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Abstract

This paper presents a Wasserstein attraction approach for solving dynamic mass transport problems over networks. In the
transport problem over networks, we start with a distribution over the set of nodes that needs to be “transported” to a
target distribution accounting for the network topology. We exploit the specific structure of the problem, characterized by
the computation of implicit gradient steps, and formulate an approach based on discretized flows. As a result, our proposed
algorithm relies on the iterative computation of constrained Wasserstein barycenters. We show how the proposed method finds
approximate solutions to the network transport problem, taking into account the topology of the network, the capacity of the
communication channels, and the capacity of the individual nodes. Finally, we show the performance of this approach applied
to large-scale water transportation networks.
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1 Introduction

The formalization of the optimal transportation prob-
lem by Gaspard Monge in 1781 (Monge 1781) and Leonid
Kantorovich (Kantorovitch 1958) evolved into a whole
branch of mathematics (Ambrosio et al. 2008, Ambro-
sio & Gigli 2013, Villani 2008) called optimal transport
theory. Optimal transport (OT) is based on the compu-
tation of the distance between two objects, probability
distributions in many cases, commonly referred to as the
Wasserstein distance (Vaserstein 1969). Optimal trans-
port has a wide range of applications, e.g., image re-
trieval (Rubner et al. 2000), averaging atmospheric gas
concentration data sets (Barré et al. 2020), segmenta-
tion and labeling of neurons (Nejatbakhsh et al. 2020),
clustering patterns linking COVID-19 dynamics and hu-
man mobility (Nielsen et al. 2020), and different ma-
chine learning problems, such as generative adversarial
networks (Arjovsky et al. 2017), low-rank matrix factor-
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ization (Cuturi et al. 2020) or fair regression (Chzhen
et al. 2020).

Despite the appealing properties of the Wasserstein dis-
tance, its computation requires solving an optimization
problem. Such optimization problems become computa-
tionally prohibited on high dimensional objects, a large
number of distributions or a high desired accuracy. How-
ever, the seminal work of Brenier (Brenier 1991) led to
practical numerical algorithms that started the search
for efficient algorithms to solve the OT problem (Peyré
& Cuturi 2019).

Our work focuses on the discrete OT problem, where
probability distributions are defined over the nodes of
a graph, assumed to be finite. In traditional OT ap-
proaches, it is assumed that mass (or a fraction of it)
at each point in the support of one of the probability
measures can be sent to any of the elements in the sup-
port of the other probability measure. As a result, the
transport plan is executed effectively in one step. How-
ever, we seek to explicitly consider the topology of the
underlying graph, which naturally imposes some trans-
portation constraints. Adding the topology of the graph
as a constraint means that there may not be a direct
link between two points in the support, as the edges of
the graph directly determine links. Therefore, our goal
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is to find a sequence of transport plans that move the
mass from an initial distribution to a final one along the
edges of a general connected graph so that the cost of
transportation is minimal while accounting for channel
and node capacities.

Finding the amount of mass that needs to be sent
through each edge so that the total cost of transporta-
tion is minimal is a well-known problem called the
minimum-cost flow problem. This problem has been
widely studied (Morton 1967, Ahuja et al. 1993, Hu
et al. 2020), and different algorithms have been pro-
posed to solve it (Kovács 2015). More importantly, the
Wasserstein distance can be rewritten as a minimum-
cost flow problem when considering a complete bipartite
graph (Bassetti et al. 2020). This can be extended to
more general graphs if one considers the shortest path
distance as the cost of sending a resource unit from
one node to the other. In this case, if we compute the
minimum-cost flow, then the mass sent from one node
to the other is known. Moreover, since the shortest path
between them is also known, we can make the first step
of the transportation by sending that mass through
the first edge of the path. Following this approach, we
obtain the desired sequence of transport plans. How-
ever, classical methods to solve this problem do not
have a condition to discern between paths when the
optimal flow is not unique (Essid & Solomon 2018).
This nonuniqueness leads to unpredictability of the
output from the solver since many paths can be indis-
tinguishable in terms of costs. To avoid that case, some
algorithms introduce an additional term to the objec-
tive function so that it becomes strongly convex. These
regularized OT methods, like the well-known Sinkhorn
algorithm (Cuturi 2013), achieve uniqueness and signif-
icantly speed up the computation, compared to solving
a large linear programming problem. Still, it is at the
cost of finding an approximation of the solution to the
original problem.

Our approach is based on the resolution of the Wasser-
stein attraction (WA) problem (Peyré 2015), which
requires the computation of a Wasserstein barycenter
(WB) of two distributions at every iteration. Comput-
ing the WB yields an intermediate distribution, defined
as the Fréchet mean of the two measures, which is the
result of minimizing the sum of the (Wasserstein) dis-
tances between itself and each of the two distributions
(Cuturi & Doucet 2014). However, the support of this re-
sulting distribution can include any of the graph nodes.
We expand the definition of the WB problem by adding
constraints that ensure the mean obtained has the ap-
propriate support and each node does not receive more
mass than the amount available from its neighbors. This
approach resembles what is called displacement interpo-
lation (Villani 2008, Solomon et al. 2015). However, dis-
placement interpolation in the discrete-time case may
require a small step size of the weight to ensure certain
smoothness in the transportation (i.e., to avoid some of

the mass moving over more than one node in a single
step), which may lead to having many more iterations
than necessary. Furthermore, with this approach, there
is the possibility that certain nodes receive more mass
than the total obtainable from their neighboring nodes.
In summary, the main differentiating factor between
displacement interpolation and our proposal is the ad-
dition of the topology and capacity constraints imposed
by a graph. In this regard, (Haasler et al. 2021) recently
studied this problem in the context of traffic planning,
where edge capacity constraints are taken into account,
and proposed a framework based on the Lagrangian
dual problem to solve it, which resembles the Sinkhorn
algorithm.

