) (2)

where i = 1, ..., n and j = 1, ..., s and the distance
dW (i, j) is the minimum sum of weights across all the paths
connecting i and j.

The main objective of the clustering algorithm is to
minimize the sum of distances between the points and their
respective cluster centroid. The objective function is:

argmin
C

s∑
j

∑
x∈Cj

||x− µj ||2 (3)

where µj is the center of the clustering, which is the value
of the distance from a sensor to the other sensors

µj = [dW (j, 1), ..., dW (j, s)], j = 1, ..., s (4)

This first clustering makes it possible to analyze how many
nodes there are in each zone. Of course, the ideal is to have



clusters with homogeneous numbers of nodes. However, in
real cases where pressure sensors are already installed in
the network, similar numbers of nodes in the clusterings
may not be satisfied.

The second phase of clustering is designed to solve
this problem. More q numbers of nodes are chosen
to be a clustering center. So the goal is to divide
n (nodes) observations into s + q(≤ n) sets C =
{C1, C2, . . . , Cs, C(s+1), . . . , C(s+q)}. The extra q nodes are
chosen on the frontier between one cluster and another
in the first phase. The number of q nodes chosen has
to be analyzed with the water company because the q
selected in the most node containing sensors will need
extra simulation information in the real network of events
with leakage. Consequently, the exact number of q chosen
will vary according to the water company’s objective, as
a previous cost-benefit study must be carried out, which
will be explained better in the next section. The second
clustering will be the same as Equation (3) with the new
center:

µj = [dW (j, 1), ..., dW (j, s+ q)], ∀j = 1, ..., s+ q (5)

2.2 Leak localization

The proposed leak location method aims to reduce the
network area to the pre-defined regions with the highest
chance of leaking. The method analyzes residuals from
the pressure sensors already installed in the network. This
process has an important role in maintaining easily the
network and supporting the operator in its maintenance
task.

The estimation pressure considering a leak-free scenario is
done with the historical data analysis so that the network
boundary conditions c are similar (e.g., reservoir pressures,
flow, and consumer demands). A study of the pressure
measurement of previous days or weeks where the system
was considered without failures can be done. In this way, it
can guarantee a better precision of the estimated measure
of pressure. The study of residuals can be determined by
the following:

ri = p̂i(c)− pfi (c), ∀i = 1, ..., s (6)

where p̂(c) is the pressure estimated with the boundary
condition c in a leak-free scenario, and pf (c) the pressure
measurement with the boundary condition c with a leak in
node f . To minimize the effect of the leakage magnitude
an offset can be calculated with a minimum value of r:

r̄i = ri −min(r1, ..., rs) ∀i = 1, ..., s (7)

Then the likelihood index ∂i is calculated as the normal-
ization of the r̄:

∂i =
r̄i∑s
j=1 r̄j

∀i = 1, ..., s (8)

A simple leak localization method can be defined only
with residual analysis of Equation (6) (see (Jensen and
Kallesoe, 2016; Romano et al., 2017)). In this case, only

Fig. 1. Schema of the correlation between the sensor and
the leak events

the first phase of clustering is utilized, with the center of
the clustering expressed in Equation (4). The selected area
with the leak is the one that presents the component with
the maximum size, i.e.,

Ĉ = argmax
i∈1,...,s

ri (9)

This simple method only needs the information from the
pressure sensors being a good reference point to analyze
the improvement of the method. The dependency on the
sensor’s availability and its positioning in the network is
a limitation to this simple method. For example, if the
sensors are not well distributed in the system, a clustering
one area may contain many nodes and others few. With
that in mind, extra data information can balance the
number of nodes in each cluster.

The effect of a leak on a node causes correlation factor
between sensors (see. (Sun et al., 2020)), making it possible
for objects within the same cluster to be as similar as
possible (i.e., high intra-class similarity), while objects
from different clusters are as different as possible (i.e.,
low inter-class similarity). Knowing this, it is possible to
select q strategic points in the network (nodes) to be a new
clustering center and thus balance the number of nodes
in the cluster. Therefore, it is necessary to have leak-data
scenarios in each node with sensors and selected centroids.

Figure 1 shows the sensor correlation scheme for each
leak event generated with the signature vector of events
νe ∈ Rs. Being νe = [νe1 , ..., ν

e
s ] with νei normalized

likelihood index (8) computed from normalized residual
sensor r̄i considering event (leak) in cluster e ∈ 1, ..., s+ q.

