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Abstract: The development of healthcare patient digital twins in combination with machine learning
technologies helps doctors in therapeutic prescription and in minimally invasive intervention proce-
dures. The confidentiality of medical records or limited data availability in many health domains are
drawbacks that can be overcome with the generation of synthetic data conformed to real data. The use
of generative adversarial networks (GAN) for the generation of synthetic data of lung cancer patients
has been previously introduced as a tool to solve this problem in the form of anonymized synthetic
patients. However, generated synthetic data are mainly validated from the machine learning domain
(loss functions) or expert domain (oncologists). In this paper, we propose statistical decision making
as a validation tool: Is the model good enough to be used? Does the model pass rigorous hypothesis
testing criteria? We show for the case at hand how loss functions and hypothesis validation are not
always well aligned.

Keywords: personalized medicine; generative adversarial network; lung cancer; validation tools

1. Introduction

Digital twins, a concept from the industrial internet of things (IIoT), is the discipline
of devising highly capable simulation models, especially those that consume data from
streaming for improving performance. Devising a simulation model of clinical behavior
in front of a disease is a task that is much more difficult than those for manufacturing
processes, because humans are so unpredictable and engineering approaches obviously
do not apply. The use of digital twins in healthcare systems is currently a hot topic under
research [1]. In particular, the authors of [2] design a behavioral healthcare model for the
case of lung cancer patients, which can be fed up into a decision support system [3].

Data-based solutions in the healthcare domain lead to privacy concerns [4]. Anonymiza-
tion arises as a tool to mitigate risks when gathering and massively processing personal
healthcare data [5]. However, data anonymization is usually seen as a major problem
in data analytics because it could lead to information loss [6], reducing the knowledge
contained in the dataset [7].

Nevertheless, new training procedures, such as generative adversarial networks
(GANs), aim at learning representations that preserve the most relevant part of the in-
formation. As a result of the GAN-based anonymization phase, a seedbed can be obtained
from the training data that allows not only to capture information from the original data
avoiding privacy concerns but also to generate new synthetic information with a similar
behavior to the original one [8]. Moreover, it is worth noting that obtaining clinical data has
a high cost and, many times, information is very limited. By developing reliable methods
for data augmentation with synthetic instances, medical professionals can benefit from this

Electronics 2022, 11, 3277. https://doi.org/10.3390/electronics11203277 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11203277
https://doi.org/10.3390/electronics11203277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2532-0946
https://orcid.org/0000-0001-9589-8199
https://orcid.org/0000-0001-9095-7241
https://orcid.org/0000-0001-6646-3751
https://doi.org/10.3390/electronics11203277
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203277?type=check_update&version=1


Electronics 2022, 11, 3277 2 of 15

valuable information [9]. For instance, computed tomography (CT) images of the pelvis are
synthetically generated in [10] for patients with cervical cancer using a conditional gener-
ative adversarial network based on a shallow U-Net (sU-Net) with an encoder/decoder
depth of 2. Digital pathology and histopathological image processing are other domains
where GANs are being extensively explored in medical advanced imaging [11,12]

The validation of synthetic samples, checking that they follow a distribution similar
to that of real patients, is a challenge [13,14]. As a simple solution, generated synthetic
data are mainly validated from the machine learning perspective using loss functions,
which are those selected for model optimization. As far as the model is optimized during
training, the selected loss function is minimized. Hence, the better a model is in terms of
the workload of interest, the better the generated synthetic data [15]. It is well known that
this implication is not always true; hence, some research is taking a different direction [16].

Performance evaluation using metrics, such as mean square error, for instance, is very
complicated to be employed when information is in the form of images or graphs—in fact,
in any domain that is not a metric space. For this reason, metric is usually replaced by
subjective ‘expert decision’, oncologists in this case [17,18].

