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Abstract
Leaks represent one of the most relevant faults in water distribution networks (WDN), resulting in severe losses. Despite

the growing research interest in critical infrastructure monitoring, most of the solutions present in the literature cannot

completely address the specific challenges characterizing WDNs, such as the low spatial resolution of measurements (flow

and/or pressure recordings) and the scarcity of annotated data. We present a novel integrated solution that addresses these

challenges and successfully detects and localizes leaks in WDNs. In particular, we detect leaks by a sequential monitoring

algorithm that analyzes the inlet flow, and then we validate each detection by an ad hoc statistical test. We address leak

localization as a classification problem, which we can simplify by a customized clustering scheme that gathers locations of

the WDN where, due to the low number of sensors, it is not possible to accurately locate leaks. A relevant advantage of the

proposed solution is that it exposes interpretable tuning parameters and can integrate knowledge from domain experts to

cope with scarcity of annotated data. Experiments, performed on a real dataset of the Barcelona WDN with both real and

simulated leaks, show that the proposed solution can improve the leak detection and localization performance with respect

to methods proposed in the literature.

Keywords Leak detection � Leak localization � Water distribution networks monitoring � Change detection �
Classification

1 Introduction

Water distribution networks (WDNs) are critical infras-

tructure systems that are difficult to manage and monitor

due to their size and complexity. For example, pipes in a

WDN of a medium-sized city connect the inlets/reservoirs

to hundreds of nodes (either junctions or locations where

customers are connected) and span over hundreds of kilo-

meters. In such a large and complex system, faults can be

ubiquitous, affecting pipes, reservoirs, sensors or actuators.

Leaks, a specific type of hydraulic fault, might occur

anywhere as a consequence of pipe breaks, loose joints and

fittings, or overflows from storage tanks.

The increasing water demand, pushed by the population

growth, and the severe implications of leaks in terms of

operational costs and water losses [35], made leak detec-

tion and localization a primary concern for water utilities.

This has influenced both WDN management strategies and

research activities. On the one hand, the vast majority of

water management companies nowadays divide the whole
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Vicenç Puig

vicenc.puig@upc.edu
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WDN into district metered areas (DMAs), where the flow

and the pressure at the inlet can be measured and easily

monitored to detect leaks [24, 35]. On the other hand,

algorithms for leak detection and localization have been

also thoughtfully investigated in control theory [46],

computer science [38] and, more recently, artificial intel-

ligence [22, 44]. In particular, most recent solutions mon-

itor recordings from accelerometric sensors [22] or smart

meters [26, 54], which provide many measurements and

enable sophisticated AI models to be employed. Unfortu-

nately, the vast majority of WDNs are still equipped with

flow/pressure sensors at DMA inlets [9, 15, 24, 30, 35, 60],

and few flow/pressure sensors deployed inside the DMA.

Despite the promising results achieved by artificial

intelligence and neural networks in many domains, leak

monitoring remain a challenging problem in particular

when analyzing a few flow/pressure recordings (see Sect. 2

for a detailed analysis of the literature) and a general and

effective solution is still missing. We speculate the reason

is twofold. First, the primary effect of a leak is an

anomalous increase in the flow (or a decrease in the pres-

sure), but this is commonly experienced due to variations

in the customers’ demand, which is difficult to forecast and

rarely measured in real-time [16]. Second, although DMAs

are typically very large and serve thousands of costumers,

these are often equipped with few sensors, because of cost

or energy constraints. On top of these critical issues, noise,

long-term trends/seasonality, as well as the scarcity of

measurements acquired under leak conditions make leak

detection and localization very specific and challenging

problems requiring ad hoc algorithms. Solutions from

related scenarios, e.g., monitoring of a chemical plant or

smart grid, do not typically apply [6, 14].

We present a leak detection algorithm that requires only

flow measurements at DMA inlets [9, 15, 24, 30, 35, 60],

and perform leak localization from a flow/pressure sensors

deployed inside the DMA. Our integrated solution com-

prises three modules: (i) leak detection, (ii) leak validation

and leak time/size estimation, (iii) node clustering and leak

localization. To compensate for scarcity of sensor infor-

mation, our algorithms integrate knowledge from domain

experts.

We formulate leak detection and validation as change-

point detection problems, which we solve by an ad hoc

two-layer algorithm including a hypothesis test to validate

each detection and estimate the leak size and leak time.

These latter have been typically ignored by most leak

detection algorithms [17, 23, 25, 37, 58, 59], but are crucial

to diagnose and localize leaks. Most remarkably, we con-

figure the detection algorithm from few days of flow

measurements (without leaks) and from the minimum leak

size, a parameter that is easy to interpret and tune for

domain experts. We formulate leak localization as a

classification problem, and present a solution that is

effective even when only a few sensors1 (e.g., 1 sensor

placed per 200 nodes/pipes) acquiring pressure/flow mea-

surements inside the DMA are available. We address leak

localization by a set of classifiers that have been specifi-

cally trained on sequences generated by a hydraulic sim-

ulator of the WDN. Leak localization can seamlessly be

trained and used at node level or cluster level [10, 32, 36],

where clusters gather nodes where leaks cannot be distin-

guished, thus allow WDN engineers to set the desired

granularity in leak localization. To summarize, we convey

the following original contributions:

• A novel leak validation algorithm to reduce false alarms

by determining whether each detection corresponds to a

sufficiently large leak or not.

• A novel leak localization algorithm, which is based on

classifier and is activated every time a detection is

validated.

• A specific clustering procedure that gathers nodes

where classifiers cannot distinguish the leak location,

mainly due to the lack of nearby sensors.

Experiments performed on large datasets of time series

acquired in multiple Barcelona DMAs, or that have been

simulated from realistic hydraulic models of different

cities, demonstrate that the proposed leak-detection and

localization algorithms outperform comparable solutions in

the literature.

The structure of the paper is the following. Section 2

reviews the literature on leak detection and localization

including integrated solutions. Section 3 formulates the

leak detection and localization problems, while Sect. 4

gives an overview of the proposed solution. Sections 5

and 6 present in detail the proposed leak detection/vali-

dation and leak localization solutions, respectively. Sec-

tion 7 describes the experiments and discusses results

before conclusions that are given in Sect. 8.

2 Related works

In the following, we overview recent leak detection and

localization solution with a particular emphasis on those

that, like the proposed approach, address both problems

with a few flow/pressure sensors are available.

1 Sensor placement is a very important aspect which can heavily

influence the localization performance [12], but it is not covered in

this work where we assume it has already been done.



2.1 Leak detection techniques

Most leak-detection techniques in the literature monitor the

flow measurements at the DMA inlets, which are the most

meaningful and always available time series. The main-

stream approach consists in (i) fitting a model that well

describes the flow time series acquired in leak-free condi-

tions, (ii) computing some residuals or scores between the

fitted model and the acquired measurements, and (iii)

adopting a statistical/heuristic decision rule to detect leaks.

Several leak-detection algorithms are grounded in sta-

tistical or control literature, where models describing the

leak-free time series include an adaptive or nonlinear

Kalman filter [20, 60]), projections in Fourier domain [15]

and particle filters [7]. Data-driven models from AI liter-

ature have been used for leak-detection purposes, including

support vector regression (SVR) [28], projections over the

first principal component analysis (PCA) [30], Bayesian

networks [39] and extreme learning machine (ELM) in

[43]. Self-similarity of flow time series is instead moni-

tored in [9] thanks to a special feature extraction procedure.

In some cases, these models are conveniently used to

describe the minimum night flow (MNF), namely the flow

during night hours, between 2 am and 6 am, where the flow

is minimum and fluctuations w.r.t. patterns are also

smoother [35], as illustrated in Fig. 1 with the red dashed

line. There are two main reasons for analyzing MNF of the

input Fð�Þ. First, leaks during MNF are easier to detect as

they introduce the largest percentage variation with respect

to the total water consumption. Second, the trend of MNF

is easier to model, thus any departure from this can be

detected as leaks. However, monitoring MNF introduces

relevant delays since hours between MNF intervals are not

analyzed.