For a given measured residual, the vector ∂ = [∂1, ..., ∂s]
is computed and the Euclidean distance is used to analyze
the distance between the measurement and the centroids
of each clustering:

θe =
√
(∂1 − νe1)

2 + ...+ (∂s − νes)
2 (10)

The most probable cluster is determined as the one that
provided the minimum distance (10)



Ĉ = argmin
e∈1,...,s+q

θe (11)

Until now, only the single time instant analysis was stud-
ied, to improve the performance of the method and make
it possible to analyze in time series the normalized θe

information at different time instants t can be considered
by applying Bayes’ rule as:

P e(t) =
P e(t− 1)θe(t)∑s+q
l=1 P l(t− 1)θl(t)

(12)

where P e(t−1) is the prior probability whose initial value
has to be determined (for example P e(0) = 1/(q + s)).
Then, the leak node localization can be estimated by using
posterior leak correlation by:

Ĉ(t) = argmax
e∈{1,...,s+q}

{P e(t)} (13)

2.3 Performance Indicators

The ATD in nodes and kilometers are the metrics being
used to evaluate the performance in the dataset:

• Average topological distance (ATD): represents the
distance in nodes or in kilometers between the cen-
troid predicted as leaking with the true node that
has the leak. The ATD index that presents minimum
value is preferable. It is first necessary to create a ma-
trix containing the minimum topological distance (in
nodes or kilometers), A ∈ Rn×n. After it is necessary
to create the confusion matrix Γi,j depicted in Table
1 . The rows of this matrix correspond to the leak
scenario and the columns to which the leak is located
(Ĉ) by the leak localization method.

Table 1. Confusion matrix Γ.

l̂1 · · · l̂i · · · l̂n

l1 Γ1,1 · · · Γ1,i · · · Γ1,n

...
...

...
...

...
...

li Γi,1 · · · Γi,i · · · Γi,n

...
...

...
...

...
...

ln Γn,1 · · · Γn,i · · · Γn,n

The ATD is computed as follows:

ATD =

∑n
i=1

∑n
j=1 Γi,jAi,j∑n

i=1

∑n
j=1 Γi,j

(14)

3. CASE STUDY ANALYSIS

The Modena Network simplified version of the real WDN
from the Italian city Modena is represented in Figure 2.
This large-scale network comprises 268 junctions (nodes)
connected through 317 pipes and served by four reservoirs.
There are no pumps in the network since it is entirely
gravity-fed (Wang et al., 2015).

To test the evaluation of the proposed leak location
method, artificial data were generated under different con-
ditions using a hydraulic simulator Epanet 2 (see details
in (Rossman, 2000)).
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Fig. 2. Simplified Modena topological WDN.

Using the hydraulic simulator, data was generated with
uncertainties related to the consumer’s nodal demand cre-
ated by applying Gaussian noise of 10[%] of the nominal
demand value in the default value of the Modena bench-
mark in the Epanet repository and considering that the
exact size of the leak is unknown, but is contained in
the range of 5 and 50[l/s], representing 2% to 20% of the
network consumption.

For each leak scenario, of the 268 nodes, a leak is sim-
ulated lasting 72h. The sampling rate is 10 min, but
measurements are filtered hourly to reduce the impact of
uncertainties in the diagnostic phase.

Six scenarios were generated with different sensors number
to analyze the previously explained method. Table 2
displays the scenarios only with sensors installed on the
network and the corresponding number of nodes in the
clustering. Equation (3) and (4) were used to generate the
clusterings. The number of sensors installed in the network
is 3, 5, and 8, with two different cases to demonstrate
the effect on the result concerning the positioning of the
pressure sensors.

Table 2. Scenarios using only pressure sensors

Case Nodes with sensors
Number of nodes in the

clustering

1 11 50 80 64 109 95
2 10 44 93 83 74 111
3 9 65 94 109 247 63 103 45 23 34
4 10 63 113 247 250 55 45 90 45 33

5
10 23 45 62 64 94

119 259
19 24 48 28
25 53 47 24

6
18 35 63 100 153

158 248 236
45 32 31 27
30 30 34 39

Table 3 shows the scenarios demonstrated in Table 1 plus
the extra nodes, q, which will be the additional center
of clustering. The centroids are the s values of sensors
installed in the s network, highlighted with the text in
bold, and the q selected nodes are listed after the sensors,
with q + s being the centroids referred to in Equation
(5). The value of q varies from one scenario to another
to analyze how q affects the leak localization result. In
addition, the number of nodes in the cluster is shown for
each scenario. It is not always possible to balance the



number of nodes in the areas, but the number of nodes
in the areas is smaller.