In this paper, we offer a different perspective to design an objective validation tool,
which is very reasonable in decision making, applying to most of the cases in healthcare.
This approach is statistical decision making—that is, to rely in hypothesis testing: is the
model good enough to use? Does the model pass rigorous hypothesis testing criteria?
This approach is closely related with the resemblance evaluation, especially the univariate
resemblance analysis proposed in [19] when defining standardized metrics for synthetic
tabular data evaluation. However, beyond the proposal of a metric, we show for the case at
hand how loss minimization and hypothesis validation are not always well aligned. Hence,
statistical decision making should be considered along with model optimization’s losses,
enforced metrics or expert assessment for validation in domains such as synthetic data
generation in the healthcare domain.

The rest of this paper is structured as follows: In the next section, the available database
with lung cancer patients records is introduced; the methods used, the treatment of missing
values, and pre- and post-processing steps are described. Furthermore, a short introduction
about generative adversarial networks is also provided. Experimentation and results are
presented in Section 3, and they are validated by using the statistical criterion of goodness
of fit tests. Finally, a conclusion and discussion are provided about the work developed
and the results obtained.

2. Materials and Methods

In this section, the available real-world database is presented and analyzed. First,
the method used to clean and pre-process this database before being used in the proposed
GAN structure for synthetic data generation is described. Next, a post-processing of the
synthetic data is developed in order to obtain similar data to the real data.

2.1. Database of Lung Cancer Patients

This study is carried out using data from clinical trials of diagnosed lung cancer
patients once ethical approval was obtained from the associated legal body. Clinical data
come from patients in the Hospital Universitario Virgen del Rocío (HUVR), which is located
in Seville, Spain. This multi-center hospital complex belongs to the Andalusian Public
Health System, with more than 8400 professionals under its charge and with an annual
budget of more than five hundred million euros. It is a third-level hospital whose area
of influence is Western Andalusia and has a staff of 1279 installed beds. The database
is maintained and managed using the platform OpenClinica [20], which collected the
information of the diagnosed lung cancer patients. In order to preserve the privacy of the
patients, the dataset has been anonymized from the original database. The health team
validated the anonymized dataset before any study.
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Let us indicate that the considered features in the database are provided as different
types: that is, nominal, ordinal and quantitative features. This fact is very important in
order to elaborate an adequate data trial for the GANs because these deal with neural
networks which are fed with quantitative features. Thus, all the nominal and ordinal
data must be converted to numerical data in a pre-processing step. Nevertheless, nominal
variables cannot be codified as quantitative features as far as no prior order is defined in
them. Therefore, we hypothesize that our model will handle this type of data properly
and will provide us with acceptable results [21]. The validation phase will confirm our
hypothesis with respect to the nominal features.

It is worth noting that in the original dataset, outliers were previously treated for the
health and statistical team in the hospital. The obtained dataset was normalized in the
range from 0 to 255 in order to be converted in a 8× 8 pixels image. This is in our interest
because we want to unify all kinds of data in the form of healthcare images. In this form,
data can naturally be fed to the GAN structure, as it usually works on images. Tthis form
of data visualization makes the job of the medical team—understanding the information
obtained from the GAN structure—easier.

The dataset under consideration, which is recorded in CSV (comma-separated values)
format, contains the information about 886 lung cancer patients and 64 features. The fea-
tures are related to one of the following categories: Medical record, Evolution and clinical
course, Dosimetry, and Quality of life. A deep and detailed analysis of the dataset and its
features can be found in [2].

An important characteristic in the dataset is missing values. Since instances in the
dataset are translated into an image for each patient, these missing values are not a relevant
problem. Nevertheless, it is a crucial problem when a model of machine learning is sought
because the performance of these models is usually sensible to missing values.

2.2. Missing Values

The number of values of the dataset is 56,704 (886× 64), of which 6172 are missing,
that is, a percentage of 10.88%. These missing values are represented by the value ’0’ in the
original dataset.

Since the main objective in this research is to replicate and validate original health
data, that is, the model to be built must replicate data in a realistic way, we consider that
even missing values must be replicated, because they are usually present in electronic
health registers. Nevertheless, the number of missing values is too large for some instances
in order to obtain a good performance from a machine learning perspective. Therefore,
a study of these missing values must be carried out to eliminate those instances that are
expected to downgrade the model performance, but not all of them, because we want to
replicate usual registers.

