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Abstract— This paper investigates the problem of generalized
Nash equilibrium (GNE) seeking in population games under the
Brown-von Neumann-Nash dynamics and subject to general
affine equality constraints. In particular, we consider that the
payoffs perceived by the decision-making agents are provided
by a so-called payoff dynamics model (PDM), and we show that
an appropriate PDM effectively steers the agents to a GNE.
More formally, using Lyapunov stability theory, we provide
sufficient conditions to guarantee the asymptotic stability of
the set of generalized Nash equilibria of the game, for the case
when the game is a so-called stable game (also known as con-
tractive game). Furthermore, we illustrate the application of the
considered framework to an energy market game considering
coupled equality constraints over the players decisions.

I. INTRODUCTION

Population games provide an evolutionary game theoret-
ical framework to model and analyze the non-cooperative
strategic interaction of a large society of agents [1], [2]. Un-
der such a framework, each agent selects exactly one strategy
at a time but, often in time, each agent is granted a revision
opportunity to revise (and possibly update) her selected
strategy. To revise their strategies, agents are equipped with
a so-called revision protocol, which provides the conditional
switch rates between strategies according to their associated
payoffs [2, Chapter 4]. Under the assumption of a large
number of agents, the aforementioned evolutionary process
can be arbitrarily well described by an ordinary differential
equation, here referred to as the evolutionary dynamics
model (EDM), which models the strategic distribution of
the society over time. Hence, whether the agents converge
to a Nash equilibrium can be determined by analyzing the
corresponding EDM.

Depending on the form of the revision protocol, several
EDMs might emerge. In this paper, we focus on a particular
(yet popular) EDM known as the Brown-von Neumann-
Nash (BNN) dynamics [3]. Note that such an EDM is
not only one of the six fundamental EDMs studied in the
seminal work of [2], but has also been recently exploited
in control applications including water distribution [4] and
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real-time demand response [5], among others. Thus, the BNN
dynamics are relevant both from the theoretical and practical
perspectives.

In this paper, we regard the problem of generalized Nash
equilibrium (GNE) seeking in population games under the
BNN dynamics. In the field of game theory, the problem
of GNE seeking refers to the task of reaching a Nash
equilibrium subject to coupled constraints over the play-
ers’ decisions. Namely, a GNE is a self-enforceable state
where no player can benefit by unilaterally deviating from
her selected strategy, and where certain coupled constraints
over the players’ decisions are satisfied. In the context of
population games, on the other hand, a GNE is a (self-
enforceable) strategic distribution of the society of agents
where no agent can benefit by unilaterally deviating from
her selected strategy, and certain (coupled) constraints on the
strategic distribution of the society are satisfied. As such, the
problem of GNE seeking is relevant for multi-agent control
applications involving coupled constraints.

Contributions: Inspired by the ideas on dynamic pay-
off mechanisms [6], in this paper we consider that the
payoffs perceived by the society agents are provided by
a so-called payoff dynamics model (PDM), and we show
that an appropriate PDM can be used for GNE seeking
under the BNN dynamics regarding general affine equality
constraints. As the main technical contribution, by analyzing
the feedback interconnection between the PDM and the BNN
dynamics, we provide sufficient conditions to guarantee the
asymptotic stability of the set of generalized Nash equilibria
for the class of stable population games [7] (also known
as contractive games [6]). As illustration, we apply the
considered framework to a multiplayer game comprising an
energy market scenario subject to coupled affine equality
constraints. To the best of our knowledge, this is the first
paper that formally studies the problem of GNE seeking
under the BNN dynamics.

Related work: Whilst the problem of GNE seeking in
multiplayer games has been addressed from different per-
spectives [8], [9], [10], [11], such a problem has received
limited attention from the context of population games and
EDMs. Some exceptions include [12], [13] and [14]. For
instance, the approach in [12] considers the task of GNE
seeking under the so-called replicator dynamics and under
affine constraints; the approach in [13] regards the problem
of GNE seeking under various (mixtures of) EDMs and under
box constraints; and the approach in [14] studies the problem
of GNE seeking under the so-called Smith dynamics [15] and



under affine equality constraints.
In contrast with the aforementioned previous works, the

approach considered in this paper has the following novelties.
First, our approach guarantees the coincidence between the
equilibrium states of the society of agents and the corre-
sponding set of generalized Nash equilibria of the game
(such a property does not hold under the approach in [12]).
Second, our approach is able to handle general affine equality
constraints and not only box constraints as the approach in
[13]. Third, we provide complete sufficient conditions for
asymptotic stability under the family of stable (equivalently,
contractive) games, and not only for potential games as in
[14]. In order to achieve this goal, we exploit the connection
between GNE seeking problems and variational inequalities
[16]. Moreover, different from [14], we analyze the more
general case where the society of agents is comprised of
multiple populations (in [14] only the single population case
is studied). Thus, the framework considered in this paper
generalizes the one in [14].