In terms of statistics, most of the above techniques adopt

the residuals (possibly normalized or averaged over a time

window) between the measurements and model predic-

tions, which are assumed to infer flow in absence of leaks.

There is instead more variability in the decision rules

adopted, which spans from straightforward thresholding

[60], CUmulative SUMmation (CUSUM) test [29] in [20]

and the ICI-based change-detection test (CDT) in [9].

None of these algorithms implement specific strategies

to mitigate the impact of false alarms that in WDN mon-

itoring are ubiquitous, due to drifts, peaks and seasonality

characterizing water consumption. Discarding false alarms

is very important, since a high false alarm rate implies

relevant economical losses due to unnecessary inspections,

and at the same time increases the mistrust of operators to

the monitoring system. To this purpose, we customize the

hierarchical change-detection framework in [3] introducing

a specific validation procedure for flow time series and that

exposes interpretable parameters. In our experiments, we

have compared against [9, 15, 30, 60] (described in details

in Sect. 7.3) and show that our solution achieves lower

detection delays and false negative rates when configured

to yield the same false positive rate. Another key advantage

of the proposed solution is that we can estimate both the

leak starting time and the leak magnitude, which are very

important for the localization algorithm but that are rarely

provided by competing methods. Our experiments

demonstrate that our solution is successful also on real data

from the Barcelona WDN, while only a few solutions have

been tested on real data [9, 20, 28, 39, 60].

2.2 Leak localization techniques

Many leak-localization algorithms adopt data driven or AI

models, and in particular these often resort to training

classifiers [36, 47, 49]. Leak localization is typically per-

formed by assuming that a few sensors (most often pressure

sensors) have been installed inside the DMA, and that

pressure decreases close to the leak. Most solutions in the

literature solve this problem by first identifying a candidate

region containing many nodes close to the leak, and then

pinpointing the exact leak location by inspecting the net-

work using devices such as ground penetrating radars

(GPRs) [27]. Various empirical studies [23, 33, 53],

localize leaks through mathematical models describing the

relation between flow and pressure measurements in pres-

ence of leaks. Leak localization can be performed in

transient state, using a model of [11] the dynamic effects of

the leak in the time series like negative pressure waves, or

in steady-state, namely comparing the flow and pressure

measurements inside the DMA against a reference that was

acquired/generated/modeled in absence of leaks. Steady-

state methods are the most popular ones, since they typi-

cally require fewer sensors than transient state ones. A few

steady-state methods employ correlation analysis [32], k-

NN [47] or more powerful classifiers [36, 49] that take as

input residuals between measurements inside the DMA and

the output of an hydraulic simulator of the WDN. In our

experiments, we compared against [32, 47, 49], which we

better describe in Sect. 7.4. Among the aforementioned

works, only [27, 32, 47, 49] were validated on real data.

Our leak localization algorithm also relies on classifiers

that take as input a richer descriptor of the WDN status

than [32, 47, 49]. In particular, to cope with leaks of dif-

ferent magnitudes, we train a collection of classifiers: one

per each expected leak size, and every time we select

which one to use. To train this model at best, we resort to

data-augmentation procedures inspired by [13], and here

expanded. Moreover, the proposed leak localization is

coupled with a clustering algorithm to group locations

where leaks are more difficult to localize. The granularity



of clustering results can be easily adjusted by experts, thus

representing a very useful tool to monitor DMA equipped

with few sensors. Most remarkably, once clustering is

adopted, classifiers are seamlessly retrained and used at

cluster level. Previous solutions [47] adopt clustering as a

post-processing phase and not as a joint step to be com-

bined with classifiers used for localization.

2.3 Integrated solutions

A few integrated solutions that perform both leak detection

and localization have been presented [17, 59], which,

however, require a large number of special sensors oper-

ating at high sampling rates. As such, these solutions are

not easy to adopt in most DMA. Fuzzy theory has also been

used for simultaneously detecting and localizing leaks

[19, 55]. These solutions address the different forms of

uncertainties characterizing WDNs, such as nodal demand

variability and sensor noise, but without any validation

step. Another relevant similarity to ours solution is that the

parameters regulating different fuzzy states are inter-

pretable (e.g., leaks size) and can be defined by domain

experts. This approach has also been recently pursued in

[57] to monitor and control smart homes.

3 Problem statement

3.1 Leak detection

We consider the leak-detection problem by monitoring the

total inflow Fð�Þ of a DMA2, which is a time series sampled

at regular time intervals, that in absence of leaks measures

the amount of water WðtÞ consumed within the DMA each

time instant t. For this reason, Fð�Þ exhibits a repetitive

pattern on a daily basis [5], which depends on weekends,

holidays or weather conditions, as shown in Fig. 1. A leak

permanently modifies the flow F(t) by increasing the water

consumption of an unknown leak size l[ 0 at the leak-

starting time T�, namely:

FðtÞ ¼
WðtÞ; t\T�

WðtÞ þ l; t� T�

�
: ð1Þ

We assume that the leak size is constant. Even though leaks

often gradually increase over time, this approximation

typically holds over short time intervals, where the leak has

to be detected [10, 32].

Our primary goal is to detect when a leak occurs inside a

DMA and accordingly estimate both the leak-starting time

T� and size l. The detection time, i.e., the time instant when

a monitoring algorithm reports a leak, is denoted as bT ,
while bT �

and bl denotes the estimated leak-time and the

estimated leak size, respectively. We assume that only

leaks above a minimum size lmin need to be reported. A

good detection algorithm should provide short detection

delays (DD) bT � T�, and very low false negatives rate

(FNR), namely the percentage of leaks above the minimum

size lmin that have not been detected. At the same time, the

false positive rate (FPR), namely is the percentage of

detections where there is not a leak should be kept as low

as possible. It is further assumed that leak detection algo-

rithm has to be configured from a training sequence H

containing the first days of flow measurements without

leaks (Fig. 2).

3.2 Leak localization

We also consider the leak localization problem, which

consists in estimating, after each detection at bT , the node j�
where the leak has occurred. To this purpose, we assume

that a few pressure/flow sensors have been deployed inside

the DMA and that the i-th node records either the time

series of pressure pið�Þ or the flow fi;jð�Þ between nodes

i and j.

We assume that sensors inside the network are very

sparse, i.e., that in total there are only m time series

recorded and that m\\n, being n the total number of2 On DMAs provided with multiple inlets, Fð�Þ sums the flow

measured in all these

Fig. 1 Example of weekly profile for the total DMA inflow F(t). The
MNF period spans from 2 a.m. to 6 a.m. and is highlighted in red

while the extended MNF period spans from 10 p.m. to 8 a.m. and is

highlighted in green. This picture is better interpreted in the colored

version of the paper (color figure online)



candidate leak locations. Another typical assumption in the

literature we make is that there are no simultaneous leaks

in different locations [32]. The estimated leak location b|
has to be as close as possible to the true leak location j�,
where the distance can be either measured in terms of pipe

length, node or linear distance.

Gathering a representative training set for leak local-

ization purposes is unfeasible in the real world, as this

would require measurements of flow and pressure in all the

n possible leak locations and for different leak sizes.

Hence, we simulate a training set TR of flow/pressure time

series at nodes inside the DMA. To this purpose, we

require: (i) a training sequence of leak-free inlet flows like

the one used for leak detection, (ii) the time series of leak-

free recordings from the m internal measurements, (iii) a

calibrated hydraulic model of the DMA and (iv) a base

nodal demands n, i.e., the percentage of water consumed by

each node (even based on monthly bills).

4 An overview of the proposed solution

Figure 3 illustrates the proposed solution, which comprises

three main modules: (i) the leak detection module, (ii) the

leak validation module and (iii) the leak localization

module. The leak detection module monitors the total

inflow Fð�Þ at DMA inlets by means of a change-detection

test that compares the acquired data w.r.t. leak-free flow

measurements. Once a change has been detected at time bT ,
the change-detection test also provides an estimate of the

leak starting time bT �
, which is used to activate the leak

validation module. Validation module further analyzes the

flow at inlets to reduce false positive detections by means

of an ad hoc statistical hypothesis test comparing the leak-

free flow measurements with the measurements acquired

between bT and bT �
.