In this point, two questions will be answered, and the associated decisions will
be made:

1. The maximum number of missing values to be considered as valid for each instance
(patient).

2. The maximum number of missing values to be considered as valid for each feature.

At this point, it is worth noting that when the medical team fills the items in the
Openclinica software platform, they do not follow any standardized protocol. Hence, it can
be considered that the imputation of one feature or another depends on the dedication of
the doctor and the status of the patient. Therefore, if the number of missing values is high,
it indicates that either the patient’s clinical history or the annotated feature is not much
more relevant than the others. It is true that other motivations exist: for example, it may be
that the variable has been recently considered in the software platform and not all patients
have a record of it or there is new research that indicates that a feature little considered
previously now is more relevant.
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2.3. Pre-Processing Data

It is well known that inputs in GANs must be normalized and the range [−1, 1] is
recommended. Hence, a data pre-processing is required. Initially, the range of values for
all the features should be [0, 255] where a ‘0’ value represents a missing value. This value is
close to the value ‘1’, which is the minimum value for all features. We have checked that,
as expected, this value imputation coming from the initial dataset confuses the machine
learning model when training is carried out. A solution to this problem is to define a
separation space between the minimun value of the features and the ‘0’ value. Hence, both
values are moved at a distance of 90 units in the [0, 255] range. For this, the transformation
is performed as follows:

x →

 0 x = 0

90 +
165
254

(x− 1) x = 1, 2, · · · , 255
(1)

Next, it is scaled again to [−1, 1] (x → x−127.5
127.5 ) so that features take appropriate values

for the machine learning model.
Once the dataset is prepared, a GAN model must be set up in order to generate

synthetic data from the original ones. Thus, in the following section, GAN is briefly
introduced, and the parameters required in the implementation are indicated.

2.4. Generative Adversarial Networks

Generative adversarial networks (GANs) [22] are generative models that, in short,
work as follows: first, a vector noise is fed into a Generator model (usually an artificial
neural network, ANN) to produce synthetic data. Next, generated data are mixed along
with real data to feed a Discriminator model (again, usually an ANN), which discriminates
which data come from the real dataset and which come from the synthetic data generated
from the Generator.

The goal of the Generator is to fool the Discriminator and the goal of the Discriminator
is not to be fooled. This confrontation leads to the Generator being increasingly capable of
providing synthetic data more similar to real data. The ideal solution in the GAN model is
that the percentage of success of the Discriminator for the real data and synthetic data is
50%, in both cases. The structure of the GAN model for a healthcare database can be seen
in Figure 1.

Figure 1. Structure of a Generative Adversarial Network model [2].

A brief technical introduction of the GANs model is as follows: given a real sample
(x) and some random noise vector (z), the following terms are defined:



Electronics 2022, 11, 3277 5 of 15

• D(x) is the output of the Discriminator when a real sample x is processed.
• G(z) is the output of the Generator from the noise z, that is, the synthetic data.
• D(G(z)) is the prediction from the Discriminator on the synthetic data.
• m is the size of samples.
• Px and Pz are the distribution of real and noise data, respectively.
• Ex and EG(z) are the expected log likelihood from the different outputs of real and

generated data.
• θD and θG are the weights of the Discriminator and Generator model, respectively.

The expression to be considered for the complete network, Discriminator and Genera-
tor, is the following, and represents a value, V,

V(θD, θG) = Ex∼Px[log D(x)] + Ez∼Pz [log(1− D(G(z)))]. (2)

This value function is submitted to a min–max strategy with the goal to maximize the
Discriminator loss and minimize the Generator loss,

minθG max
θD

V(θD, θG). (3)

The value for the value function V is calculated as the sum of expected log likelihood
for real or synthetic samples, and maximizing the resulting values leads to the optimization
of the Discriminator parameters so that it learns to correctly identify both real and fake
data. A database of real samples (training data) are needed so as to distinguish between
real and synthetic data.