Structure of the paper: The rest of this paper is organized
as follows. In Section II, we introduce some preliminary con-
cepts on population games and formally state the considered
EDM regarding the BNN dynamics. Then, in Section III,
we describe our considered approach for GNE seeking under
affine equality constraints, and we provide the corresponding
theoretical analyses. Later, in Section IV, we illustrate the
application of the considered framework to an energy market
game including multiple players (populations). Finally, in
Section V, we provide some concluding remarks and future
directions of research. Due to space limitations, the complete
proofs of the theoretical results can be found online in the
extended version of the paper1.

Notations: The notation Rn denotes the n-dimensional
Euclidean space, while Rn

≥0 and Rn
>0 denote the non-

negative and positive orthants of Rn, respectively. The nota-
tions Z≥1 and Z≥2 refer to the sets of integers greater than
or equal to 1 and 2, respectively. Given a collection of col-
umn vectors z1, z2, . . . , zN , the notation col (z1, z2, . . . , zN )
denotes the stacked column vector, and diag (z1, z2, . . . , zN )
denotes the diagonal matrix whose main diagonal is given
by the vector col (z1, z2, . . . , zN ). In contrast, given a col-
lection of square matrices A1,A2, . . . ,AN , the notation
diag (A1,A2, . . . ,AN ) denotes the block diagonal matrix
with the matrices A1,A2, . . . ,AN in its main diagonal.
Additionally, 1M (0M ) denotes the M -dimensional column
vector with all its elements equal to 1 (0), and we omit the
sub-index whenever the dimensions are clear from context.
Similarly, 1M×M denotes the M × M matrix with all its
elements equal to 1. On the other hand, given a finite set
of indices I = {1, 2, . . . , n}, the notation |I| corresponds
to the cardinality of I, i.e., |I| = n. Finally, given a vector
z ∈ Rn, the notation supp (z) refers to the support of z.

1The extended version of the paper is available online at (copy and
paste the link): https://drive.google.com/drive/folders/
1FQwtj_DwsP3ejEot2cg4Vqf__cJ4O7De?usp=sharing

II. POPULATION GAMES AND EVOLUTIONARY
DYNAMICS MODEL

Consider a society of agents divided into N ∈ Z≥1

disjoint populations indexed by P = {1, 2, . . . , N}. Each
population k ∈ P is comprised of a large number of
decision-making agents whose available set of strategies is
Sk = {1, 2, . . . , nk}, with nk ∈ Z≥2. Throughout, for all
k ∈ P , the amount of agents in population k are modeled
as a (constant) mass mk ∈ R>0, and the portion of agents
selecting strategy i ∈ Sk at population k is denoted as
xki ∈ R≥0. Hence, by letting xk = col

(
xk1 , x

k
2 , . . . , x

k
nk

)
be the strategic distribution of population k, it follows that
the set of possible strategic distributions of population k is

∆k =
{

xk ∈ Rnk

≥0 : 1>nkxk = mk
}
, ∀k ∈ P.

Moreover, by letting x = col
(
x1,x2, . . . ,xN

)
be the strate-

gic distribution of the entire society, it follows that the set
of possible strategic distributions of the society is

∆ = {x ∈ Rn
≥0 : 1>nkxk = mk, ∀k ∈ P},

where n =
∑

k∈P n
k.

Remark 1: In this paper, especially in Section III, we
let x = col

(
x1, . . . ,xN

)
∈ Rn be equivalently written

as
(
xk,x−k

)
∈ Rn, for all k ∈ P , where x−k =

col
(
x1, . . . ,xk−1,xk+1, . . . ,xN

)
∈ Rn−nk

is the strategic
distribution of all populations except k. Namely, regardless of
k, it always holds that

(
xk,x−k

)
= col

(
x1, . . . ,xN

)
= x.