Moreover, our proposed approach can be reformulated
as a discrete gradient flow problem. Several papers work
on discrete gradient flows over graphs (or other discrete
domains) (Chow et al. 2017, Erbar et al. 2020, Mielke
2013, Richemond & Maginnis 2017). However, such pa-
pers focus on the theoretical analysis of differential equa-
tions rather than the computational aspect with the reg-
ularized approximation of the Wasserstein metric (ex-
cept for (Erbar et al. 2020) which provides a more in-
depth discussion on the topic), and no additional con-
straints are considered on the elements of the graph. The
closest works to our setting with constrained WB are
(Peyré 2015, Cuturi & Peyré 2016). The former presents
a framework to approximate gradient flows for Wasser-
stein metrics by computing discrete entropy-regularized
flows, which are computed as JKO flows (named after
the authors in (Richard et al. 1998)). It introduces the
concept of Wasserstein attraction, which is used in our
work. We expand on this concept by observing that our
particular problem formulation allows us to write each it-
eration of the WA problem as the computation of a WB,
which unlocks the use of powerful computational tools
found in the literature to solve this problem. Addition-
ally, as previously mentioned, we further generalize the
definition of this regularized flow by including the sup-
plemental constraints of the topology of a network and
the node and edge capacity bounds, which are features
not considered in (Peyré 2015). The latter work, (Cuturi
& Peyré 2016), complements (Peyré 2015) while focus-
ing on the dual formulation of Wasserstein variational
problems. In the context of applications of JKO flows in
OT, (Bunne et al. 2021) recently proposed a novel pro-
cedure for the computation of JKO flows based on input
convex neural networks. It is applied in the study of pop-
ulation dynamics, where it assumes that the dynamics of
the model is parameterized by an energy function, which
controls how the transport is executed at each step, from
one state to the next. In our application, this role is per-
formed by another Wasserstein distance function instead
of an energy one (in addition to further constraints),
which also allows for explicit computation of the JKO
steps. Similar works such as (Chen et al. 2018, Guex
et al. 2019) propose methods for optimal transportation
over networks based on Markov processes. The authors
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in (Chen et al. 2018) use the relative entropy as an in-
dex of closeness between measures and, doing so, they
solve Schrödinger’s bridge problem (Schrödinger 1931)
for the computation of transport plans in a fixed number
of steps. This same entropy is used to measure how much
the mass spreads in the transportation. Thus, they de-
sign a transport plan where the mass spreads as much as
possible to guarantee robustness against failures in the
paths of the network, while still ensuring a reasonably
low total cost. In a similar fashion, (Guex et al. 2019)
uses a bag-of-paths framework equivalent to solving ei-
ther a standard or a relaxed entropy-regularized Wasser-
stein distance problem. Our approach allows topology
changes as well, but it does so by solving a new prob-
lem at each step of the transportation, ignoring previous
events, which increases the computational costs. How-
ever, the problem formulation allows us to consider node
and edge capacity constraints explicitly. Moreover, flow
speed can be adjusted with the weight parameter intro-
duced when solving a WB problem.

The main contributions of this paper are threefold. First,
we propose the mathematical formulation of a Wasser-
stein attraction-like problem to solve mass transport
problems over networks by writing them as the com-
putation of a WB problem with additional constraints.
Second, we present a methodology to find an approxi-
mation of optimal discrete flows over networks based on
Dykstra’s projection algorithm and the computation of
JKO flow proximal operators for the Kullback-Leibler
divergence and prove the convergence of these interme-
diate steps under certain assumptions. Finally, to the
best of our knowledge, there are no works related to
water management systems under the Wasserstein dis-
tance framework. Hence, we illustrate how this approach
using WB can be implemented to model a supply-and-
demand problem in the context of drinking water net-
works, where the network constraints are a crucial as-
pect inherent in their nature. In addition, we show how
it can automatically adapt to dynamic changes on the
network’s topology and agents. Furthermore, since there
is no known method that can be used for fair compari-
son that can generate a flow that minimizes the Wasser-
stein distances and takes into account the network con-
straints, we have opted to compare the performance of
our method with the commercial solver CPLEX with an
explicit formulation of the constraints.

The remainder of this article is structured as follows. In
Section 2, we provide the necessary background for our
work, stating some basic definitions from discrete OT
theory and present the formal statement of the problem
we want to solve. In Section 3, we briefly review Dyk-
stra’s projection algorithm in the setting of optimiza-
tion problems involving the Kullback-Leibler divergence
and how it can be used to solve the WB problem. Then,
we show the additional steps needed on the algorithm
to enforce support constraints and capacity bounds on
the network’s links and nodes. With that, we present

our proposed approach. In Section 4, we provide some
illustrative examples. We discuss our approach in the
context of flow optimization on drinking water networks
and give some remarks regarding the numerical imple-
mentation of the proposed algorithm. Finally, in Section
5, we provide some final comments and discuss future
investigation directions.

Notation

The column vector of all ones is denoted by 1 and I is
the identity matrix. The adjacency matrix of a graph
is denoted by A, and we will write Ā = A + I when
considering the connection of one node to itself. R+

and R++ refer to non-negative and strictly positive real
values respectively. Given x ∈ Rn, ‖x‖ stands for its
Euclidean norm. Given two matrices A,B ∈ Rn×m,
〈A,B〉 =

∑
i,j AijBij . We define the support of a func-

tion (or vector) ρ as supp(ρ) = {i | ρ(i) > 0}. We de-
note KL(π|ξ) as the Kullback-Leibler divergence between
π ∈ Rn×n+ and ξ ∈ Rn×n++ , defined as

KL(π|ξ) =

n∑
i,j=1

πij ln

(
πij
ξij

)
− πij + ξij ,

with the convention 0 ln(0) = 0. Finally, the indicator
function of a set C is defined as ιC(x) = 0 if x ∈ C, and
ιC(x) = +∞ otherwise.

2 Problem Statement: Discrete Flows and
Wasserstein Attraction on Graphs

2.1 Discrete Flows on Graphs

Consider a discrete, finite, fixed and connected graph
G = (V,E), where V is a set of n nodes V = (1, · · · , n),
and E is a set of directed edges such that E ⊆ V × V ,
where (j, i) ∈ E if and only if there is an edge between
the node j ∈ V and node i ∈ V . Denote the probability
simplex on V as Prob(V ) = {µ ∈ Rn+ |

∑
x∈V µ(x) = 1}.

The set of edges E has an associated weight function
c : E → R+ where each edge e ∈ E has a corresponding
weight ce = c(e), i.e., the cost of sending a unit of mass
using the edge e. Furthermore, endow the graph G with
its natural metric d which measures the total weight of
the shortest path between any two nodes in G.

We study the discrete flow (i.e., discretization in time)
problem of optimally transporting an initial mass dis-
tribution µ ∈ Prob(V ) to a target mass distribution
ν ∈ Prob(V ) using the graph G. The associated weight
of each edge allows us to define a cost matrix C ∈ Rn×n+ ,
where [C]ji = d(j, i) indicates the cost of transporting
a unit mass from node j to node i. Moreover, we endow
the space Prob(V ) of probability measures on V with
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the 1-Wasserstein distance between two probability dis-
tributions µ and ν on G as

W1(µ, ν) = min
π∈Π(µ,ν)

∑
x,y∈V

d(x, y)π(x, y),

where the minimizer is computed over all couplings on
V × V with marginals µ and ν, i.e., the set of optimal
transport plans Π(µ, ν) =

{
π ∈ Rn×n+

∣∣π1=µ, πᵀ1=ν
}

.

Our objective is to design a discrete flow {ρt}t≥0 on
G, where ρt ∈ Prob(V ), by constructing a sequence of
transport plans {πt}t≥0 such that ρ0 = µ, ρt+1 = πt1,
ρt = πᵀ

t 1 and limt→∞ ρt = ν. Moreover, the transport
cost at each iteration should be minimized.

Furthermore, the desired sequence of transport plans is
required to satisfy the following constraints imposed by
the network:

(a) A node can only send mass to its neighbors, i.e.,

[πt]ij > 0 if [ρt]j > 0 and (j, i) ∈ E. (1)

In other words, the flow should follow the spar-
sity pattern induced by the graph topology. Intu-
itively, a flow can only be assigned between two
nodes if and only if there is an edge connecting
them. Hence, for a transport plan πt it must hold
that supp(ρt+1) ⊆ {supp(ρt) ∪ {j | (j, i) ∈ E}}.

(b) The mass sent over an edge cannot be greater than
the associated edge capacity, i.e.,

πt ≤ C̃, (2)

for a matrix of capacities C̃ ∈ Rn×n+ , where [C̃]ij is
the capacity of the edge (j, i) ∈ E (the inequality
should be understood element-wise).