When the detection is confirmed, the leak size bl is

estimated by comparing the flow time series before and

after the estimated leak time bT �
. Domain experts play a

crucial role in the validation module, as they can set the

minimum leak size lmin to be detected, and this greatly

contributes to discarding false alarms and detections due to

fluctuations and other non-stationarities in the flow time

series. We emphasize that both the detection and validation

algorithms require a short training set of leak-free mea-

surements from the total inflow time series Fð�Þ. The leak

detection and validation modules are described in detail in

Sect. 5.

Once a leak has been detected, validated and the leak

size bl estimated, the leak localization module is triggered,

which analyzes measurements from the m sensors placed

inside the DMA to estimate the leak location—denoted by

b|. To achieve this goal, the leak localization module relies

on a set of classifiers trained on synthetically generated

time series, which encompasses leaks in each of the

n considered locations and for different leak sizes. All

these time series are generated by means of the hydraulic

model of the network, which is fed to a simulator (as, e.g.,

Epanet [41]) together with historical leak-free flow

recordings and data-augmentation guidelines provided by

domain experts. During training, an iterative spectral-

clustering algorithm operating with the expert-in-the-loop,

aggregates nodes where classifiers would not be able to

localize leaks, to carry out localization at the level of

clusters rather than nodes. The leak localization module is

described in detail in Sect. 6.

5 Leak detection and validation

Instead of pursuing the common approach of monitoring

the MNF of the inflow F (see Sect. 2), we monitor the total

inflow during the extended minimum night flow (eMNF),

which covers a longer period where still the flow exhibits

controlled variations. Figure 1 compares the MNF and the

eMNF over a week and shows that eMNF includes the

MNF. We define the eMNF E time series as a portion of F

(i.e., E � F) that spans everyday between 10 p.m. and 8

a.m. for the residential areas we consider in our experi-

ments. When the DMA serves industrial areas, this period

must be accordingly set by domain experts. Even though

we exclude from eMNF high demand hours (as these would

require a very long training set to distinguish fluctuations

due to customer’s demand or leaks), monitoring eMNF

requires a more general and flexible model than MNF.

Leaks can be conveniently detected by monitoring

eMNF time series through change-detection tests (CDTs)

[8], which are sequential techniques to detect even negli-

gible—but persistent—changes in a data generating pro-

cess. Unfortunately, the vast majority of CDTs in the

statistical literature apply only to data streams composed of

independent and identically distributed (i.i.d.) realizations

of a random variable. This is not the case of the flow F, nor

E, that instead are time series showing repeated patterns on

a daily basis (see Fig. 1). This type of regularity can be

Fig. 2 Leak detection notation: leak time T�, estimated leak time bT �
,

leak detection time bT , d corresponds to the number of values used for

leak validation



enforced as in [9] to extract a sequence of features values .
that assess the similarity of an input time series with a

reference leak-free training sequence. Thus, we can suc-

cessfully monitor E by a CDT analyzing a stream of i.i.d.

realizations from an unknown random variable.

We expect the distribution of features . to change when

a leak occurs. However, distribution changes might also

occur as a consequence of abnormal demands, seasonal

drifts or sensor errors, to name a few examples. To prevent

these common situations from raising an unaccept-

able number of false alarms, we implement the hierarchical

change-detection test formulation proposed in [4], and we

designed a monitoring scheme composed of two modules

(illustrated in Fig. 4) specifically meant for leak-detection

purposes. Our first module performs the feature extraction

and monitoring of . by a sequential CDT. While there are

no strict limitations on the CDT to be employed, this has to

reveal even subtle changes in the daily consumption pat-

terns: such variations, when persistent, might indicate a

leak. Our second module determines whether the

prospective leak affects the monitored DMA in a realistic

manner, and to this purpose we analyze the flow mea-

surements directly. In what follows, we provide a detailed

description of the proposed hierarchical CDT for leak

detection.

5.1 Feature extraction and change detection

We extract . features to assess whether each small patch of

incoming flow measurements is similar to those in the

training set as in [9]. A patch st is a short sequence

extracted from the eMNF, namely:

st ¼ fEðt � mÞ; . . .;EðtÞ; . . .;Eðt þ mÞg; ð2Þ

where the time t represents the patch center, and m is the

number of samples selected on each side of the patch, such

that the patch size is 2mþ 1. We compute features . by

comparing patches extracted from the input flow time

series against patches extracted from the first q days of the

initial training sequence, namely Hq. Thus, Hq � H � E

and this is recorded under leak-free conditions. For each

input patch st, the closest patch in Hq in terms of Euclidean

distance to st is selected among those referring to the same

time of the day. We denote pt as the most similar patch to

st among the training ones belonging to Hq:

pt ¼ argmin
n

kst � snk2; ð3Þ

where the minimization is performed over patches having

centers n 2 fhðtÞ; bþ hðtÞ; 2bþ hðtÞ; . . .g, being h(t) the

time of the day associated to t, and b = 24 h denotes the

daily cycle characterizing the monitored time series. Thus,

the most similar patch pt is selected from Hq, as long as

Fig. 3 Anoverview of the proposed solution comprising leak detection,

leak validation and leak localization. All thesemodules are trained from

a flow time series and take advantage of knowledge from domain

experts. This picture is better interpreted in the colored version of the

paper (color figure online)



this refers to the same time of the day as st. In (3), k � k2
denotes the ‘2 norm of a vector. The feature .ðtÞ is defined
as the difference between the center of st and the center of

pt denoted by (2):

.ðtÞ ¼ stðmþ 1Þ � ptðmþ 1Þ: ð4Þ

As discussed in [9] and tested for the specific case of flow

time series, the . values can be approximated as i.i.d.

realizations of a random variable, thus can be monitored by

most CDTs. Similarly to [9], we adopt the intersection-of-

confidence-interval (ICI)-based CDT [1], which monitors .
over disjoint windows. In particular, this test first computes

the sample mean and a power-low transformation of the

sample variance (to approach a Gaussian distribution) over

each incoming window. These values are then used to

update the global estimates of the same quantities over the

entire sequence. These global estimates (which are

assumed to be constant in the change-detection framework)

are analyzed together with their confidence interval to

detect distribution changes. The amplitude of these confi-

dence intervals is defined by the tuning parameter C, which
regulates the CDT promptness in detecting changes. More

precisely, the ICI rule [18] detects a change in . as soon as

the intersection of all the intervals from these global esti-

mates becomes empty. The CDT requires only a portion of

. time series for configuration, and these have to be

extracted from training patches that are not in Hq. There-

fore, we configure the ICI-based CDT form features

extracted from Hr, namely the remaining r days in

H ¼ ½Hq;Hr�, being ½�; �� the time series concatenation.

Further details on the ICI-based CDT can be found in [1].

The CDT at the first module detects any change

affecting either the mean or the variance of ., which can be

in principle due to a non-leak event. This is the reason why

we designed the following validation module for detected

leaks.

5.2 Validation

To reduce the FPR, each detected change has to be con-

firmed by the validation module (Fig. 4), which assesses

whether there is evidence of a leak in the specific DMA. To

this end, we adopt i) a paired one-sided Wilcoxon’s test

[56], which is a hypothesis test meant to determine whether

the median of an unknown distribution has changed, and ii)

we define at each DMA, lmin the size of the smallest leak

that is expected to be detected. Typically, WDN engineers

employed in the monitoring can define a suitable value of

lmin, which often ranges between 5% and 10% of the

average inflow.

We define ETS as a vector representing the average daily

inflow over Hq, i.e., during the first q training days:

ETS hðtÞð Þ ¼ 1

q

Xq�1

i¼0

Hq hðtÞ þ ibð Þ; ð5Þ

where h(t) is the position of t in the current day and b is

defined as in (3). An example of ETS is depicted in Fig. 5.