That is, the ordering is preserved regardless of k.
To model the temporal evolution of the strategic distribu-

tion of the society, let t ∈ R≥0 denote the continuous-time
index, and let x(t) be the value of x at time t. Moreover, let
pki (t) ∈ Rn be the payoff received by the agents selecting
strategy i ∈ Sk at population k ∈ P at time t, and let p(t) =
col
(
p1(t),p2(t), . . . ,pN (t)

)
∈ Rn be the payoff vector at

time t, where pk(t) = col
(
pk1(t), pk2(t), . . . , pknk(t)

)
∈ Rnk

,
for all k ∈ P . Following the framework in [2, Chapter
4], the decision-making agents are assumed to be equipped
with a revision protocol to update their strategies. More
precisely, a revision protocol is a map of the form ρkij :

∆k × Rnk → R≥0, i.e., ρkij
(
xk(t),pk(t)

)
∈ R≥0, which

provides the conditional switch rate from strategy i ∈ Sk
to strategy j ∈ Sk at population k ∈ P , given the strategic
distribution xk(t) and the payoff vector pk(t) (throughout,
we let ρkij(t) , ρkij

(
xk(t),pk(t)

)
for simplicity). Depending

on the form of ρkij(t), different evolutionary dynamics might
be considered [2, Chapter 5]. In this paper, we assume that

ρkij(t) =

pkj (t)− 1

mk

∑
`∈Sk

xk` (t)pk` (t)


+

, (1)

for all i, j ∈ Sk and all k ∈ P , and where [·]+ , max(·, 0).
Consequently, the evolutionary dynamics model (EDM) that



describes the evolution of x(t) over time is

ẋki (t) = mk
[
p̂ki (t)

]
+
− xki (t)

∑
j∈Sk

[
p̂kj (t)

]
+
, (2a)

p̂ki (t) = pki (t)− 1

mk

∑
`∈Sk

xk` (t)pk` (t), (2b)

for all i ∈ Sk and all k ∈ P . For the sake of compactness,
it is convenient to rewrite the EDM in (2) in matrix form as

ẋ(t) = M [p̂(t)]+ − diag (x(t)) T [p̂(t)]+ , (3a)

p̂(t) = p(t)−M−1T (x(t)� p(t)) , (3b)

where [·]+ is applied element-wise; � denotes the Hadamard
product; and

M = diag
(
m11n1 ,m21n2 , . . . ,mN1nN

)
∈ Rn×n,

T = diag (1n1×n1 ,1n2×n2 , . . . ,1nN×nN ) ∈ Rn×n.

The EDM in (2), or equivalently in (3), is well-known in the
literature as the Brown-von Neumann-Nash (BNN) dynamics
[3], and their deduction from the aforementioned revision
protocol ρkij(t) in (1) can be found in [7, Section 4]. Notice
that, as shown in Fig. 1, such an EDM can be considered
as a continuous-time dynamical system with input p(t) and
state vector x(t). Clearly, to interpret x(t) as the strategic
distribution of the society, it must hold that x(t) ∈ ∆, for all
t ≥ 0. Such a property holds under the following assumption
in conjunction with Lemma 1 (to be introduced in short).

Standing Assumption 1: x(0) ∈ ∆.
Furthermore, the BNN dynamics have some (well-known

[17]) important properties that play a crucial role in our
forthcoming analyses. For the sake of completeness, we
formally present such properties in Lemma 1.

Lemma 1: Consider the BNN dynamics characterized by
the EDM in (2). The following three properties hold.

1) x(t) ∈ ∆, for all t ≥ 0.
2) For any k ∈ P , if ẋk(t) 6= 0, then

(
ẋk(t)

)>
pk(t) > 0.

3) ẋ(t) = 0 if and only if it holds that

xki (t) > 0⇒ pki (t) = max
j∈Sk

pkj (t), ∀i ∈ Sk, ∀k ∈ P.
(4)

In Lemma 1, the first statement verifies the forward time
invariance of ∆ under the EDM in (2); the second statement
is usually termed as the positive correlation property and
plays an important role in our forthcoming stability analysis;
and the third statement is known as the Nash stationarity
property and characterizes the equilibria set of the EDM in
(2) in terms of the payoff vector p(t).