(c) The mass at a node i at some time instant t ≥ 0
must not exceed its local storage capacity, i.e.,

ρt ≤ ρ, (3)

for a vector of storage capacities ρ ∈ Rn+ (again, the
inequality is understood entry-wise).

(d) The mass transported from a node j to a node i
cannot exceed the mass held at node j, i.e.,

[πt]ij ≤ [ρt]j .

2.2 Wasserstein Attraction Flows

We formulate the dynamic transport problem described
in Section 2.1 as a constrained Wasserstein attraction
(WA) problem (Peyré 2015, Section 5.2). Our main tech-
nical tool will be the JKO flow proximal operators which

we introduce next. We first present the JKO flow prox-
imal operator with respect to a functional f . For all
q ∈ Prob(V ),

ProxW1

τ,f (q) , argmin
p∈Prob(V )

{W1(p, q) + τf(p)} ,

where τ is a step-size. Thus, starting from an initial dis-
tribution ρ0 = µ, the discrete JKO flow with respect to
f is defined as

ρt+1 , ProxW1

τ,f (ρt). (4)

Wasserstein attraction refers to the flow generated by
the implicit gradient steps in (4), known as JKO step-
ping, with respect to the potential function defined as
W1(ρt, ν) for some fixed distribution ν. Informally, the
potential function drives the flow to minimize its Wasser-
stein distance to a target distribution. Thus, we define
the WA discrete flow as

ρt+1 = ProxW1

τ,W1(·,ν)(ρt)

= argmin
p∈Prob(V )

{W1(p, ρt) + τW1(p, ν)} . (5)

The WA defined in (5) has a precise optimization struc-
ture. However, the computation of each proximal opera-
tion is computationally intense (Peyré 2015). Moreover,
the constraints imposed by the graph are not taken into
account. In the next subsection, we describe our pro-
posed approach for the efficient computation of the dis-
crete WA, taking into account the constraints imposed
by the network.

2.3 Approximate Wasserstein Attraction Flow on
Graphs

Initially, we present the entropy regularized discrete
JKO flow for the WA problem following the ideas intro-
duced in (Peyré 2015). The main contribution in (Peyré
2015) is to replace the Wasserstein distance functions
with their entropy regularized versions. The use of en-
tropic regularization has been shown useful for the de-
sign of computational approaches for OT (Cuturi 2013).

Definition 1 Given a cost matrix C ∈ Rn×n+ , the dis-
crete entropy-regularized Wasserstein distance
between µ, ν ∈ Prob(V ) is defined as

Wγ(µ, ν) = min
π∈Π(µ,ν)

〈C, π〉+ γH(π), (6)

where H(π) =
∑
πij(lnπij − 1) = 〈π, lnπ− 11>〉 is the

negative entropy and γ ≥ 0 is the regularization param-
eter.
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Now, we can define the approximate entropy-regularized
WA flow as

ρt+1 = Prox
Wγ

τ,Wγ(·,ν)(ρt)

= argmin
p∈Prob(V )

{Wγ(p, ρt) + τWγ(p, ν)} . (7)

Note Wγ(·, ·) is a strictly convex and coercive function,
therefore the operator in (7) is uniquely defined.

Next, we state one important observation about the
entropy-regularized WA flow in (7). Without loss of gen-
erality, one can multiply the argument in the optimiza-
tion problem (7) by a constant ω = 1/(1 + τ). Thus, we
obtain

ρt+1 = argmin
p∈Prob(V )

{ωWγ(p, ρt) + (1− ω)Wγ(p, ν)} , (8)

which is precisely the entropy-regularized Wasserstein
barycenter between ρt and ν (Cuturi & Doucet 2014).
Recall that for a finite set of probability distributions
{µi}mi=1 where µi ∈ Prob(V ), the entropy-regularized
Wasserstein barycenter is defined as

µ , argmin
p∈Prob(V )

m∑
i=1

ωiWγ(p, µi),

where ωi ≥ 0 and
∑m
i=1 ωi = 1.

We interpret the Wasserstein attraction problem as the
sequential computation of Wasserstein barycenters. This
introduces an additional weight parameter that can be
modified to give preference to one measure or the other.
Such parameter consequently alters how the mass is
transported across the graph, as we illustrate further
along this paper.

Note that the barycenter is not restricted to only two
distributions but as many as one may need. This means
that the solution proposed here could be extended for
problems akin to ours but involving more than two dis-
tributions, and in turn, we would have several weight
parameters to customize the solutions obtained (Tupitsa
et al. 2020).

The method that we propose uses Dykstra’s projection
algorithm (Dykstra 1983). In our setting, much like
Sinkhorn’s algorithm, it is easier to implement than
more traditional schemes designed to solve mathemati-
cal programs.

Another feature of the proposed approach is that, un-
like in the computation of the Wasserstein distance (or,
for that matter, solving the minimum-cost flow prob-
lem), we do not compute the complete flow in a single
step, which would also entail having to store the short-
est path between each node (or at least the first step

of each path). In this regard, our method not only does
not need to store this additional information, but it is
also memoryless in the sense that, at each step, the al-
gorithm solves a new problem with initial and final dis-
tributions. This is advantageous since these measures do
not need to be the same as in the previous steps (even the
parameters, such as the weights, can be changed). This
adaptability is the main difference between the flow we
compute, a discrete one, and the one found by solving a
minimum-cost flow problem, which is continuous. These
aspects might take importance in future works where
this method could be adapted in the context of decen-
tralized or distributed optimization, where the available
information at each node is limited (Krawtschenko et al.
2020, Dvurechenskii et al. 2018).

Approximate solutions to problems of the form (8) can
be efficiently computed by reformulating the entropy-
regularized OT problem (6) as

Wγ(µ, ν) = min
π∈Π(µ,ν)

KL(π|ξ), (9)

where ξ = e−C/γ (entry-wise exponential) (Benamou
et al. 2015). Note that (9) can be extended for higher
dimensional arrays (such as the tuples π = (π1, . . . , πm)
introduced in the definition of the WB) by summing over
the indices (i, j, k, . . .). Thus, following (Benamou et al.
2015), we can rewrite Problem (8) as

min
π∈Cf∩Ce

KLω(π|ξ)=ωKL(π1|ξ)+(1−ω)KL(π2|ξ), (10)

where

Cf = {π1, π2 | π11 = ρt, π21 = ν} , (11)

Ce = {π1, π2 | πᵀ
1 1 = πᵀ

2 1 = p} . (12)

Finally, taking into account the constraints in (1), (2)
and (3) in Problem (10), we can state our main contri-
bution regarding the design of the entropy-regularized
discrete WA flow.