Table 3. Scenarios using s+ q centroids

Case
Node set to be the

cluster center
Number of nodes in the

clustering

1 11 50 80 120 160 69 44 88 34 33

2
10 44 93

37 111 151 224
63 41 48

12 14 56 34

3
9 65 94 109 247

196 246
55 49 41 43 25

22 33

4
10 63 113 247 250

130 189 231 267
38 34 41 29 21
28 30 17 30

5
10 23 45 62 64 94 119

259 113 139 245 222
19 20 22 22 26 17 18

26 33 28 20 17

6
18 35 63 100 153 158 248
236 85 113 178 166 214 232

20 25 25 22 16 14 21
17 17 21 11 20 25 14

As noted before, the leak location method using the
maximum residual variance seen in Equation (6) is a good
point of comparison of method improvement. Therefore,
the ATD was calculated applying the maximum residual
method with the scenarios of Table 2. Then, the proposed
leak localization method was applied to the scenarios in
Table 3.

In the simplified WDN of Modena, in the example of Case
2 of Table 2 where three pressure sensors are considered,
the computed clusters are depicted in Figure 3.(a). Fol-
lowing the clustering of the network in Case 2 of Table
3 contains the same pressure sensor position with four
additional centroids. It is depicted in 3.(b). The nodes
containing pressure sensors are highlighted with a red
circle, and the q extra centroid is highlighted with a black
circle. The clustering area with sensors is reduced by up
to 56%, allowing a more homogeneous division of areas in
the WDN.

Figure 4 shows the result of the ATD (node) of the two
analyses, using the Bayes temporal reasoning in both cases
with evolution of 48h. Figure 4.(a) is the result of the
scenarios of Table 2 using the maximum residual approach,
and Figure 4.(b) is the result of Table 3 scenarios applying
the proposed method.

The analysis of the cases pairs that contain the same
number of sensors, {1, 2}, {3, 4}, and {5, 6}, (results in
Figure 4.(a)) demonstrates the importance of a previous
study for sensor placement. The ATD result improves with
the same number of sensors in the network, which can
reach up to one node difference. Moreover, cases {2, 3}
have a similar result even though the two have a difference
of 2 sensors installed in the network.

The results in Figure 4.(b) display the evolution of the
ATD of the presented method. Comparing the corre-
spondent Case in Figure 4. (a) an improvement in the
ATD index is noticed in almost all cases. Only Case
1 presents better results using the maximum residual
method due to the sensor placements on the network.
Cases {1, 2}, {3, 4}, {5, 6} have the same number of sensors
with only varying values of q. It is shown it is possible to
obtain better results by increasing the value of q.

The same analysis was made analyzing the ATD with
the distance in kilometers. This study is critical because
as the distances between the pipes are not uniform, the
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Fig. 3. Clustering of Case 2: (a) Table 2, with only pressure
sensors highlighted with a red circle (b) Table 3, with
sensors and 4 extra centroids, highlighted with a red
and black circle
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Fig. 4. Evolution of ATD (node) when using the Bayes
temporal reasoning (a) scenarios of Table 2 using the
maximum residual approach (b) scenarios of Table 3
using the proposed method

variation of the ATD in the node may not indicate the
actual improvement. Figure 5.(a) shows the result of the
scenarios of Table 2 using the maximum residual approach.
It demonstrates the importance of comparing the ATD
in nodes and kilometers. The cases [5, 6] have a similar
value when they are compared in kilometers and in nodes,
the case 6 has a slight improvement. Figure 5.(b) is the



result of Table 3 scenarios applying the proposed method.
This result shows that in Case 1, even with similar results
compared to the maximum residual, it remains more
constant with a better result in the time series. In the cases
{2, 3} that has an improvement in kilometers distance
present a similar value in the comparison of the ATD in
node.
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temporal reasoning (a) scenarios of Table 2 using the
maximum residual approach (b) scenarios of Table 3
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As remarked, the positioning of the pressure sensors in the
network affects the results dramatically. Therefore, a pre-
analysis of the sensor placement, setting the best nodes
to contain sensors and the best node to be the clustering
centroids, can improve the results illustrated.

4. CONCLUSION

A new full data-driven method to leak localization problem
in WDN based on distance clustering in association with
the residual analysis distance of pressure sensor has been
presented in this study. The proposed approach has been
explained, and an example is presented using the Modena
Network simplified version of the real WDN as a case
study.

The distance clustering approach has been introduced
using the Euclidean distance with the centroids set to be
the pressures sensor’s location and additional q strategical
nodes in the network. An extra data collection needs to be
done in the real WDN, simulating a leak event in the net-
work in each location set to be a cluster center. Following
the leak localization approach founded in analyzing the
residual correlation simulated in the leak events and the
actual residual measurements.

A simple leak localization approach has been demon-
strated that utilizes only the residual of pressure measure-
ment, applying the maximum residual to set the highest
chance of clustering has a fault, to serve as a basis for
comparison with the method explained. The case study
applying both approaches demonstrates that the proposed
method has improved the ATD compared to the maximum
residual approach.

In this work, we see the sensors’ placement may affect the
performance of the leak localization apporach. Hence, in
the future, we plan to study sensor and centroid optimal
location to improve the result of the method.
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