The loss function for the discriminator is the following one:

∇θD
1
m

m

∑
i=1

[log D(x(i)) + log(1− D(G(z(i))))] (4)

and that for the generator is,

∇θG
1
m

m

∑
i=1

log(1− D(G(z(i)))). (5)

Hence, the implementation of a GAN requires an adequate setup for each employed
artificial neuronal network and their training.

2.5. Post-Processing of the Output GAN

The output obtained from the GAN, that is the synthetic data, are quantitative features
where values are not necessarily in the range [−1, 1]. Hence, a post-processing is carried
out as follows:

1. Firstly, it is taken into account that (i) missing values are represented by −1, and (ii) a
pre-processing step was carried out with the real dataset. Therefore, it is also nec-
essary to consider these treatments for the synthetic dataset. For this, a threshold is
considered in order to separate the output GAN in two categories: missing values and
given values. The threshold is set to − 9

17 in the range [−1, 1] (60 in the range [0, 255]).
On the other hand, when features are either nominal or ordinal, the first value for
them in real data is − 5

17 (90 in the range [0, 255]); hence, if the output GAN is into
[− 9

17 ,− 5
17 ], the value − 5

17 is assigned. Similarly, we proceed if the output GAN is
higher than 1 in the nominal and ordinal features.
This transformation is also applied to quantitative features since, in this way, in the
future, they can be converted into scaled images to [0, 255], as for the initial data.
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Let us name this post-processing as first transformation. The mathematical expression
is as follows:

f t1(x) =


−1 if x < − 9

17
− 5

17 if − 9
17 ≤ x ≤ − 5

17
1 if x > 1
x otherwise

(6)

2. A second transformation is carried out only for nominal and ordinal features. Thus,
given a synthetic value for a feature, it is transformed into the closest real value for
this feature.

In order to quantify the impact of these transformations, the loss of the generator is
used to quantify the loss between the real data and both the output from the GAN and
the transformed output. Examples of quantifying these transformations can be seen in the
next section.

3. Experimentation

In this section, the previously exposed methodology is carried out. In addition,
the validation of the results obtained is analyzed.

3.1. Missing Values

As mentioned, the percentage of missing values in the data set is 10.88%. It is necessary
to reduce this percentage. Thus, a study of the missing values is carried out, and by taking
into account medical, statistical (cumulative histograms of the number of missing values)
and machine learning criteria, the decision was to choose a maximum number of 26 missing
values for each patient and 250 missing values for each feature as selection criterion.

Note that since the number of features is 64, if the threshold (26) is exceeded, it means
that the patient has more than 42.18% missing values, that is, a little less than half of the
values are not gathered by the medical team. After applying this filter, there are 58 patients
(instances) with more than 26 missing values that are removed from the database. Therefore,
the number of patients to be considered in our study is 828.

With respect to the features, since the number of patients is now 828, if the threshold
(250) is exceeded, it means that the feature has more than 30.19% of missing values. Af-
ter applying this filter, there exist six features with more than 250 missing values, which are
eliminated. Hence, the number of features to be considered is 58. The features eliminated
can be seen in Table 1, where the number of missing values and its percentage is also pro-
vided. A detailed description of the number of missing values by each of the 58 considered
features can be observed at the end of the manuscript. It is shown that there are only 14 of
58 features with less than 10 missing values.

Table 1. The list of six features eliminated from the original dataset because the number of present
missing values (# Missing Values) exceeds the threshold 250.

Feature # Missing Values % Missing Values

1 PTV_Volume_cc 257 31.04
2 Studies_Level 280 33.82
3 Heart_Mean 283 34.18
4 SUV_Tumor_primary 296 35.75
5 Heart_v25 298 35.99
6 PTV_Median 318 38.41

In our previous study [2], only statistical criteria (cumulative histograms) were con-
sidered, hence only 804 patients, but 64 features composed the original database. This
time, according to medical reasons, more patients were taken into consideration (from
804 to 828 patients), because they constitute a more general representation of the cohort.
On the other side, some of the eight features left are important from a medical point of
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view; however, if they were taken into consideration, they greatly degrade the performance
of the GAN model.