Problem 2 Consider a discrete, finite, fixed and con-
nected graph with n vertices, C̃ ∈ Rn×n+ the capacity ma-
trix, and µ, ν ∈ Prob(V ) the initial and final distribu-
tions respectively. We design the sequence of probability
measures {ρt}t≥0 by finding, for each t ≥ 0, the transport
plan that solves the optimization problem

{πt}= argmin
π∈Cf∩Ce

π∈C1∩C2∩C3

ωKL(π1|ξ)+(1−ω)KL(π2|ξ), (13a)
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where

Cf =
{
π ∈ Rn×n+ ×Rn×n+ | π11 = ρt, π21 = ν

}
(13b)

Ce =
{
π ∈ Rn×n+ ×Rn×n+ | πᵀ

1 1 = πᵀ
2 1 = p

}
(13c)

C1 =
{
π ∈ Rn×n+ ×Rn×n+ | π1 ≤ C̃

}
(13d)

C2 =
{
π ∈ Rn×n+ ×Rn×n+ | πᵀ

1 1 ≤ ρ, πᵀ
2 1 ≤ ρ

}
(13e)

C3 =

{
π ∈ Rn×n+ ×Rn×n+ |[πᵀ

1 1]i≤
∑

j:(j,i)∈E

[ρt]j

}
(13f)

We note that the constraint set C3 is redundant if in C1
we consider [C̃]ij = 0 when nodes i and j are not con-
nected. This is, in fact, what we propose for our proce-
dure in Section 3.3. Nevertheless, we write it explicitly in
the problem formulation since it is a necessary constraint
that could be imposed differently in other methodolo-
gies.

Figure 1 shows a simple example to illustrate the steps
we obtain by solving Problem 2. The transport is com-
puted over a path graph, and it starts with an initial dis-
tribution (top left) with its mass located in the central
nodes, and the final mass (bottom right) is distributed
closer to the extremes of the path. At each iteration,
we show the resulting distribution found by solving (13)
considering the previous solution as the initial measure.
We have also considered a storage capacity of 0.3 for
the third-to-last node, resulting in partially sending the
mass in the fourth iteration. We see how the mass is
transported from the initial setting until the final dis-
tribution is eventually covered while verifying the con-
straints imposed in the problem statement addressed
here.

3 Iterative Projections for the Computation of
Transport Plans

Now that we have the necessary background on dis-
crete OT and have introduced the problem we want to
solve, we describe the approach that we propose. We will
solve the regularized version of the WB problem, with
the additional constraints (1), (2) and (3). To do so, we
use a well-known algorithm for solving regularized OT
problems called Dykstra’s projection algorithm (Dyk-
stra 1983), which, in our setting, is a generalization of the
widely used Iterative Bregman Projections (IBP) algo-
rithm (Benamou et al. 2015). We use Dykstra’s method
because the convergence of IBP cannot be guaranteed
in the presence of inequality constraints.

In Section 3.1, we give some background on how this
algorithm is used to compute the regularized WB. In
Section 3.2, we show how one can modify the algorithm
to compute the WB with the added constraints, and
finally, in Section 3.3, we move on to the description of
the proposed algorithm.

3.1 Computation of the WB using Dykstra’s projection
algorithm

Dykstra’s projection algorithm can be used to solve
problems of the form

min
π∈∩iCi

KL(π|ξ),

much like Problem 2 defined in Section 2. It is based
on the computation of the proximal operators for the
KL divergence. This is done iteratively, cycling through
each constraint set Ci, and since C = ∩iCi is a finite
intersection of L sets, we shall define, for every index i,
Ci+L = Ci. Then, for each k > 0 we compute

π(k) = ProxKL
ιCk

(
π(k−1) · q(k−L)

)
, q(k) = q(k−L)π

(k−1)

π(k)
,

with initial values π(0) = ξ and q(0) = q(−1) =
. . . = q(−L+1) = 11ᵀ. The product and division of ma-
trices are considered element-wise. We slightly abuse no-
tation by omitting the step-size τ in the definition of the
proximal operator, since we are multiplying the argu-
ment in the optimization problem (7) by ω = 1/(1 + τ),
as noted in Section 2.

The next proposition states how we can compute in
closed form the proximal operator corresponding to each
constraint in the WB problem (10).

Proposition 3 (Proposition 1 in (Benamou et al. 2015))
The proximal operator of the indicator function ιCf ,
corresponding to the constraint set Cf in (11), has the
closed form

[
ProxKLω

ιCf
(π)
]
l
= ProxKL

ι{πl1=Pl}
(πl)=diag

(
Pl
πl1

)
πl,

(14)
where l = 1, 2 and P1 = ρt, P2 = ν.

Remark 4 For set Cf , since the constraint is imposed
to each transport plan independently from the rest, we
can compute the proximal operator ProxKLω

ιCf
(π) the same

way as with the Wasserstein distance in (Benamou et al.
2015), but individually for each πl.

Proposition 5 (Proposition 2 in (Benamou et al. 2015))
The proximal operator of the indicator function ιCe , cor-
responding to the constraint set Ce in (12), has the closed
form [

ProxKLω
ιCe

(π)
]
l

= πldiag

(
p

1ᵀπl

)
, (15)

where p =
∏m
l=1 (1ᵀπl)

ωl (the products and exponentia-
tion are considered element-wise), and m = 2 in our
case.
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Initial distribution Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6 Final distribution

Fig. 1. Illustrative example showing the steps obtained by solving problem 2. The top left plot shows the initial distribution,
and on the bottom right, we have the target distribution, which is reached at iteration 6. Note that there is a capacity constraint
on the third-to-last node.

3.2 Capacity and support constrained WB

In the context of networks, it is reasonable to restrict
how much mass can be sent from one node to another,
i.e., to add a capacity to the edges connecting the nodes.
This constraint is imposed on each transport plan by
defining a capacity matrix C̃∈Rn×n such that [C̃]ij is the
maximum mass that can be sent from node i to node j.

Similarly to Proposition 3, since this capacity constraint
is imposed on each transport plan independently of the
rest, the projection is done individually for each trans-
port plan. The following proposition concerns the com-
putation of the proximal operator for the set C1 in (13d).

Proposition 6 (Section 5.2 in (Benamou et al. 2015))
The proximal map for the function ι{π1≤C̃} is defined as

ProxKL
ι{π1≤C̃}

(π1) = min
(
π1, C̃

)
, (16)

with the minimum computed element-wise.

We can also have capacity limits on some of the nodes,
meaning that even though the optimal solution might
send a certain amount of mass to one of these nodes, it
may not be possible to hold that much quantity. This
corresponds to the constraint set C2 in (13e). This set is,
in fact, the same as one of the sets defined to solve par-
tial transport problems, as seen in (Benamou et al. 2015)
(except for having ρ instead of one of the marginals).
From that, we get the following result for the computa-
tion of the projection on this set in closed form.

Proposition 7 (Proposition 5 in (Benamou et al. 2015))
For the the indicator function ιC2 , corresponding to the
constraint set C2 in (13e), one has[

ProxKLω
ιC2

(π)
]
l

= ProxKL
ι{πᵀ

l
1≤ρ}

(πl)

= πldiag

(
min

(
ρ

πᵀ
l 1
,1

))
,

(17)

where the minimum and division of vectors are considered
element-wise.

In addition to the capacity constraints (13d) and (13e),
we want to restrict the barycenter domain to a smaller
set of nodes, rather than the whole graph, since we can
only send mass to the nodes in the support of ρt and
their neighbors. In this case, we would obtain a vector of
dimension n∗ ≤ n, where each element corresponds to
the mass at one node of the subset. It is clear from the
second constraint of the WB problem, πᵀ

l 1 = p ∀l for
some measure p, that by resizing p to have dimension n∗,
now πl ∈ Rn×n∗ and, subsequently, for the cost and ca-
pacity matrices, we should only take the columns corre-
sponding to the subset of nodes (thus Cl, C̃l ∈ Rn×n∗).
Therefore, the dimensions of the arrays in the compu-
tation of the projections still agree. However, let us go
through the deduction of the computation of the pro-
jection on Ce shown in (15) to see that it is well defined

and it still holds for this support constraint (ProxKLω
ιCf

is

similar and ProxKLω
ιC1

and ProxKLω
ιC2

are straightforward).