After each detection, the latest d[ 0 measurements pre-

ceding bT are selected, i.e., fEð bT � dÞ; . . .;Eð bT Þg and we

remove any trend in the eMNF, by computing the point-

wise difference between a window of the same size opened

over recent data and ETS:

Fig. 4 Leak detection scheme, where historical leak-free flow

measurements at the inlets are used as reference for leak detection

and leak size estimation, and the information of those modules is used

in combination with domain experts knowledge setting the minimum

leak size lmin to validate the leak. This picture is better interpreted in

the colored version of the paper (color figure online)



MEðiÞ ¼Eð bT � dþ iÞ � ETS hð bT � dþ iÞ
� �

� lmin;

for i ¼ 1; . . .; d:
ð6Þ

Note that in the right hand side of (6) we subtract lmin to

validate only leaks larger than the minimum leak size. We

then validate leaks by running a paired and one-sided

Wilcoxon’s test [56] with confidence level a over ME, thus

determining whether there is enough statistical evidence

for claiming that (6) is above zero, thus there is a leak

larger than lmin.

Every time the null hypothesis is rejected, the detection

is validated, and thus, we activate the leak localization

module. To this purpose, we first estimate the leak size:

bl ¼ 1

d

XbT�1

t¼bT�d

EðtÞ � ETS hðtÞð Þð Þ: ð7Þ

The change time can be estimated by the ICI-based CDT

[3] through a retrospective analysis after each detection. A

few other change-detection algorithms, like the change

point method (CPM) [40], provide such an estimate after

each detection. On top of leak localization, which is the

primary task for WDN utilities, it is also possible to acti-

vate heuristic procedures for re-training/adapting the CDT

as commented in [2]. In WDN monitoring, these heuristics

might be useful for compensating variations in the cus-

tomers demand.

When there is not enough statistical evidence to reject

the null hypothesis, we discard the detection and all the

data before bT . In particular, the CDT at the leak detection

module is returned to monitor the inflow at time bT þ 1.

It is worth mentioning that, to compute ME in (6), it

might be necessary to manipulate sequences to compensate

for seasonal drifts. This is in particular feasible when two

DMAs exhibiting similar behavior are simultaneously

being monitored, and the trend estimated from one

sequence can be used to detrend the other.

6 Leak localization

Our leak localization module is illustrated in Fig. 6, and

comprises a set of classifiers which have been specifically

designed for localizing the leak inside the DMA. Each

classifier processes flow and pressure measurements

acquired inside the DMA and predicts the leak location

(Sect. 6.1). Since the leak size influences much the input

time series, we train a set of classifiers fC0lg each one

corresponding to a leak size l, which is a parameter varying

in a predefined range.

The most critical aspect of our supervised learning

approach is the shortage of training data. In fact we would

need, for each considered leak size l, measurements

affected by a leak in each and every network location,

which of course is not a viable option. Therefore, like other

works in leak localization literature [32, 49], we adopt an

hydraulic model of the DMA and a simulator (e.g., Epanet

[41]), together with historical leak-free flow recordings

estimated water demands from customers to generate a

large set of flow/pressure time series referring to nodes

inside the DMA. Here, domain experts play a primary role

in defining data-augmentation guidelines and transforma-

tions that manipulate the flow time series and customer

demand (Sect. 6.2) to yield a realistic training set TR.

During the training phase, we can aggregate nodes

where classifiers would not be able to exactly localize leak,

by the clustering algorithm proposed in Sect. 6.3. This is an

iterative spectral clustering procedure, which takes into

account classifiers previously trained to assess how accu-

rately a leak can be detected. Domain experts play a central

role during clustering as well, since they might visualize

clusters being created during iterations, and stop the pro-

cess at the desired level of granularity. Leaks are then

conveniently localized at cluster level (some of which

might also consist of a single node) and the same local-

ization algorithm can be seamlessly used, after training.

6.1 Leak identification by classification

In what follows we define the classifiers fClg and, for the

sake of notation, we omit the leak size l where this is not

necessary. We train each classifier C to analyze the flow

and pressure measurements inside the DMA and determine

where the leak has occurred among the n possible loca-

tions. Measurements at DMA inlets are not informative

enough to locate leaks; therefore, we require that m\\n

sensors (either flow or pressure ones) were placed inside

the DMA at known locations.

After each validated detection, we quantitatively assess

the impact of the leak inside the DMA by averaging the

Fig. 5 Example of the ETS vector obtained by averaging from five

daily samples from training set Hq



variations at these sensors before and after the estimated

leak-time bT �
:

Mpi ¼
1

bT � bT � þ 1
� �XbT

t¼bT �
piðtÞ � piðtÞð Þ

Mfi;j ¼
1

bT � bT � þ 1
� �XbT

t¼bT �
fi;jðtÞ � f i;jðtÞ
� �

;

ð8Þ

where pi denotes the pressure measurements acquired at the

ith node, while fi;j denotes the flow measurements between

nodes i and j. The terms pi and f i;j denote reference mea-

surements recorded without leaks in the same location.

Similarly to ETS in (5) and Fig. 5, we compute pi (resp. f i;j)

by averaging measurements over different days in the

training time series acquired at the m internal sensors

during Hq as in (5). For leak localization purposes, dif-

ferences are computed by aligning pi (resp. fi;j) and pi (resp.

f i;j) at the same time of the day. Note that in (8) we do not

consider the eMNF period, but rather the entire time series.

We define the input x of a classifier C, as a m-dimen-

sional vector having in each component the variation in

either flow or pressure due to the leak as in (8):

x ¼ Mf; Mp½ �T ; x 2 Rm: ð9Þ

We train the classifier C to provide as output the correct

leak location among the n nodes of the DMA. Thus, the

estimated leak location is:

b| ¼ CðxÞ; b| 2 f1; . . .; ng: ð10Þ

In particular, we train a maximum likelihood classifier C
that builds upon class-specific density models. Thus, we

associate to each potential leak location j 2 f1; . . .; ng a m-

dimensional Gaussian density model Uj ¼ Nðlj;RjÞ,
where lj 2 Rm;Rj 2 Rm�m. The choice of the Gaussian

distribution is rather customary in the leak localization

literature [1, 48, 49] and, at the same time, ease the node

clustering procedure described in Sect. 6.3. Thus, for each

input sample x, we compute UjðxÞ for each class j 2
f1; . . .; ng and associate x to the class b| yielding the largest

posterior probability by means of:

b| ¼ CðxÞ ¼ argmax
j2f1;...;ng

log UjðxÞ
� �� �

: ð11Þ

The parameters of the classifier C are n pairs ðlj;RjÞ
j ¼ 1; . . .; n, which describe each density Uj. These

parameters are obtained by sample estimators computed

Fig. 6 Leak localization scheme. Historical measurements from inlet

sensors and nodal demands from billing records are augmented by

procedures defined by domain experts, and then used to generate a

new training set TR with the hydraulic simulator of the network. TR
is used to train the node-level classifiers, which are then used in the

clustering phase to group the locations where leak localization is not

possible. Cluster-level classifiers fC0lg are then trained and used for

inference (during the operational phase). This picture is better

interpreted in the colored version of the paper (color figure online)



from a synthetic training set TR obtained through simu-

lation as discussed in what follows.

We emphasize that C depends on the leak size l, as this

can completely change the input x. Therefore, z different

values of leak magnitude l are considered, resulting in z

different classifiers fClg ¼ fC1; . . .; Czg trained. During

operations, the classifier associated with the leak size that

best matches bl estimated during leak detection is selected.

As discussed in the following, it is unfeasible to acquire a

training set for each of these classifiers. Thus, these train-

ing sets are generated through a specific data-augmentation

procedure that uses the hydraulic model of the DMA.

6.2 Data-augmentation and training set
preparation

As mentioned before, we generate multiple leak-free

sequences of flow and pressure measurements by means of

the Epanet simulator [41]. This is fed with realistic time

series of inlet flow ~F and customer demands ~di,
fi ¼ 1; . . .; ng, which are obtained by a data-augmentation

procedure that was agreed with domain experts. The pro-

cedure is depicted in the bottom part of Fig. 6.

Each augmented total inflow ~F is obtained from F as:

~FðtÞ ¼ Fðt þ kÞ þ jðtÞ; ð12Þ

where k is a small random time-shift, and j is a term that

can be either zero or defined to modify a portion of

Fðt þ kÞ. In particular, j can introduce a few spikes or

replace a portion of Fðt þ kÞ with another measurement

recorded in the same hour in a different day.