It can be observed in Table 2 how the original dataset has been modified. Now,
the number of missing values is 2244; that is, in the dataset obtained, there are 3928 less
missing values than in the original dataset.

Table 2. Summary of the obtained database after eliminating features and instances from the original
dataset because of a high percentage of missing values. Symbol # stands for ‘number’.

Dataset # Features # Patients # Missing % Missing

Initial 64 886 6172 10.88
Obtained 58 828 2244 4.67

Percentage (%) 92.06 93.45 36.36 —-

Hence, losing a few patients and a few features, we managed to eliminate more than
63% of the missing data. This means that despite carrying out a huge deletion of missing
values, the number of them in the dataset is still relevant for validation purposes.

3.2. Pre-Processing Data

The pre-processing described in Section 2.3 is carried out on the data set for which
the missing data problem has been previously treated. Now, the −1 value will denote a
missing value, and − 5

17 (=
90−127.5

127.5 ) and 1 are the minimum and the maximum values for
all the features, respectively.

It is illustrated in Figure 2 how missing values are separated off the real ones for three
kinds of features: Boolean (Figure 2a), ordinal (Figure 2b) and quantitative (Figure 2c).
The x-axis shows the values in the new range. The y-axis represents the count of data if the
variable is Boolean, categorical or ordinal and the frequencies if the variable is continuous.

Figure 2. Bar charts of a Boolean feature (a) and an ordinal feature (b). A histogram of a quantitative
feature is illustrated in (c).

3.3. GAN Setup

In our experimentation, the GAN used has been set up as follows: the size of the
inputs in the training of the proposed GAN has been settled to BUFFER_SIZE = 828 (the
size of the dataset), BATCH_SIZE = 276 (one-third of the patients (m)) and a noise vector
(z) of size 32 by following a uniform distribution in [−1, 1] (z ∼ U(−1, 1)). The number of
EPOCHs is 250 and the experimentation is carried out 60 times.
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The architecture for the Generator G(z) is composed by eight dense layers of size
1024, 512, 256, 128, 128, 64, 64 and 58, respectively, where the input is the noise vector of
size 32 and the output is a vector of size 58, which is the same as the number of features.
The architecture for the Discriminator D(·) is composed by five dense layers of size 512, 256,
128, 32 and 1, respectively, all of them with batch normalization and leaky (alpha = 0.01)
layers. Hence, the number of trainable parameters in Generator and Discriminator (θG and
θD) are 755,514 and 200,449, respectively.

The optimizer used for both, Generator and Discriminator, is the Adam optimizer
with the same learning rate equal to 0.0001. The loss function for the discriminator (D) is
based on the cross-entropy loss, because the discriminator performs a binary classification
problem. The loss for the generator (G) is based on the mean squared error of the percentiles
between real and synthetic data. The number of percentiles used is NQ = 91, which is
evenly distributed from 0 to 100. This loss function is selected because by choosing the
appropriate number of percentiles, we are able to empirically prove that the goodness-of-fit
performance of the real and synthetic distributions can be improved. Furthermore, in order
to analyze the stability of the training regime, the Fréchet Inception Distance between real
and synthetic data is obtained in each iteration. A threshold value equal to 0.0001 is also
set as an early stop of the code.

3.4. Model Selection

In order to run the proposed GAN, a seed is necessary to be provided for the noise
vector z. In the ideal case, the Discriminator should provide the same probabilities for
the real and synthetic data, that is 50% [22]. Hence, we have defined the next function,
expressed in percentage, to quantify the quality of the trained GAN structure and select the
best one for experimentation:

quality(GAN) = 100− (|PR − 50|+ |PS − 50|) (7)

where PR and PS are the probabilities given for the Discriminator to real x and synthetic
G(z) data, respectively. This function is bounded in the range 0 to 100. The value 0 indicates
the worst possible performance, and this is followed by a naive discriminator (if it always
labels as real, then PR = 100% and PS = 0%; and if it always labels as synthetic, then
PR = 0% and PR = 100%). On the other hand, the value 100 indicates the ideal performance
when PR = PS = 50%. Therefore, if quality is close to 100, the performance of the GAN
is excellent.