Proposition 8 The computation of the proximal opera-
tor ProxKLω

ιCe
(π) in (15) still holds for n×n∗ dimensional

matrix inputs, where n∗ ≤ n.

PROOF. Given π
(k−1)
l ∈ Rn×n∗ , computing the pro-

jection on the set Ce consists in solving the optimization
problem

min
π(k)∈Ce

m∑
l=1

ωlKL
(
π

(k)
l

∣∣∣π(k−1)
l

)
.

For the sake of notation, we define πl := π
(k)
l , πl :=

π
(k−1)
l and, with that, expanding the problem leaves us
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with

min
π,p

∑
l,i,j

ωlπl,ij

(
ln
πl,ij
πl,ij

− 1

)
s.t. πᵀ

l 1 = p, l = 1, . . . ,m.

The Lagrangian of this problem is

∑
l

∑
i,j

ωlπl,ij

(
ln

πl,ij
πl,ij − 1

)
+ λᵀl (πᵀ

l 1− p) ,

where λl ∈ Rn∗ ∀l are the Lagrange multipliers.

On one hand, if we differentiate the Lagrangian with
respect to πl,ij and equate to zero, we get

ωl

(
ln
πl,ij
πl,ij

)
+ λl,j = 0. (18)

On the other hand, differentiating with respect to pj
yields

−
∑
l

λl,j = 0. (19)

Isolating πl,ij from (18) yields πl,ij = πl,ije
−λl,j
ωl , thus

πl = πldiag

(
e
−λl,1
ωl , . . . , e

−λl,n∗
ωl

)
. (20)

Then, combining (20) together with the constraint
πᵀ
l 1 = p, we obtain

diag

(
e
−λl,1
ωl , . . . , e

−λl,n∗
ωl

)
πᵀ
l 1 = p, (21)

from which we deduce

diag

(
e
−λl,1
ωl , . . . , e

−λl,n∗
ωl

)
= diag

(
p

πᵀ
l 1

)
, (22)

where the division is considered element-wise.

We still have to use the result in (19), so, we first
rewrite (21) as (πᵀ

l 1)
ωl = diag

(
eλl,1 , . . . , eλl,n∗

)
pωl ,

with element-wise exponentiation. With this relation,
we compute

∏
l (π

ᵀ
l 1)

ωl , which is

∏
l

(πᵀ
l 1)

ωl = diag
(
eΣlλl,1 , . . . , eΣlλl,n∗

)
pΣlωl .

Then, using (19) and the fact that
∑
l ωl = 1, we can

write the measure p in terms of the known quantities πl
and ωl as

p =
∏
l

(πᵀ
l 1)

ωl . (23)

Finally, combining (20)−(22)−(23), we obtain

πl = πldiag

(
p

πᵀ
l 1

)
, where p =

∏
l

(πᵀ
l 1)

ωl ,

which is what we wanted to show. 2

3.3 Description of the proposed approach

Now, we can present the proposed algorithm to solve
Problem 2. We use Dykstra’s projection algorithm, and
together with the support and capacity constraints, we
can impose the additional restrictions introduced in the
problem statement (Section 2).

For the support constraint (13f), we will take for each
matrix only the columns corresponding to the nodes in
the support of ρt and their neighbors, which we know,
since we have the adjacency matrix A. Once we compute
ρt+1, as it might have a smaller dimension n∗ ≤ n, we
can redefine ρt+1 as an n-dimensional vector of all zeros
except for the nodes that the elements of ρt+1 referred
to, which will have the value that we have just computed.
While this definition reduces the result to the desired
support, nodes in supp(ρt) can still send mass to non-
neighboring nodes. To fix this issue, we adapt constraint
(13d). We redefine the capacity matrix C̃ for the trans-
port plan π1 from ρt to ρt+1, such that for the nodes in
the support of ρt, if there is no connection between one
of them and another node, the ”link” between them has
zero capacity, i.e.,

[C̃]ij =

{
0 if j ∈ supp(ρt) and Āij = 0,

[C̃]ij otherwise.
(24)

We note that, in this case, constraints (13d) and (13f)
could have had a separate matrix for each one and be
considered two different projections on the algorithm,
but here we merge both into one.

Resizing the matrices to limit the support is unnecessary
for the algorithm to converge to the desired solution
since it is already taken care of by the capacity matrix
(24). Nevertheless, by implementing it, the dimension of
the problem can be reduced, so the computations can be
executed faster. In the worst-case scenario where all the
nodes have mass, there is a direct connection to all the
nodes or similar settings, the matrices and vectors would
not be modified, and the algorithm would proceed as if
this support constraint was not implemented.
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Finally, for the storage capacity on each node (13e), we
resize ρ to only consider the elements corresponding to
the nodes on the new support.

Algorithm 1 summarizes the proposed method. It is
important to remark that our entropy-regularized ap-
proach does not allow the scheme to converge exactly to
the target distribution ν. Since the additional entropy
term in the definition of the Wasserstein distance (6)
forces every node to send a small amount of mass to the
rest, even if it does not correspond to the distribution
described by ν, the solution obtained can be more or
less diffused depending on the regularization strength
γ. Moreover, we cannot guarantee the convergence of
Algorithm 1 for a fixed weight ω, and to our knowledge,
there is no proof for it as of yet. However, if instead of
taking fixed values for both γ and ω we consider, at each
step t, γ(t), ω(t) such that γ(t), ω(t) → 0 as t → +∞
and

∑
t ω(t) = +∞, we can ensure its convergence (Be-

namou et al. 2015)(Peyré 2015). We have introduced
the second condition on the weight ω(t) to prevent the
parameter from vanishing too quickly. Otherwise, in
the computation of the WB, we would obtain the fi-
nal distribution or one close to it, but the subsequent
projections introducing the graph constraints could
prevent us from reaching such measure, since we may
still have no access to those target nodes. Despite that,
in the simulations carried out in Section 4, we consider
the weight ω to be both tending to zero (without van-
ishing too fast) and fixed, since we have observed how,
for a constant ω < 1/2, the mass reaches the target
distribution as well.

We state the following lemma regarding the convergence
of the computation of each intermediate distribution in
the discrete flow.

Lemma 9 For each step t, let C̃ be the capacity matrix
defined in (24) such that it verifies C̃ᵀ1 > ρt, and let ρ be
the retention capacity vector in the constraint set C2 such
that ρt < ρ (both inequalities are considered element-
wise). Then, the iterative computation of the proximal
steps defined in Propositions 3, 5, 6 and 7 converges to
the solution of (13a).