The augmented demand at the i-th node ~di is defined

from historical billing records as in [34]. In particular, we

first infer from the historical billing records all the base-

demands fnig, where ni 2 ½0; 1� is the portion of the total

inlet flow F that reaches the i-th node. As a consequence,

base demands sums to one
Pn

i¼1 ni ¼ 1. We simulate a

time series from each nodal demand by adding a time-

variant uncertainty gðtÞ term over the expected value ni, as
in [13]:

~niðtÞ ¼ ni þ gðtÞ; i ¼ 1; . . .; n; ð13Þ

where gð�Þ is white Gaussian noise Nð0; 0:25Þ truncated in

½�0:5; 0:5�. We then obtain the data-augmented nodal

demands as follows:

~diðtÞ ¼
~niðtÞPn
i¼1

~niðtÞ
~FðtÞ: ð14Þ

The augmented nodal demand at the i-th node ~diðtÞ is thus
proportional to augmented total inflow ~FðtÞ and to the

percentage of augmented nodal demand, which has been

rescaled to sum to 1 in each time instant t. Division byPn
i¼1

~niðtÞ performs such rescaling.

We generate leaks of size l at node i by introducing a

steady extra demand at the specific location i:

~d
ðlÞ
i ðtÞ ¼

~niðtÞPn
i¼1

~niðtÞ
ð ~FðtÞ � lÞ þ l: ð15Þ

In contrast, in any location without leak j 6¼ i, we adjust the

nodal demands as:

~d
ðlÞ
j ðtÞ ¼

~niðtÞPn
i¼1

~niðtÞ
ð ~FðtÞ � lÞ; j 6¼ i: ð16Þ

This is a rather common practice in WDN monitoring

[10, 32], and corresponds to first subtracting the leak

amount l from the total inflow ~F, and then adding the leak

amount l exclusively to the time series of the selected leak

location i.

Time series of augmented demands before and after the

leak (f ~dig and f ~dðlÞi g, respectively) are fed to the Epanet

simulation to generate flow ffi;jg and pressure time series

fpig inside the DMA. The same procedure is repeated for

multiple values of the leak size l and leak locations

i ¼ f1; . . .; ng.
We further manipulate flow ffi;jg and pressure time

series fpig—either with or without leaks—by introducing a

multiplicative random term to mimic sensor noise:

~f i;jðtÞ ¼ fi;jðtÞð1þ gðtÞÞ; ð17Þ

where gð�Þ is white Gaussian noise Nð0; 0:25Þ truncated in

½�0:5; 0:5� as in (13) to add larger uncertainty where the

flow is larger. Augmented pressure measurements ~pi are

generated in a similar way.

Both augmented flows ~f i;j and pressure ~pi time series are

then used to train the classifier as in Sect. 6.1. In particular,

Fig. 7 summarizes the adopted procedure to artificially

generate training sequences. Each complete sequence

consists of an initial part without leak, followed by a sec-

ond part containing a leak of l ½l=s�, introduced as an extra

demand as in (15) and (16). These two are then used as in

(8) to generate the features needed to train the classifiers.

This procedure is repeated for each potential leak location

b| ¼ 1; . . .; n, and for each leak size considered to yield a

meaningful training set for the classifiers in (11).

6.3 Clustering nodes for leak localization

The large uncertainty on nodal demands makes leak

localization a very challenging problem, thus leak local-

ization estimates can be very poor when the number of

sensors inside the DMA is small. In particular, in the

regions of the classifier’s input space where Gaussians Uj



largely overlap, it might not be possible to exactly locate

leaks. Thus, we propose an algorithm to cluster nodes and

map the localization uncertainty over the DMA layout.

This clustering can help WDN engineers to identify those

regions where leaks cannot be exactly pinpointed, and

localization should be performed at cluster level rather than

at node level.

We formulate node clustering in a DMA as a cut

problem on a weighted undirected graph GðV; EÞ similar to

[22, 44]. Each graph vertex V corresponds to one of the n

candidate leak locations and each edge E corresponds to a

pipe connecting two nodes. Clustering is solved by an

iterative algorithm, the graph cuts [45]. The graph initially

associated with a DMA contains a single connected com-

ponent, since all the nodes are reached by the total flow

from inlets. The graph-cut algorithm performs a recursive

splitting of the graph, where the sub-graphs are the results

of cuts that minimize an energy functional. Splits are

determined by the eigenvalues of the weight matrix W of

the graph, and the process is terminated by standard stop-

ping criteria, like the functional value, the maximum

number of calls and the minimum number of vertices in

sub-graphs.

The weight matrix W is a n� n matrix where each row

and column corresponds to a candidate leak location. To

effectively solve leak localization, the weight matrixW has

to be defined—for each DMA and classifier C – upon a

specific distance measure. The weight associated to two

directly connected nodes i and j is defined as:

Wi;j ¼ e� sKLðUi;UjÞ=sð Þ2 ; ð18Þ

where sKL Ui;Uj

� �
denotes the symmetric Kullback–Lei-

bler (sKL) divergence and s is a user defined parameter to

control the clustering. When sKLðUi;UjÞ ¼ 1 nodes i and j

are very distinguishable, while sKLðUi;UjÞ ¼ 0 corre-

sponds to nodes that are not distinguishable. The

sKLðUi;UjÞ is defined as

sKLðUi;UjÞ ¼ 1
2
ðKLðUi;UjÞ þ KLðUj;UiÞÞ, and is a dis-

tance measure between distributions that range in [0, 1]. In

case of Gaussian functions, KLðUi;UjÞ can be computed

through a closed form expression:

KLðUi;UjÞ ¼
1

2
trðR�1

j RiÞ þ ðlj � liÞTR�1
j ðlj � liÞ � m

�

þln
detðRjÞ
detðRiÞ

� ��
;

ð19Þ

where trð�Þ denotes the trace and detð�Þ the determinant of a

matrix and m is the dimension of the space where distri-

butions Ui;Uj lives. The parameter s in (18) controls how

fast the node distance increases with the sKL. This is a

special parameter of graph cuts, which has to be set by

domain experts that might take into account the number of

sensors and the magnitude of the input flow (we experi-

enced smaller s are preferable when flow is large) or fol-

lowing the procedure in Section 3.1 of [45].

As shown in Fig. 6, once this iterative splitting proce-

dure is terminated, each sub-graph represents a cluster of

nodes where leaks are not distinguishable, except from sub-

graphs containing a single node. The number of clusters

corresponds to the number of locations we denote by n0,
where leaks can be located. Once nodes are aggregated in

clusters, node-level classifiers C have to be replaced by

cluster-level classifiers by computing the Gaussian densi-

ties fU0g over each non-singleton cluster. This corresponds

to running the same procedure described in Sect. 6.1, and

yields a new classifier C0 operating at cluster level, thus

returning values in 1; . . .; n0.
Note that since the weight matrix in (18) is defined

depending on a specific classifier C trained at node level,

the whole clustering procedure needs to be run for each of

the leak sizes considered in the set of classifiers fClg. The
set fC0lg corresponds to all the retrained classifiers oper-

ating at cluster level for different leak sizes. Once trained,

the set fC0lg is fed to the leak localization module, which

selects the classifier corresponding to the estimated leak

size.

Since the stopping criteria for graph cuts are rather

arbitrary and dictated by practical arguments, it is useful to

display the sub-graphs created at each iteration, and let

WDN engineers choose the best level of clustering. This

also allows the identification of the most challenging

regions of the DMA for leak-localization purposes.

Fig. 7 Scheme of the procedure used for data generation using a

hydraulic simulator. Different sequences are generated for training

our classifiers where the first part is leak free while the second part

introduces a leak at different nodes and for each considered leak size



7 Experiments

We test our solution in three real-world case studies, where

this is compared against solutions widely used in the leak

detection and leak localization literature. More precisely,

we assess leak detection performance over real measure-

ments from five DMAs from the Barcelona WDN where

leaks have been artificially introduced. We test the inte-

grated leak detection and localization solution in artificial

data from the Limassol DMA, and in a real leak scenario

from the Nova Icària DMA in Barcelona.