In the experimentation phase, many randomly chosen seeds were implemented and
among all of them, the one that received a higher value in the quality function was selected.
The obtained highest value, quality = 88.60%, indicates a very good performance of the
chosen model. The result for the training of the proposed GAN on the real dataset is
shown in Figure 3. Both Generator and Discriminator losses are shown in the upper part
(Figure 3a,b), respectively. Both losses are stable when training is finished. The Fréchet
Inception Distance, a popular metric for quantifying the distance between two distributions
of images [23], is shown in Figure 3d, which is also stabilized. The probabilities given
by the Discriminator to both, real (in green) and synthetic data (in blue), are shown in
Figure 3c. Let us indicate that these probabilities have not completely stabilized, but this
is not totally possible because of the random generation of the batch of real data in the
algorithm of the GAN.
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Figure 3. Training results for the implemented GAN architecture. Losses (a,b), Accuracy on real and
synthetic data (c) and Fréchet distance (d) are depicted.

3.5. Generation of the Synthetic Dataset

Next, a synthetic dataset with 16, 560 instances (synthetic patients), that is, 20 times
the size of the real dataset, is generated. For this synthetic dataset, the accuracy provided
by the Discriminator is 50.17% for the real data, which is very close to the ideal (50%).
In the case of the synthetic data, the accuracy provided by the Discriminator is 27.35%. This
synthetic dataset will be used for testing and validation.

Before carrying out the proposed two post-processing transformations, let us see an
example of the distribution generated by the GAN for the feature Node. Figure 4 shows the
histogram (with 31 bins) of the generated synthetic instances/patients (upper left) and real
data (lower right). It can be seen that distributions are not completely similar because the
Generator is a model providing quantitative features.

Now, the post-processing presented in Section 2.5 is carried out. The post-processing
is applied to the synthetic data; hence, a new dataset, called the synthetic-patients dataset,
is generated. Before analyzing the performance of the synthetic-patients dataset, let us see,
again for illustrative purposes, the example of the transformations on the feature Node (see
Figure 4).

In this figure, the histogram from the raw synthetic instances is depicted on the upper
left corner. On the upper right corner, the first transformation is applied, and a new
histogram is obtained. Next, in the lower part left, the bar charts for the synthetic data after
the second transformation can be observed. Finally, bar charts for the real data are depicted
in the lower right part.

The value of the loss obtained for the feature Node changes when a transformation
is applied. In this case, these values are 0.009208 (loss between real and synthetic data
without transformation), 0.007332 (loss between real and synthetic data after the first
transformation), and 0.012269 (loss between real and synthetic data after of the two
transformations). The loss decreases after the first transformation, but it increases after
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the second transformation. The final result is worse than the one obtained initially, from a
machine learning perspective (loss function), but the real distribution has a similar shape
to the real data. In our experimentation, this result has always occurred: that is, the final
loss value is always slightly higher than the initial loss value. However, validation using
statistical tests is performing very well.

Figure 4. Distribution of the data for the feature Node for the synthetic database (a), after the first
transformation (b) and the second transformation (c), and that from the real patients (d).

3.6. Validating the Synthetic-Patients Dataset

In order to validate whether the distribution of the synthetic-patients dataset can
be considered similar to the real patients, goodness-of-fit tests on all the features are
carried out. Thus, Pearson’s chi-squared test (χ2) is used if the feature is categorical, and
the Kolmogorov–Smirnov test is used otherwise. The null hypothesis to check for each
features is:

H0 : The synthetic-patients dataset comes from real patients distribution,

and the significance level is α = 0.05 = 5%. Let us clarify both tests: the chi-squared test
checks whether the categorical feature has the same frequencies for the synthetic patients
and real patients, and the Kolmogorov–Smirnov compares the underlying continuous
distributions for the synthetic patients and real patients from two independent samples.