Having introduced the population games framework and
the considered EDM, we now proceed to formally state the
GNE seeking problem that is studied in this paper.

III. GNE SEEKING UNDER AFFINE EQUALITY
CONSTRAINTS

In this section, we formally state the GNE seeking task
under affine equality constraints and present our proposed
approach to solve such a problem.

Evolutionary dynamics model (EDM)

Fig. 1. Considered EDM regarding the BNN dynamics.

Consider the scenario where each population k ∈ P seeks
to solve the optimization problem (in variables xk) given by

max
xk∈Rnk

ψk
(
xk,x−k

)
s.t.
(
xk,x−k

)
∈ Ωk

(
x−k

)
, (5)

where
(
xk,x−k

)
= col

(
x1, . . . ,xN

)
(recall Remark 1);

ψk : Rnk

≥0 × Rn−nk

≥0 → R is the objective function of
population k (whose domain is assumed to be Rn

≥0 ⊃ ∆);
and

Ωk
(
x−k

)
=
{
xk ∈ ∆k :

(
xk,x−k

)
∈ X

}
,

X = {x ∈ Rn : Ax = b} .

Here, A ∈ RC=×n, b ∈ RC= characterize the C= ∈ Z≥1

equality constraints to be considered. In particular, note that
Ωk
(
x−k

)
is the set of feasible strategic distributions of

population k with respect to x−k and X . Hence, viewed from
the society level, the populations of agents are engaged in
the game G =

(
P, {Ωk (·)}k∈P , {ψk(·)}k∈P

)
. Throughout,

we impose the following assumptions on the game G.
Standing Assumption 2: For all k ∈ P , ψk

(
xk,x−k

)
is

concave and continuously differentiable with respect to xk

for every x−k ∈ Rn−nk

≥0 .
Standing Assumption 3: The set ∆ ∩ X ∩ Rn

>0 is non-
empty, and the matrix Â =

[
A>,A>∆

]> ∈ R(C=+N)×n is
full row rank (thus, C= ≤ n − N ). Here, A∆ ∈ RN×n is
given by A∆ =

[
A1

∆,A
2
∆, . . . ,A

N
∆

]
, where Ak

∆ ∈ RN×nk

has its k-th row equal to 1>nk and all its other rows equal
to 0>nk , for all k ∈ P (namely, note that by setting m =
col
(
m1,m2, . . . ,mN

)
, the set ∆ can be equivalently written

as ∆ =
{
x ∈ Rn

≥0 : A∆x = m
}

).
Furthermore, based on the considered framework, we

define the set of generalized Nash equilibria of the game
G as follows.

Definition 1: Consider the pseudo-gradient f : Rn
≥0 → Rn

defined as

f(x) = col
(
∇x1ψ1 (x) ,∇x2ψ2 (x) , . . . ,∇xNψN (x)

)
,

where, for all k ∈ P , ∇xkψk(x) ∈ Rnk

denotes the gradient
of ψk(xk,x−k) with respect to xk at x =

(
xk,x−k

)
. The

set of generalized Nash equilibria of the game G is

GNE (f) =

{
x ∈ ∆ ∩ X : x ∈ arg max

y∈∆∩X
y>f(x)

}
.

According to Definition 1, we highlight that the set
GNE(f) coincides with the set of solutions of the variational



inequality VI (∆ ∩ X ,−f) (see [18]), which is given by

SOL (∆ ∩ X ,−f)

=
{

x ∈ ∆ ∩ X : (y − x)
>

(−f(x)) ≥ 0, ∀y ∈ ∆ ∩ X
}
.

Hence, using this observation in conjunction with [16, Theo-
rem 2.1], it is straightforward to obtain the following result.

Lemma 2: If x ∈ GNE (f), then, for all k ∈ P ,

xk ∈ arg max
yk

ψk
(
yk,x−k

)
s.t. yk ∈ Ωk

(
x−k

)
.

Therefore, according to Definition 1 and Lemma 2, if
x(t) = col

(
x1(t),x2(t), . . . ,xN (t)

)
∈ GNE(f), then xk(t)

comprises a solution of the optimization problem in (5), for
all k ∈ P . Consequently, the goal is to design a mechanism
that steers the society of agents to the set GNE(f), i.e., to a
GNE of the game G (c.f., Definition 1).