7.1 Figures of merit

We adopt several figures of merit from the pattern recog-

nition literature [42, 50–52] to assess the leak detection and

localization performance.

7.1.1 Leak detection and size estimation

We consider the following indicators to evaluate the per-

formance of the proposed leak detection and leak-size

estimation methods, which are computed over all the

sequences during eMNF hours:

• FPR or false positive rate is the percentage of sequences

having a false detection, thus a leak detected at time

bT\T�.
• FNR or false negative rate is the percentage of leaks

that have not been detected.

• DD or detection delay is the difference between the true

leak starting time and the detection time as bT � T�,
expressed in hours and considering the entire day/night,

not just eMNF.

• DTD or difference time detection is the difference

between the true leak starting time and the estimated

leak starting time as bT � � T�, expressed in hours like

DD.

• The average error in the leak size estimation Mbl
expressed in ½l=s�.

We emphasize that DD, DTD and Mbl are computed only on

correct leak detections.

7.1.2 Leak localization

We assess leak localization performance as the accuracy

indicator v and its modified version x, which takes into

account the fact that localization occurs at cluster level.

These indicators are obtained from the confusion matrix !
that is commonly used in classification. Every entry !i;j

corresponds to the number of leaks at node i that have been

located in node j. A perfect classification would yield to a

diagonal !. The overall adjusted accuracy x is expressed

as:

x ¼ 100

Pn0

i¼1 !i;i
1
uiPn0

i¼1

Pn0

j¼1 !i;j

; ð20Þ

where ui is the number of nodes in the ith cluster and n0 the
number of clusters. This is meant to measure classification

performance at cluster level. When no clustering is per-

formed or when all the clusters result in singletons, this

indicator is replaced by v, i.e., the percentage of correctly

localized leaks defined as:

v ¼ 100

Pn
i¼1 !i;iPn

i¼1

Pn
j¼1 !i;j

: ð21Þ

Note that an ideal algorithm should achieve both v=100
and x=100.

7.2 Configuration of the proposed solution

We configure the ICI-based CDT by setting C ¼ 1 and

m ¼ 6, such that patches contain 13 samples. The Wil-

coxon’s test at the validation layer was configured with

a ¼ 0:05 and has been executed over a window d opened

over the past 6 h (the actual value of d therefore depends

on the sampling rate as these can be 36 or 72 samples in the

considered case studies). The value of lmin in the validation

layer was selected depending on the DMA characteristics,

and the same for the clustering parameter s: the values of

these parameters are summarized in Table 1. We empha-

size that the proposed techniques have been compared

against widely used leak detection and localization meth-

ods described in Sects. 7.3 (leak detection) and 7.4 (leak

localization), respectively.

7.3 Leak detection methods for comparison

We compare the proposed solution against the following

leak detection algorithms. To enable a fair comparison, all

these techniques have been configured over the same

training set to yield, or at least approach where not possi-

ble, the same FPR value.

7.3.1 ICI-based CDT (ICI-CDT)

This is the same technique used at the detection layer [9],

without validation layer. Therefore, this requires setting

C ¼ 4:6 to achieve the same FPR in Barcelona DMAs and

C ¼ 2 in the other two case studies. Other tuning param-

eters are set the same as in the proposed solution. This

method has been considered to assess the improvement

provided by the proposed validation layer.



7.3.2 Leak detection based on PCA (LD-PCA)

This method, proposed in [30], relies on dimensionality

reduction to jointly analyze multiple flow measurements.

Here, all the flow measurements over one day are stacked

in a vector (where each attribute is a flow measurement)

and then vectors for multiple days are stacked in a matrix.

This is done for both recent measurements to be analyzed

and historical ones that are leak free. Then, the PCA

transformation of the historical matrix is computed and the

loads covering at least 95% of the variance are selected.

The same number of principal components is selected from

the matrix of recent measurements and the extracted loads

are compared. A leak is detected when the difference in

loads exceeds a certain threshold. Other approaches use

statistical features extracted from current and past mea-

surements. To guarantee the same FPR as other methods,

we set the threshold as the mean value of the loads plus 3.7

times the standard deviation computed over the training set

for Barcelona DMAs (1.1 times the standard deviation in

the Limassol DMA). Due to the limited amount of data

provided for training, it has not been possible to config-

ure this method for the Nova Icària leak case.

7.3.3 Adaptive Kalman filter (AKF)

This method, introduced in [60], relies on a Kalman filter to

predict the flow and generate normalized residuals for each

recording in a week. Normalized residuals are then aver-

aged over a sliding window spanning 1 week, and com-

pared against a threshold to detect a leak. Here, the

threshold was set to 0.19 in the Barcelona DMAs, while it

has not been possible to tune the method to achieve the

same FPR in the Limassol DMA. Our intuition is that this

is due to large fluctuations on the water consumption

pattern probably caused by the small number of customers.

Therefore, we adopt the same threshold as for the Barce-

lona DMAs. Finally, the threshold is set to 0.05 in the Nova

Icària DMA.

7.3.4 CUSUM test for Fourier coefficients (Fourier-CUSUM)

This solution [15] relies on the first Fourier coefficient on a

window opened over the past, leak-free, measurements to

normalize the inlet flow. The same normalization is applied

to the incoming measurements and the first Fourier coef-

ficient is compared against a threshold. The same work

presents an alternative approach using the same normal-

ization, but leaks are detected when the maximum differ-

ence with the most similar flow pattern in the last few days

persistently exceeds a threshold. The latter approach has

been adopted in this experimental section. To achieve the

target FPR, we set a threshold to 0.38 for the Barcelona

DMAs and 0.59 Limassol DMA and we required two

consecutive days of detections (namely days where the

residuals exceed the threshold, instead of to one in [15]).

Finally, in Nova Icària DMA the threshold is set to 0.13,

while the minimum number of consecutive days of detec-

tions is set to zero.

7.4 Considered leak localization methods

We compare against three techniques following a steady-

state approach:

7.4.1 Leak-signature correlation (LS-Corr)

This solution, presented in [32], relies on a hydraulic

simulator to estimate the pressure, and then computes

residuals w.r.t. the recorded measurements. Residuals are

Table 1 Characteristics of the case studies experiments for small, medium, large and real leak sizes

DMA �F #Res. #PRVs n #Pipes Small Medium Large lr q r lmin s

Bellamar 6.7 2 0 1523 154 1 2 4 - 10 4 0.5 –

Gavà Centre (set 1) 18.2 2 0 3373 3482 2 3 5 – 10 4 0.5 –

Can Roca 10.0 1 0 1427 1473 1 2 4 – 10 4 0.5 –

Parc de la M. (set 1) 37.3 2 0 1507 1553 3 5 8 – 10 4 0.5 –

Gavà Centre (set 2) 16.1 2 0 3373 3482 2 3 5 – 10 4 0.5 –

Canyars 24.6 1 0 692 717 2 3 5 – 10 4 0.5 –

Parc de la M. (set 2) 14.8 2 0 1507 1553 2 3 5 – 10 4 0.5 –

Limassol 0.14 1 1 47 58 0.125 0.250 0.375 – 10 2 0.05 10

Nova Icària 50.9 2 2 1520 1646 – – – 5.6 2 0.5 3.8 5

#Res. is the number of reservoirs, #PRVs the number of PRVs, n the number of potential leak locations, #Pipes the number of pipes, q the

number of patterns for the self-similarity, r the number of patterns for the ICI CDT, lmin the minimum leak size expected to be detectable and s
the user-defined threshold for clustering



then compared against the sensitivity matrix (which is

computed off-line and contains the expected residuals for

each leak location and size) and the node having the

highest correlation is selected as the leak node candidate.

We configure this method like our localization solution, but

over residuals computed using simulations, and without

adding noise or other demand uncertainties during data

augmentation. Residuals are computed hourly, yielding

many leak-location estimates that are combined over time

according to [32].

7.4.2 k-nearest neighbor (k-NN)

This solution, introduced in [47], relies on the same

residual computation as in [32] but it also integrates

demand and noise uncertainties during data-augmentation

for training the model. We selected k=3 in the k-NN. As in

the previous method, the residuals are computed hourly and

aggregated over time as the authors suggested.