Furthermore, in Pearson’s chi-squared test, if any bin has an frequency of real patients
less than 5, then these bins are combined (added) with its adjacent bins to have significance
in the frequency.

The results of these tests are provided in Table 3.
This table shows the p-value and the decision with respect to H0; that is, we can reject

hypothesis H0 if the p-value is lower than α, and we cannot reject it otherwise. Thus, for p-
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value > α, there does not exist sufficient evidence to say that the synthetic distribution of
patients is different from the real distribution of patients.

Table 3. Features: number of missing, number of different values, p-value and decision on rejecting
the goodness-of-fit tests between real and fake data. Symbol # stands for ‘number’.

# Features # Missing # Values p-Value Reject H0?

1 Relapse_local 15 2 0.2700 False
2 Relapse_at_distance 15 2 0.1072 False
3 SocialEconomico_level 140 10 1.668× 10−8 True
4 Age 12 52 0.3036 False
5 Suma_Family_background 56 6 0.3641 False
6 Intention 8 4 0.0109 True
7 Smoker 0 3 0.5692 False
8 Alcoholism 3 2 0.5940 False
9 Hypertension 0 2 0.5287 False
10 Mellitus_Diabetes 0 2 0.0841 False
11 Dyslipidemia 2 2 0.5443 False
12 Heart_disease 0 2 0.1199 False
13 Thromboembolic 7 2 0.3562 False
14 Chronic obstructive pulmonary disease 2 2 0.4746 False
15 Weight_loss 2 2 0.8132 False
16 Karnofsky Performance Status 14 7 0.4717 False
17 Body mass index 118 198 0.9638 False
18 Sup_bodily 119 91 0.4481 False
19 Clinical_Stage 10 12 4.254× 10−9 True
20 Histology 5 10 1.251× 10−15 True
21 Estimated Glomerular Filtration Rate 106 4 2.171× 10−6 True
22 Anaplastic lymphoma kinase 107 4 0.6273 False
23 Tumor_primary_diameter_max 51 104 0.1895 False
24 Surgery 0 2 0.1452 False
25 Surgery_Type 0 8 1.281× 10−6 True
26 RT_Pulmonary 1 2 0.6774 False
27 Administered_Dose 26 55 4.698× 10−23 True
28 Fractionation_admin 77 20 1.143× 10−76 True
29 QT_Concomitant 18 2 0.5920 False
30 QT_indution 20 2 0.7496 False
31 Primary_overall_survival 118 218 0.4583 False
32 Primary_primary_survival 156 218 0.2205 False
33 Global health status 40 13 1.327× 10−8 True
34 Physical functioning 43 16 0.2997 False
35 Role functioning 41 7 0.8664 False
36 Emotional functioning 50 13 0.3579 False
37 Cognitive functioning 46 7 0.1723 False
38 Social functioning 46 7 0.5067 False
39 Fatigue 50 10 0.9400 False
40 Nausea and vomiting 40 7 0.8847 False
41 Pain 48 7 0.7916 False
42 Dyspnoea 42 4 0.2060 False
43 Insomnia 38 4 0.5962 False
44 Appetite loss 37 4 0.4859 False
45 Constipation 39 4 0.1960 False
46 Diarrhea 39 4 0.3015 False
47 Financial difficulties 42 4 0.3668 False
48 Dyspnoea_lung 56 10 0.1611 False
49 Coughing 46 4 0.1358 False
50 Haemoptysis 42 4 0.6604 False
51 Sore_mouth 43 4 0.9406 False
52 Dysphagia 41 4 0.7048 False
53 Peripheral_neuropathy 42 4 0.6245 False
54 Alopecia 47 4 0.3095 False
55 Tumor 27 8 9.737× 10−23 True
56 Node 13 4 0.4192 False
57 Metastasis 24 4 0.1647 False
58 Status 14 2 0.1586 False

According to the results, there are only 10 tests out of 58 in which the decision is to
reject H0, that is, the synthetic-patient dataset comes from the real patients dataset at a 0.05
level of significance in 48 of the 58 features (82.76%). Let us note that the p-value obtained
in the test for the feature Intention is greater than the level of significance at 0.01 (1%).