In Section III-A, we introduce our proposed approach
for GNE seeking under the population games framework
of Section II. For the forthcoming analyses, we impose the
following assumption on the pseudo-gradient f(·).

Standing Assumption 4: The pseudo-gradient f(x) is
continuously differentiable with respect to x. Moreover, f(·)
is contractive in the sense that (x− y)

>
(f(x)− f(y)) ≤ 0,

for all x,y ∈ ∆.
Remark 2: Standing Assumption 4 implies two important

properties of the set GNE(f). First, recall that, according
to Definition 1, the set GNE(f) coincides with the set of
solutions of the variational inequality VI (∆ ∩ X ,−f). In
consequence, since ∆∩X is nonempty, convex, and compact
(c.f., Standing Assumption 3), and f(·) is continuous, it
follows from [18, Corollary 2.2.5] that GNE(f) is nonempty
and compact. Thus, under the considered assumptions, the
existence of a GNE of the game G is guaranteed. Second, the
contractivity condition on f(·) implies that f(·) corresponds
to a so-called stable game [7, Section 2.2] (equivalently,
contractive game [6, Definition 6]). Therefore, it follows
from [7, Theorem 2.1] that (ẋ(t))

> Dxf (x(t)) ẋ(t) ≤ 0, for
all t ≥ 0. Here, Dxf(·) ∈ Rn×n is the Jacobian matrix of
f(x) with respect to x; and ẋ(t) is given by (3).

A. A Payoff Dynamics Model Approach

According to the framework in Section II (c.f., Fig. 1),
observe that the only viable mechanism to steer the strategic
distribution of the society is through the payoff signal p(t).
Hence, in this section we propose a payoff dynamics model
(PDM) to guide the society of agents to a GNE of the game
G. That is, to a strategic distribution x ∈ GNE(f).

Following the approach in [14], in this paper we consider
the PDM given by

µ̇(t) = Ax(t)− b, (6a)

p(t) = f (x(t))−A>µ(t), (6b)

where µ(t) = col (µ1(t), µ2(t), . . . , µC=
(t)) ∈ RC= . Con-

sequently, observe that the EDM in (2) and the PDM in (6)
are interconnected in a closed-loop configuration as shown in
Fig. 2. Namely, the PDM in (6) plays the role of a feedback
controller that takes as input x(t) and outputs p(t).

EDM 

(BNN dynamics)

Payoff dynamics model (PDM)

Fig. 2. Feedback connection of the considered EDM-PDM system.

Remark 3: Notice that although the PDM in (6) has the
same form of the one in [14, (1)], the theoretical analyses
in [14] do not contemplate the BNN dynamics in (2).
Hence, in this paper we must provide the corresponding
theoretical analyses. Furthermore, the results presented in
[14] are limited to the scope of potential games. That is, to
games where the objective functions of all populations are
aligned to a global potential function. Namely, the results
in [14] are limited to potential games because the potential
nature of the game is employed to prove the non-emptiness
and compactness of the equilibria set of the interconnected
EDM-PDM system (see [14, Theorem 2 and Proposition 3]).
In contrast, in this paper we overcome such a difficulty by
exploiting the connection between GNE seeking problems
and variational inequalities [16], [18]. This allows us to pro-
vide complete sufficient conditions for asymptotic stability
for the more general family of continuously differentiable
stable/contractive games (which contemplates the potential
games of [14] as a particular case).

B. Analysis of the Considered EDM-PDM System

In this section, we provide the formal analysis of the
feedback system comprised of the EDM in (2) and the PDM
in (6) (c.f., Fig. 2). Throughout, we refer to such a system
simply as the EDM-PDM system.

We start our discussion by characterizing the equilibria set
of the considered EDM-PDM system.

Theorem 1: Consider (3), (6), and Definition 1. It holds
that col (ẋ(t), µ̇(t)) = 0, if and only if x(t) ∈ GNE (f).

Namely, Theorem 1 shows the coincidence between the
equilibria set of the EDM-PDM system and the set of
generalized Nash equilibria of the game G. We now state
our main result on the asymptotic stability of GNE (f).

Theorem 2: Consider (3), (6), and Definition 1. The set
GNE (f) is asymptotically stable under the considered EDM-
PDM system.