7.4.3 Bayesian reasoning (Bayesian)

This approach, suggested in [49], relies on the computation

of residuals and the assumption that each potential leak

location fits a Gaussian distribution in the feature space.

The classifier is used as suggested in [49] considering

residuals with uncertainty and a time horizon aggregation.

In all the above methods, classifiers were configured

using residuals as in [47, 49] on sequences generated with

the same data-augmentation procedure. It should be high-

lighted that the two latter classifiers do not require leak size

as an additional input. Other classifiers have not been

considered since these typically achieve comparable per-

formance, as shown in [36].

7.5 Leak detection in Barcelona DMAs

We exhaustively tested the proposed leak detection pro-

cedure on five different DMAs of Barcelona WDN. The

main characteristics of these DMAs (numbers of reservoirs,

pressure reducing valves (PRVs), nodes and pipes) are

summarized in Table 1. In all the DMAs, the flow at inlets

has been recorded in leak-free conditions over two time

periods: from January 1st 2013 until May 18th 2013, and

from August 31st 2013 to March 3rd 2014, which corre-

spond to set 1 and set 2 in Table 1, respectively. Days

affected by missing values or outliers (values three times

larger than the flow mean) have been removed from the

two sets, resulting in 85 days from the first set, and

accordingly 85 days from the second. For each DMA, we

assemble three sequences of flow at inlets spanning days

1-55, 16-70, 31-85, obtaining overall 21 sequences among

all DMAs and the two sets. In each sequence, the first 14

days are used for training, the next 21 are without leaks and

in the remaining 20 days, a leak has been synthetically

injected as described in (1). The data sampling rate in all

these DMAs is 10 min.

Three different leak magnitudes are considered: small,

medium and large leaks whose magnitude depends on the

average total inflow and summarized in Table 1. Since the

eMNF (10 p.m.–8 a.m.) is considered, every time the leak

is not detected before the 8 a.m., the detection is delayed at

least 14 h.

Detection results are summarized in Table 2. The pro-

posed leak detection technique outperforms the alternative

on small leaks, and in particular, it is the most successful in

terms of FNR. This is a very important aspect considering

that false negatives would correspond to a substantial

increase in the DD when large testing sequences were

provided. In terms of medium and large leaks, the AKF and

the Fourier-CUSUM solutions achieve slightly better per-

formance, having lower DD and FNR. Compared to ICI-

CDT, the proposed solution is prompter at detecting

changes, thanks to the validation module it can be con-

figured with a lower value of C yielding the same FPR. The

proposed solution provides instead more accurate estimates

of leak time and size. Note that, due to the eMNF time

interval considered, it is rather easy to achieve large

detection delays.

7.6 Leak detection and localization in limassol
DMA

We consider the DMA of Limassol WDN (Fig. 8) as a

second case study to test the whole integrated leak detec-

tion and localization solution. Out of the 57 consumer

nodes, only those that are located downstream a pressure

reducing valve (PRV) are considered as potential leak

locations, which results in n=47 nodes. In our simulations,

we assume that two pressure sensors have been installed in

nodes 16 and 28, and that the pipes between nodes 16 and

18 and between 27 and 28 are equipped with flow sensors.

Other details of this case study are summarized in Table 1.

7.6.1 Leak detection

The inlet flow time series used for leak detection has a

sampling rate of 5 min and lasts 130 days. The first 10 days

of measurements were used to generate the training set of

classifiers by data-augmentation as illustrated in Sect. 6.

Out of the remaining 120 days, 5 sequences (corresponding

to day intervals 1–48, 19–66, 37–84, 55–102 and 73–120

days) composed by 12 days for training, 18 days without

leak and 18 days with leak are generated considering three

different leak sizes.



As in the previous case study, leaks are artificially

injected and three different sizes are considered: small

leaks, with size 0.125 ½l=s�, medium leaks, with size 0.250

½l=s� and large leaks, with size 0.375 ½l=s�. The mean value

for the input flow is 0.14 ½l=s�. Since the total inflow and

the sampling frequency are different from the Barcelona

DMAs, the detection layer has been tuned as in the Bar-

celona DMAs, while the validation layer was tuned as

follows: lmin=0.05 [l/s] and a d=72 measurements (corre-

sponding to 6 h recordings).

The leak detection performance is reported in Table 2

and confirms that the proposed solution outperforms all the

others in terms of FNR. Note that, since there are only five

sequences, a single false positive results in a 20% FPR.

This is why we were not able to achieve 10% FPR as in the

Barcelona DMAs case. Nevertheless, all the methods were

configured to achieve 20% FPR, except from AKF as

discussed in Sect. 7.3.

7.6.2 Leak localization

We adopt the data-augmentation procedure described in

Sect. 6.2 to generate time series for testing leak localiza-

tion. The augmented procedures been configured as

Table 2 Leak detection performance in Barcelona and Limassol DMAs

Method Small leaks Medium leaks Large leaks

FPR FNR DD DTD Dbl FPR FNR DD DTD Dbl FPR FNR DD DTD Dbl
Barcelona DMAs case study

Proposed 9.5 9.5 123.9 76.4 0.8 9.5 4.8 73.9 28.6 0.8 9.5 0 49.2 3.9 1.2

(75.3) (69.3) (31.5) (31.2) (18.1) (17.7)

ICI-CDT 9.5 57.1 221.7 195.6 – 9.5 23.8 268.6 221.4 – 9.5 0 122.7 72.1 –

(175.9) (176.2) (173.6) (180.2) (95.0) (94.1)

LD-PCA 9.5 33.3 124.7 – – 9.5 23.8 73.7 – – 9.5 4.8 48 – –

(164.4) (45.6) (41.0)

AKF 9.5 47.6 146.0 – 4.2 9.5 4.8 29.4 – 2.6 9.5 0 25.5 – 2.2

(80.2) (88.9) (68.9)

Fourier-CUSUM 9.5 28.6 74.5 – – 9.5 0 72.4 – – 9.5 0 72.0 – –

(39.7) (24.6) (24.0)

Limassol DMA case study

Proposed 20 0 24.6 1.5 0.03 20 0 5.8 0.5 0.05 20 0 5.9 0.6 0.07

(12.1) (16.1) (11.2) (15.2) (11.2) (15.2)

ICI-CDT 20 0 24.9 2.2 – 20 0 6.0 0.6 – 20 0 22.8 0.9 –

(11.8) (14.6) (9.3) (13.3) (9.5) (13.5)

LD-PCA 20 0 32.0 – – 20 0 32.0 – – 20 0 32.0 – –

(1152.0) (1152.0) (1159.0)

AKF 100 100 – – – 100 100 - – – 100 100 - – –

(–) (-) (-)

Fourier-CUSUM 20 0 52.4 – – 20 0 52.4 – – 20 0 52.4 – –

(26.6) (26.6) (26.6)

Mean and standard deviation represented in parenthesis are shown. To enable a fair comparison, these methods were configured to achieve the

same FPR, when possible. Tests on Barcelona DMAs contain 21 sequences, while Limassol DMA only 5, hence the coarse granularity of false

positive rate

Fig. 8 Topology of Limassol DMA



follows: the first 10 days of inlet measurements are used to

generate 50 sequences as in (12). Both real and augmented

sequences have been fed to the Epanet hydraulic simulator

to generate the flow and pressure measurements at sensors

placed inside the network, where nodal demands have been

modified as in Eqs. (13, 14, 15, 16). These measurements

are used to generate the training set to estimate the

parameters of the Gaussian distributions and perform

clustering. We configure the clustering process by setting

s ¼ 10 in (18), and in each iteration we split the graph in a

number of subgraphs corresponding to the number of

smallest eigenvalues having their cumulative sum below

0.05. However, in each iteration, we enable a maximum

number of 5 splits.

The results of the clustering procedure described for

classifiers Cl trained in medium leak size are depicted in

Figs. 9 and 10 for pressure and flow sensors, respectively.

Using pressure sensors, 14 non-singleton clusters with

maximum of 5 nodes are obtained. This is because the low

consumption results in small variations of the pressure

inside the network, preventing to distinguish the location of

the leak with pressure sensors, resulting in larger clusters.