PROOF. The condition C̃ᵀ1 > ρt ensures that the
mass defined by the initial distribution in the t-th step,
ρt, can be moved or even kept still in some of the nodes in
its support. Similarly, if ρ verifies ρt < ρ, then the same
initial distribution ρt is a feasible solution. In particular,
we have ri(Cf )∩ri(Ce)∩ri(C1)∩ri(C2)∩ri(C3) 6= ∅, where
ri(C) is the relative interior of the set C. Thus, by Propo-
sition 3.1 in (Peyré 2015), the iterative computation of
proximal steps converges to the desired solution. 2

Remark 10 The conditions on C̃ and ρ are set only to
ensure the existence of a feasible solution. Hence, these

Algorithm 1 Conceptual procedure of the proposed ap-
proach

Input: Initial and final distributions ρ0 and ν, adja-
cency matrixA, full cost matrixC∗, full vector of storage
capacities ρ∗, regularization parameter γ(t) and weight
ω(t) depending on t and such that γ(t), ω(t) → 0 as
t→ +∞, accuracy parameter ε > 0

1: t = 0
2: while 1

2 ‖ν − ρt‖1 > ε do
3: Find the support of the new measure ρt+1

4: Define C as the cost matrix C∗ but taking only
the columns corresponding to the new support

5: Define ρ as the vector of storage capacity ρ∗ but
taking only the elements corresponding to the new
support

6: Define the capacity matrix C̃ as seen in (24)
7: Compute the WB ρt+1 with weights ω1 = ω(t) and

ω2 = 1− ω(t) and the additional support and ca-
pacity constraints by using Dykstra’s projection

algorithm with initial conditions π
(0)
1 = π

(0)
2 =

e−
C
γ(t) and the proximal operators defined on (15),

(14) and (17) (with ρ) for both transport plans,
and (16) only for transport plan π1 to enforce the
capacity constraint (13d) with capacity matrix C̃

8: t← t+ 1
9: end while

Output: {ρt}t

hypotheses could be exchanged for other expressions as
long as they are not so restrictive that a solution can-
not satisfy all the constraints. The ones proposed in the
statement of Lemma 9 are reasonably lax and could be
expected in more practical applications.

4 Numerical simulations

In this section, we show numerical simulations that pro-
vide evidence for the effectiveness of the proposed ap-
proach and analyze its performance. We further show
how to implement it to solve a supply and demand prob-
lem related to a drinking water network (DWN).

4.1 Implementation details

Before discussing the results obtained in the simulations,
some remarks about the implementation of Algorithm
1 are in order. Algorithm 2 shows the detailed steps of
Algorithm 1 to solve Problem 2. The computations are
carried out using logarithms, as some of the values are
of the order of e−1/γ , so when the regularization is really
small we might obtain machine precision issues if we did
it outside the logarithmic domain. Moreover, to compute
ln ((πiqj)1) (the product of matrices is element-wise) us-
ing Lπi + Lqj = ln(πi) + ln(qj), one
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Algorithm 2 Detailed implementation of Algorithm 1

Input: Initial and final distributions ρ0 and ν, adja-
cency matrixA, full cost matrixC∗, full vector of storage
capacities ρ∗, regularization parameter γ(t) and weight
ω(t) depending on t and such that γ(t), ω(t) → 0 as
t→ +∞, accuracy parameter ε

1: t = 0
2: while 1

2 ‖ν − ρt‖1 > ε do
3: suppnew = supp(Āρt)
4: Define C as the cost matrix C∗ but taking only

the columns corresponding to suppnew
5: Define the capacity matrix C̃ as seen in (24)
6: LC̃ = ln C̃
7: Lρ = ln ρ
8: Lπ1

= Lπ2
= − 1

γC

9: Lq1=Lq2=Lq3=Lq4=Lq5=Lq6=Lq7= ln (11ᵀ)
10: Lp = 1
11: k = 0
12: while ‖Lp− ln (πᵀ

1 1)‖1>ε or |ln(1ᵀ(π11))|>ε do
13: L′π1

= Lπ1

14: L′π2
= Lπ2

15: if k mod 4 = 0 then
16: Lπ1

← Lπ1
+ Lq1 + (ln ρt − ln ((π1q1)1)) 1ᵀ

17: Lq1 ← Lq1 + (L′π1
− Lπ1

)
18: Lπ2 ← Lπ2 + Lq2 + (ln ν − ln ((π2q2)1)) 1ᵀ

19: Lq2 ← Lq2 + (L′π2
− Lπ2)

20: else if k mod 4 = 1 then
21: Lp ← ω ln ((π1q3)ᵀ1) + (1− ω) ln ((π2q4)ᵀ1)
22: Lπ1

← Lπ1
+ Lq3 + 1 (Lp − ln ((π1q3)ᵀ1))

ᵀ

23: Lq3 ← Lq3 + (L′π1
− Lπ1

)
24: Lπ2

← Lπ2
+ Lq4 + 1 (Lp − ln ((π2q4)ᵀ1))

ᵀ

25: Lq4 ← Lq4 + (L′π2
− Lπ2

)
26: else if k mod 4 = 2 then
27: Lπ1 ← min(Lπ1 + Lq5 , LC̃)
28: Lq5 ← Lq5 + (L′π1

− Lπ1)
29: else
30: Lπ1

← Lπ1
+Lq6 +1 (min (Lρ − ln ((π1q6)ᵀ1)))

ᵀ

31: Lq6 ← Lq6 + (L′π1
− Lπ1

)
32: Lπ2

← Lπ2
+Lq7 +1 (min (Lρ − ln ((π2q7)ᵀ1)))

ᵀ

33: Lq7 ← Lq7 + (L′π2
− Lπ2

)
34: end if
35: k ← k + 1
36: end while
37: ρt+1 = exp(Lp)
38: Rewrite ρt+1 so that it is an n-dimensional vector

of all zeros except on suppnew
39: t← t+ 1
40: end while

Output: {ρt}t

can take advantage of the identity ln
∑N
i=0 ai = ln a0 +

ln
(

1 +
∑N
i=1 e

ln ai−ln a0
)
, where a0 ≥ a1 ≥ . . . ≥ aN .

Additionally, for the loop condition at line 12 of
Algorithm 2, we have added the second condition
|ln(1ᵀ(π11))| > ε, to check if a capacity constraint has
been enforced on any position on the transport plan
π1. This is done to avoid numerical issues where, de-
pending on the precision parameter ε, the first while
condition might not be verified but the solution has not
yet converged to C1 in (13d).

4.2 Synthetic examples

To illustrate the steps described in Algorithm 1, in Fig-
ure 2, we show a simple example, where we start with a
Dirac measure at the center of the graph, whose mass has
to be distributed among the outermost nodes. Each sub-
sequent plot shows the intermediate measure obtained
after one iteration until the final distribution is reached.

In Figure 3, on the left we plot the total variation dis-
tance between the intermediate distribution ρt and the
target measure ν, for ω(t) tending to zero at different
rates and also fixed at ω(t) = 0.1. In any case, we see
how we eventually converge to the final distribution. Due
to the symmetrical nature of the network and the prob-
ability measures, we observe how for ω = 0.1, since it
gives more weight to minimizing the distance to ν rather
than the previous distribution, the mass advances until
it eventually covers the target in a single step. Similarly,
for ω(t) = 1/ ln t, the weight decreases at a slow rate,
and so the mass is transported gradually until ω is small
enough to cover ν in a single step. For ω(t) = 1/t, the de-
crease rate is faster, but when it finally starts covering ν,
it does so fractionally in a couple of steps, since it is still
large enough to give some significant weight to the pre-
vious distribution. On the right of Figure 3, we have the
cost of transportation (in other words, the Wasserstein
distance) of each step, and we observe how the cost adds
up to be similar for each case, and we can reach the same
conclusions we had with the study of the total variation
distance. In particular, we notice how for ω(t) = 1/ ln t,
the mass does not move until ω is small enough at the
sixth iteration. From there, the transport is similar to
what we have for the other cases. As a side note, this is a
suitable illustration of the information that the Wasser-
stein metric can provide with regard to the difference
between two measures in the particular domain they are
in, which can be lost when using other metrics.