Theorem 2 shows that the considered PDM in (6) ef-
fectively steers the strategic distribution of the society to
a GNE of the game G. Hence, the proposed framework can
indeed be applied to GNE seeking tasks under affine equality
constraints. We now proceed to illustrate the application of
the framework to a non-cooperative energy market game.



IV. AN ENERGY MARKET GAME

Consider an energy market game2 where N ∈ Z≥1

players (energy management systems) compete to purchase
energy over a time horizon of T ∈ Z≥1 time slots. Let
P = {1, 2, . . . , N} denote the set of players (populations),
let T = {1, 2, . . . , T} be the aforementioned time horizon,
and let Sk ⊆ T be the set of time slots (strategies) where
player k ∈ P competes. Throughout, it is assumed that∣∣Sk∣∣ = nk ≥ 2, for all k ∈ P , and that T = ∪k∈PSk
(which implies that n ≥ T ).

Based on the considered problem, we interpret xki ∈ R≥0

as the energy to be purchased by player k ∈ P for time
slot i ∈ Sk, and we interpret mk ∈ R>0 as the total energy
requirement of player k ∈ P . That is, the purchased energy
profile of each player k must satisfy that

∑
i∈Sk xki = mk.

Furthermore, there are also some system-level constraints
that couple the players decisions. Namely, let Td ⊂ T be
a subset of time slots subject to certain energy demand
constraints (to be defined in short), and let Pj ⊆ P denote
the set of players that compete in time slot j, for all j ∈ Td.
The system-level energy demand constraints require that∑

k∈Pj
xkj = dj , for all j ∈ Td, where dj ∈ R≥0 represents

an energy demand to be satisfied at time slot j ∈ Td.
Assumption on the parameters: Following Standing

Assumption 3, it is assumed that, for all k ∈ P and all
j ∈ Td, the parameters mk and dj are such that there
exists some x̂ ∈ Rn

>0 such that
∑

i∈Sk x̂ki = mk and∑
k∈Pj

x̂kj = dj . Moreover, it is assumed that |Td| ≤ n−N
(which implies that Td ⊂ T ).

Remark 4: Note that under the studied framework, one
may also consider inequality constraints of the form∑

k∈Pj
xkj ≤ dj simply by introducing a fictitious player

(population) whose energy profile represents the surplus of
energy in the market. Namely, if x`j ∈ R≥0 denotes the
energy to be purchased by a fictitious player ` ∈ P for time
slot j ∈ T , then the equality constraint x`j +

∑
k∈Pj

xkj = dj
implies that

∑
k∈Pj

xkj ≤ dj (assuming by convention that
` /∈ Pj). To ease the exposition, however, we only consider
equality constraints in our numerical example.

Now, to define the optimization objective of each player
k ∈ P , let Ck ∈ RT×nk

be a matrix such that each column
of Ck has exactly one element equal to 1 and the rest equal
to 0; each row of Ck has at most one element equal to
1; and the j-th element of the i-th column of Ck is 1 if
and only if player k competes in time slot j ∈ T . As an
example, if T = 10 and player ` ∈ P competes in time slots
S` = {2, 5, 7}, then C` = [e2, e5, e7], where ei denotes the
i-th column of the 10× 10 identity matrix. Furthermore, let
C =

[
C1,C2, . . . ,CN

]
∈ RT×n be the concatenation of

the Ck matrices of all players. Namely, Cx corresponds to
the collective energy demand for all time slots.

Based on the previous formulations, we let J : Rn →
RT be the pricing function for the energy market, which

2An energy market game can be regarded as a form of Cournot competi-
tion, and various control engineering applications can be considered under
such an abstraction [9], [19], [20].

is given by J(x) = DCx + J̄, where D ∈ RT×T
≥0 is a

diagonal matrix and J̄ ∈ RT
≥0 (namely, the price of energy

increases with the total demand); and we let Qk : Rnk

≥0 → R
be the individual cost of player k ∈ P , which is given by
Qk
(
xk
)

=
∑

i∈Sk

((
αk
i /2
) (
xki
)2

+ βk
i x

k
i

)
, where αk

i ∈
R≥0 and βk

i ∈ R. Consequently, each player k ∈ P seeks to
solve the optimization problem (in variables xk) given by

max
xk∈Ωk(x−k)