For the nine features with a p-value less than 0.01, it is worth noting that these p-
values are very close to 0; that is, the test for these features concludes that the synthetic
patients dataset does not come from the real patients distribution. We think that this is the
motivation because the Discriminator in the GAN provides a probability for the synthetic
data of only 27.35%, which is lower than 50%. That is, the synthetic data are very similar to
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the real data but there are some features in which there is a significant difference between
synthetic and real data.

Figure 5 shows a graphical comparative of the nine features with a p-value less than
0.01. It is worth noting that in some features, such as for example ’Surgery Type’, which is
a non-ordinal feature, from a visual viewpoint, the synthetic and real data are very similar.

Figure 5. Distribution of the features with p-values greater than level of significance at 0.01 for
synthetic and real data.
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In other, as example ‘Administered_Dose’, the visual difference between synthetic and
real data is evident.

4. Discussion and Conclusions

High-quality synthetic health data generation is a valuable resource for improving
healthcare records. Generative adversarial networks can translate information from lung
cancer patients in the form of images so it is possible to capture relationships across the
various features in real patients.

The existence of missing values in a database is a great challenge in machine learning.
The usual practice is to fill in these missing values following some data imputation pro-
cedure. However, data obtained after a medical check-up usually present many missing
values. In order to replicate original records, most of these missing values must be also
considered as valid data. In our approach, work is developed on a database of real patients
with lung cancer where the number of missing values is large.

High-quality synthetic data are obtained using GANs in the opinion of the medical
team. However, beyond this empirical evidence, some kind of objective validation tools
must be provided. The presented study proposes new tools for model optimization and
results validation. The GAN model is selected based on a quality index measuring the
performance of the Discriminator. In the ideal case, the Discriminator’s accuracy should be
50% for real and synthetic data. Hence, model optimization is working not only on the loss
function but also on the reported accuracy results.

The main contribution of this paper refers to the second tool, which is associated to
the statistical validation of the generated synthetic data. Transforming data into numerical
features and using Pearson’s chi-squared test for categorical data and the Kolmogorov–
Smirnov test otherwise, a test hypothesis can be used with the null hypothesis checking
whether the synthetic patients dataset distribution comes from the real patients distribution.
Using this statistical test for each one of the considered features, it can be affirmed that the
null hypothesis cannot be rejected for most of them, that is 48 out of 58 features (82.76%),
as it is shown in Table 3. The introduced work leads to a very useful tool for validation, as
it is statistically ensuring unlimited similar-to-the-original data without compromising the
privacy of the original elements.

The study carried out in this paper is a novel approach for the automatic generation
and validation of synthetic data in the healthcare domain. A number of limitations is still
present. In particular, not all the variables are validated according to the statistical test,
even though the overall model is optimized according to the loss function. How model
performance varies depending on the percentage of statistically validated features and the
loss function value variation is an interesting issue to be analyzed. A similar comparison
could be also established with the oncologists’ expert opinion.

The Kolmogorov–Smirnov test is used for continuous non-parametric one-dimension
data distribution. It is one of the most used, and arguably most powerful, two-sample
tests. However, as a major drawback, it is only applicable in one dimension, whereas
many problems in data science cannot be compressed to one dimension without loss of
information. A promising research line to be explored is the high-dimensional Kolmogorov–
Smirnov distance, as introduced in [24,25]. Moreover, it can be combined with the approach
in [26], where a new GAN activation function based on the Smirnov transform is used to
faithfully replicate both continuous and discrete random variables.
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