In this and the following examples, we take γ = 10−3

(except stated otherwise) to have low diffusion. We could
take γ(t) → 0 as t → +∞, as we have commented ear-
lier. However, the computational speed significantly de-
creases as the regularization tends to zero, and with this
small fixed value, the results obtained have been satis-
factory in terms of precision and convergence speed.

Moreover, as we have just commented, apart from taking
ω(t)→ 0 as t→ +∞, we have also considered a constant
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Initial distribution Iteration 1

Iteration 2 Iteration 3

Iteration 4 Final distribution

Fig. 2. Simple example showing the steps obtained with the
algorithm to go from the (top left) initial distribution to the
(bottom right) final one.
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Fig. 3. (Left) Total variation distance between the distribu-
tion obtained at iteration t (ρt) and the final distribution
(ν), and (right) cost of transportation for each iteration, for
the example depicted in Figure 2 and taking different weight
functions ω(t).

weight ω = 0.1, in favor of the final distribution. This
constant weight parameter plays an important role in
how the mass is transported along with the graph, since
being closer to the final distribution rather than the pre-
vious measure in terms of the Wasserstein distance does
not mean that once the mass has moved from ρ0 to ν,
the followed path is the cheapest. To illustrate this case,
Figure 4 shows an instance where there are two paths
to reach the same node from a certain position, and the
whole mass must be sent from one place to the other.
Taking ω = 0.1, the left plot shows one iteration without
adding extra capacity constraints, which results in the
mass being transported through the straight line, as one
might surmise. The right plot shows the same setting but
with a capacity bound of 0.5 at each link. This value pre-
vents the mass from moving directly to the closest node,
and instead, it is forced to be divided and sent through
more than one path. With ω = 0.1, the mass tends much
more towards the final distribution than the initial one

(a) (b)

Fig. 4. (a) First step computed without adding physical ca-
pacities to the links, and (b) with an additional capacity of
0.5 at each link. We have the initial, final and intermediate
distributions in blue, orange, and yellow, respectively.

at each step. This amount of ω forces the mass to be
sent through the available paths, which sets the obtained
distribution as close as possible to ν while verifying the
constraints of Problem (13). However, if ω is increased,
giving preference to the initial measure, what we would
observe in the first iteration is a certain amount of mass
being sent through the straight path and the rest staying
in place in the initial position since it is closer than the
secondary path. Thus, we move everything through the
straight path, taking more steps to reach the final des-
tination, rather than using all the paths at our disposal
to finish in fewer steps, which is cheaper. This scenario
highlights the potential use of this weight parameter to
model the relationship between distributions at play and
determine how we move through the graph.

4.3 Real case application: drinking water network

4.3.1 Small case study

Now we proceed to study the case of a DWN. Figure
5 depicts a basic topology of a generic drinking water
transport network. The interaction along the most rel-
evant constitutive elements is described by the water
supply from the sources towards the network through
pumps or valves, depending on the nature of the partic-
ular source (either superficial or underground). There-
fore, drinking water is moved using manipulated actua-
tors to fill retention tanks and supply water to demand
sectors (city neighborhoods). The reader is referred to
(Ocampo-Martinez et al. 2013) for further details about
this system. Here, this case study is used to discuss and
analyze how the proposed approach works and how dif-
ferent parameters can be modified, showing the conse-
quent effects over the whole performance of the consid-
ered system.

We note that transporting water through a pipe requir-
ing a pump adds a cost of operation to that edge. This
added value can be modeled by including the extra ex-
pense into the cost matrix.

Figure 6 shows a simulation on the small network in Fig-
ure 5, ignoring the pumps (so, no additional costs on the
edges). Here, we again take advantage of the parameter
ω to regulate how the water is transported. In particular,
in the first step, we use a fairly high weight ω = 0.75 in
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Source

Sector of consume

Pump

Tank

Node

Fig. 5. Topology of the small DWN case study.

Initial distribution Iteration 1, ω = 0.75

Iteration 2, ω = 0.1 Iteration 3, ω = 0.1

Iteration 4, ω = 0.1 Final distribution

Fig. 6. Steps obtained for the small DWN case study.

favor of the initial distribution so that the transportation
is done more gradually. In the following steps, as each
one is independent of the preceding iteration, the weight
is reduced to ω = 0.1 so that the demand is covered
much faster. Similarly to Figure 3, Figure 7 shows the
total variation and Wasserstein distance between ρt and
ν at each iteration t, and we see how we eventually con-
verge to the final distribution with the different weight
functions ω(t) considered. In this case with the chosen
network topology and distributions, for ω(t) = 0.1 and
ω(t) = 1/t, the transportation is identical.

We have seen that with Algorithm 1 presented as it is,
we can account for some additional constraints regard-
ing physical limitations, such as capacities on the pipes
or additional costs to operate pumps to be able to send
mass between certain locations. Constraint (13e) in par-
ticular has been added with DWN-modelling in mind.
According to (Ocampo-Martinez et al. 2013), the nodes
that are neither tanks nor sources cannot hold as much
water, but they do have a certain retention capacity.

Another issue one can find is having to update specific
parameters due to external factors, for instance, the ini-
tial or final distributions if, for example, there is a sud-
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Fig. 7. (Left) Total variation distance between the distribu-
tion obtained at iteration t (ρt) and the final distribution
(ν), and (right) cost of transportation for each iteration, for
the example depicted in Figure 6 (taking different weight
functions).

den peak in demand, or even the graph topology if a
pipe breaks or needs to be cut for maintenance. In the
former case, since the scheme is memoryless, the initial
and final distributions at any step can be changed, and
the algorithm will proceed from there without having to
make any modifications to it. For the latter, a change in
the topology means that the adjacency and cost matri-
ces are updated, so, as long as these updated values are
provided at that step, just as with the change of distribu-
tions, the algorithm automatically adapts and proceeds
with the computations since the support and capacity
constraints are computed at each iteration.

This last case highlights this feature in our approach
that we have mentioned several times: each step does
not depend on the previous one, which allows the algo-
rithm to adapt to different changes as it advances. If,
for example, we wanted to find our sequence of distribu-
tions {ρt}t≥0 by solving a minimum-cost flow problem,
since the flow is computed all at once, each change in
the middle of the transportation would mean having to
recompute the whole solution (or at least restart taking
as the initial measure the distribution obtained at that
stage). Simultaneously, with our approach, we only need
to update the affected parameters, and the algorithm
proceeds from there. Here lies the main difference be-
tween our computation of a discrete flow and the contin-
uous flow one would obtain by solving a minimum-cost
flow problem.

4.3.2 Performance assessment with the Barcelona
drinking water network

To show the effectiveness of the proposed approach,
a bigger version of a DWN, particularly the one cor-
responding to Barcelona (Spain) and its metropolitan
area, is considered. In this DWN, the water sources are
the Ter and Llobregat rivers regulated at their head by
some dams with an overall capacity of 600 cubic hec-
tometres. With four drinking water treatment plants,
water from rivers and underground sources (wells) is
turned into potable water and served to Barcelona and
surrounding towns. Those different water sources cur-
rently provide a raw flow of around 7 m3/s. Water flow
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from each source is limited, implying different water
prices depending on water treatments and legal extrac-
tion canons.