ψk
(
xk,x−k

)
:= − (J(x))

>
Ckxk −Qk

(
xk
)
,

where Ωk
(
x−k

)
=
{
xk ∈ ∆k :

(
xk,x−k

)
∈ X

}
, with X ={

x ∈ Rn :
∑

k∈Pj
xkj = dj , ∀j ∈ Td

}
. Thus,

ψk
(
xk,x−k

)
= −

∑
`∈P

x`>C`>DCkxk − J̄>Ckxk

−Qk
(
xk
)
,

[
using Cx =

∑
`∈P

C`x`

]
,

and, therefore,

∇xkψk(x) = −2Ck>DCkxk −
∑

`∈P\{k}

Ck>DC`x`

−Ck>J̄−αk � xk − βk,

with αk = col
(
αk

1 , . . . , α
k
nk

)
and βk = col

(
βk

1 , . . . , β
k
nk

)
.

In consequence, the pseudo-gradient f(·) for the energy
market game is f(x) = −Sx−C>J̄−α� x− β, with

S = diag
(
C1>DC1, . . . ,CN>DCN

)
+ R>R,

R =
[√

DC1,
√

DC2, . . . ,
√

DCN
]>

,

α = col
(
α1,α2, . . . ,αN

)
,

β = col
(
β1,β2, . . . ,βN

)
.

Here, D =
√

D
√

D. Since D is diagonal with non-negative
diagonal elements, it immediately follows that S is a positive
semidefinite matrix, and, therefore, the pseudo-gradient f(·)
satisfies Standing Assumption 4 (c.f., Remark 2 and [7,
Theorem 2.1]). Hence, for the considered energy market
game, the set GNE(f) is asymptotically stable under the
studied EDM-PDM system (c.f., Theorem 2).

Without loss of generality, we let N = 10, T = 20,
and, for all k ∈ P , we randomly sample Sk such that
for each time slot i ∈ T there is a 0.5 probability that
i ∈ Sk. Moreover, we ensure that

∣∣Sk∣∣ ≥ 2, for all
k ∈ P , and we set S10 as the complement of S1 to
ensure that T = ∪k∈PSk (for reference, after sampling we
have n = 99). On the other hand, we randomly sample
the (nonzero) elements of D, J̄, α, and β, from [0, 1],
[2, 4], [1, 10], and [0, 1], respectively. Finally, we randomly
set Td = {1, 2, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 20} (hence,
C= = 14), and, for all k ∈ P and all j ∈ Td, we randomly
sample mk and dj from [3, 4] and [1, 1.5], respectively (and
we numerically verify that ∆ ∩ X ∩ Rn

>0 6= ∅).
In Fig. 3 we present the trajectory of the selected per-

formance index, i.e., ‖x(t)− x∗‖2 / ‖x(0)− x∗‖2, where
x∗ ∈ GNE(f). Moreover, in Fig. 4 we depict the trajectories
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Fig. 3. Trajectory of the selected performance index for the considered
energy market game under the EDM-PDM system given by (2) and (6).
Here, without loss of generality, xk

i (0) = mk/nk , for all i ∈ Sk and all
k ∈ P , and µ(0) = 0.
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Fig. 4. Trajectories of the (coupled) system-level constraints’ violations.
Here, a value of 0 implies that the corresponding constraint is satisfied. The
key observation in this plot is the fact that all the constraint’s violations
eventually converge to 0.

of
∑

k∈Pj
xkj (t)− dj , for all j ∈ Td. As shown in Fig. 3, it

is verified that the considered EDM-PDM system reaches a
GNE of the underlying energy market game. Furthermore, as
shown in Fig. 4, it is verified that the reached GNE indeed
satisfies the coupled constraints over the players decisions.

V. CONCLUDING REMARKS

This paper has studied the problem of generalized Nash
equilibrium seeking under affine equality constraints in
(multi) population games under the Brown-von Neumann-
Nash dynamics. We have provided sufficient conditions
to guarantee the asymptotic stability of the corresponding
equilibria set, and we have illustrated the application of

the framework to an energy market game with coupled
constraints over the players’ decisions.

Future work should focus on the extension of the frame-
work to other families of evolutionary dynamics, e.g., the
replicator dynamics, as well as on the characterization of
the convergence rate of the resulting dynamical systems.
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