The Barcelona DWN is structurally organized in two
functional layers: an upper layer named transport net-
work links the water treatment plants with the reser-
voirs distributed all over the city, while a lower layer,
named distribution network, links a reservoir with each
consumer sector (water demand). Notice that the upper
layer can be managed using control approaches, while
the distribution system follows a pre-established behav-
ior given by the water pressure determined. Figure 9 de-
picts the whole scheme of the transport network.

Our objective is to implement our algorithm for the man-
agement of the upper layer. The setting is analogous to
what we have seen in Section 4.3.1 for the small case
study: we want to find the (discrete) flow that moves the
mass from an initial distribution (water provided by the
treatment plants and reservoirs) to a target distribution
(expected water in the reservoirs to cover the consumers’
water demand) such that it follows the sparsity pattern
and constraints induced by the network, and each step
is the most cost-efficient (depending on the weight pa-
rameter ω). By computing the discrete flow, we can also
adapt the solution’s next step to changes on the network
or the other agents.

To perform the simulations, for the initial distribution
ρ0 we have taken the set of source nodes together with
close to half of the total amount of tanks (selected at
random), assigned them a value following a uniform dis-
tribution, and normalized the obtained vector so that
ρ0 ∈ Prob(V ). The final distribution ν is computed fol-
lowing the same steps with the remaining tanks. For the
nodes that are neither tanks nor sources, we have con-
sidered that those on the periphery have a retention ca-
pacity of 0.05. For the weight parameter, we have tested
it first with a small value ω = 0.1 so that the final dis-
tribution is reached in fewer iterations, and then with a
larger value ω = 0.45, so that the transport is slightly
more gradual. Further below we also comment on the
convergence when taking ω(t) = 1/t and ω(t) = 1/ ln t.

For comparison, the sequence {ρt}t≥0 is found by solv-
ing Problem 2, on one side with Algorithm 1, using dif-
ferent values of the regularization parameter γ, and on
the other, using the CPLEX solver, which uses the dual
simplex algorithm with the default parameters (MaxIter
= 9.2234× 1018, TolFun = 10−6).

Figure 8 shows on the top plot the total variation dis-
tance between the final distribution ν and the distribu-
tion obtained at every iteration with each method. We
notice how with low regularization, the solution obtained
is really close (in terms of the total variation distance)
to the non-regularized solution obtained with CPLEX,
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Fig. 8. Performance comparison between Algorithm 1 (us-
ing increasing values of the regularization parameter) and
CPLEX, using ω = 0.1 (left column) and ω = 0.45 (right
column). (Top) Total variation distance between the final
distribution ν and the distribution obtained at iteration t
(ρt), (middle) cost of transportation for each iteration, and
(bottom) time elapsed (in seconds) for each iteration (the
plot is in logarithmic scale for visualization purposes).

as expected, but even with higher values of the regular-
ization parameter (γ = 1, 10), there are no noticeable
differences, especially in the case with ω = 0.1. However,
with higher values (γ = 100), even though the first iter-
ations are close to the other results, the solution even-
tually becomes too diffused and is not valid in the set-
ting of DWN. The bottom plot shows the running time
of each iteration, i.e., the time elapsed to solve Prob-
lem (13) with the new distribution found in the previ-
ous step. As expected, the speed of convergence rapidly
decreases as γ → 0, which is a known issue with this
kind of algorithms (Essid & Solomon 2018). Nonetheless,
having seen how with higher regularization, the results
obtained are really close even to the CPLEX output, it
would be safe to consider a small enough constant γ in-
stead of taking γ(t)→ 0 as we do in Algorithm 1, in ex-
change of higher performance speed and without losing
too much accuracy.

Moreover, we have noticed how by removing the capac-
ity constraint to enforce both (13d) and (13f), the algo-
rithm performance vastly improves in terms of conver-
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gence speed, which makes sense, considering that it can
force sharp changes on the transport plan. In this re-
gard, it would be interesting to find a different approach
to improve the computation of the projection with the
capacity matrix C̃ in (24), or directly bypass it by re-
thinking the constraint in terms of the other parameters
and variables at play.

Figure 10 shows some selected iterations illustrating how
the water is transported towards the target distribution
(the bigger the point, the higher the amount of resource
is held in that node). Figure 11 shows the total varia-
tion distance between ρt and ν at each iteration t, taking
ω(t) = 1/t (left) and ω(t) = 1/ ln t (right). As one might
expect, since for ω(t) = 1/t the weight tends to zero at
a higher rate, we reach the solution in fewer iterations
than taking ω(t) = 1/ ln t. Since the Barcelona DWN is
highly connected to cover the whole city and metropoli-
tan area and accounts for any incidents on the network,
we have also carried out simulations in different graphs of
similar dimensions (around 102 nodes), shown in Figure
11 for comparison. In any case, we observe how the to-
tal variation distance eventually converges to zero, tak-
ing more steps for the case where the weight decreases
slower (ω(t) = 1/ ln t).

From the point of view related to the management of a
DWN, in particular, the considered case of Barcelona,
the proposed approach opens new ways of improving
existent management criteria in the sense of scalability
and modularity of the control approaches (Tedesco et al.
2018), apart from adding robustness capabilities to the
system. This latter aspect has been previously reported
for the particular case given the importance of reject-
ing the system disturbances and their nature (water cos-
tumers demands) (Grosso et al. 2017). In any case, a
straightforward comparison with existing methods for
management and control of DWNs is nowadays not fair
since our approach is presented as a proof of concept for
the proposed objectives related to the case study, and
then some additional design criteria should be consid-
ered.

5 Concluding remarks and future work

In this paper, we have presented a mathematical for-
mulation to resolve discrete optimal flows over networks
based on the computation of constrained Wasserstein
Barycenters. Using the entropically regularized approx-
imation of the Wasserstein metric allows us to use Dyk-
stra’s projection algorithm, which is easy to implement
and is competitive in terms of performance speed since it
only requires elementary operations such as matrix and
vector products. Moreover, with this methodology, the
solution obtained is unique.

We have observed how modifying the capacity matrix
to avoid sending mass between non-neighboring nodes

forces sharp changes on the transport plan entries, dras-
tically decreasing the execution speed of the algorithm.
Future work should be finding an efficient approach to
ensure that this condition is verified. However, this pa-
per focuses on the application of these optimal transport
concepts in the context of more real-life scenarios and
how they can automatically adapt to sudden changes in
the topology of the networks or the parameters and dis-
tributions.

We have illustrated how the value of the weight ω alters
how the mass is transported from node to node, even
mimicking the behavior we can observe if we implement
additional physical capacities on the links. It would be
interesting to gain more insight into the weight parame-
ter’s role in shaping the resulting distribution, not only
in our setting but also in the multi-marginal case, with
several weights. Moreover, the fact that the methodol-
ogy proposed can be extended to consider more than two
distributions and can adapt to different changes could be
used to tackle problems involving decentralized or dis-
tributed models, where not all the information is avail-
able for every agent.
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