Using flow sensors, only 3 non-singletons were formed

with a maximum of three nodes. Flow sensors are better

able to distinguish the leak, since the leak flow represents a

relevant portion of the total inflow. Since flow is more

heavily affected than pressure, leaks are expected to be

easier to locate, thus fewer clusters appear in clustering

driven by flow.

Leak localization performance is summarized in Table 3

and shows that the proposed leak-localization algorithm

performs particularly well in the Limassol DMA in the case

of flow sensors, in particular for medium leaks and large

leaks where the results combined with clustering delivers

very precise localization. This is not the case of other

techniques, that are not able to distinguish leaks at different

locations. Perhaps, the problem lies in the nature of the

residuals that these techniques use: different leak locations

are typically very overlapped in the residual space [47],

yielding very poor localization performance. Localization

performance using pressure sensors is very poor and this is

because pressure falls due to the leaks are not very

Fig. 9 Clusters formed using classifiers Cl trained on pressure sensors

and medium leak. Each color represents a different cluster. Singleton

nodes of the clusters are black. This picture is better interpreted in the

colored version of the paper (color figure online)

Fig. 10 Clusters formed using classifiers Cl trained on flow sensors

and medium leak. Each color represents a different cluster. Singleton

nodes of the clusters are black. This picture is better interpreted in the

colored version of the paper (color figure online)

Table 3 Leak localization results in Limassol DMA, considering that

three different leaks at 47 nodes

Technique Ind. Sens. Small leaks Medium leaks Large leaks

Without clustering

Proposed v p. 2.1 2.7 3.2

v f. 37.8 50.0 54.8

LS-Corr v p. 2.7 2.1 1.1

v f. 6.9 4.8 2.1

k-NN v p. 2.1 2.1 2.1

v f. 5.9 4.3 4.3

Bayesian v p. 0 0 0

v f. 2.1 2.1 2.1

With clustering

Proposed v p. 6.6 3.6 2.5

x p. 5.3 2.8 1.0

v f. 43.5 82.7 84.2

x f. 40.3 80.1 81.8

p and f in the ‘‘Sens.’’ column stand for pressure and flow sensors. The

larger these indicators, the better



noticeable, as will be discussed in Sect. 7.8. In this case,

also the proposed clustering solution does not improve

much the localization performance.

7.7 Leak detection and localization in Nova
Icària DMA real case

The third and final case study is entirely based on real

measurements acquired in the Nova Icària DMA, another

DMA of Barcelona WDN. This DMA has two reservoirs

with flow measurements and PRVs. Inside the DMA, five

pressure sensors are placed in nodes 3, 4, 5, 6 and 7 using

the methodology described in [31]. The topology of the

network and the sensor placement are depicted in Fig. 11.

Most relevant network parameters are in Table 1, which

indicates the small number of sensors employed (5) com-

pared to the large number of candidate leak locations

(1520).

Differently from the two previous cases, these mea-

surements have been recorded in a real leak scenario:

acquired data contain six days of flow measurements

without leaks, 30 h of data with leak and another 16 h

without leak. The leak was introduced by opening a fire

hydrant by the company in charge of the network man-

agement, resulting in a leak size of approximately 5.6 ½l=s�.
The configuration parameters used in the detection and

localization procedures are the same as in the previous case

studies. The only difference is the minimum leak size,

which was set to 5% of the average consumption of water,

namely lmin=3.8 [l/s].

Figure 12 shows the results of the proposed leak

detection technique: the first plot presents inlet flow, the

second the eMNF used in the leak detection procedure, and

the last one the extracted features .: the blue line indicates
the training set for extracting features, the orange line the

training set for the ICI-based CDT, the red line indicates

the leak time T�, magenta line indicates the estimated leak

time bT �
, and green line indicates the detection time bT . The

detection has a delay of 177 samples from the whole

sequence (not only eMNF) corresponding to 29.5 h. The

difference between T� and bT �
is only one sample, i.e.,

10 min. The estimated leak size is 7.1 ½l=s� with respect to

5.6 ½l=s� in reality. The ICI-CDT delivers the same results,

while the LD-PCA method was not able to detect the leak,

probably due to the short training set available. The

application of AKF was very successful, detecting the leak

with a delay of five samples (40 min), estimating a leak

size of 4.3 ½l=s�. Finally, the Fourier-CUSUM technique

detected the leak after 10 h (one complete period of

eMNF).

The proposed clustering algorithm applied on the

recordings from the five pressure sensors (configured using

s=5) provides clusters depicted in Fig. 13. The small

number of sensors employed makes hard to distinguish the

location of the leak at each node, but still it can be

appreciated a superior performance achieved by pressure

sensors than in Limassol DMA. We speculate that this is

probably due to the larger water consumption. It can be

noticed that the resulting clusters are very consistent with

the information spread through the network, since single-

tons are close to the sensor’s nodes, while far from these,

the clusters definitively increase their size.

Table 4 reports the leak localization performance com-

puted in two different settings. The first one ‘‘After

detected the leak’’ consists in activating the proposed leak

localization algorithm in cascade to the leak detection.

Localization is configured from the estimated bT �
and bl. In

this case, the proposed algorithm localizes the leak in the

singleton cluster at the node 474, while the real leak is at

Fig. 11 Topology of Nova Icària DMA

Fig. 12 Leak detection for Nova Icària DMA. This picture is better

interpreted in the colored version of the paper (color figure online)



node 996. Other leak localization algorithms [32, 47, 49]

result in different node candidates: 1508 for the LS-Corr

method, 4 for the k-NN and 1 for the Bayesian. Their

relative locations are shown in Fig. 14. The second sce-

nario is referred to as ‘‘After true leak time’’, and it assumes

that the leak is perfectly detected such that 24 h of leaky

data are provided. These are the same settings as in

[32, 47, 49]. In this case, the proposed method returns a

singleton cluster, the node 1463 (see Fig. 14) along with

the localization performance presented in [32, 47, 49] for

other methods. Table 4 summarizes some indicators used

to assess localization performance, and it can be seen that

the proposed technique delivers better results in terms of

pipe distance—which is the most meaningful one for water

companies that pinpoint the leak by searching pipe by

pipe—in the most realistic settings where leak localization

is performed in cascade to a leak-detection algorithm.

7.8 Discussion

The proposed leak-detection algorithm outperforms other

solutions in both Barcelona and Limassol case studies at

least for small leaks. This also achieves equivalent or

superior performance in terms of FNR for medium and

large leaks. The proposed validation layer always improves

the leak-detection performance and this is in agreement

with previous findings in change detection [3]. Hopefully,

this suggests that the validation module can provide a

performance boost also in combination with other leak-

detection techniques. In fact, thanks to the validation

module, the ICI-CDT can afford configurations that are

more prompt in detecting changes, considering that false

positives are filtered by the validation module.

Regarding the proposed leak localization solution, it has

shown to perform well when monitoring features extracted

from flow measurements as in (9). Analyzing pressure

seems instead not effective in the Limassol DMA, while it

enables a very accurate localization performance in the

Nova Icària DMA. This is due to the different topology and

Fig. 13 Nova Icària clustering results. Clustering is performed over

the five pressure sensors and considering a leak of 5.6 [l/s]. Colors

indicate different non-singleton clusters. This picture is better

interpreted in the colored version of the paper (color figure online)

Table 4 Leak localization

results in the Nova Icària real

case

Technique After detected the leak After true leak time

Linear dis. Pipe dis. Node dis. Linear dis. Pipe dis. Node dis.

Proposed 211.9 452.9 21 169.4 422.1 20

LS-Corr 367.8 478.6 26 222.0 433.4 17

k-NN 384.7 667.9 12 184.0 390.8 13

Bayesian 146.6 932.4 33 183.2 265.0 10

Linear distance and pipe distance are measured in meters, while the nodes distance is measured in nodes.

The smaller the better for these indicators

Fig. 14 Nova Icària leak localization results. Blue markers corre-

sponds to localizations made in the ‘‘After detected the leak’’

scenario, while magenta markers correspond localizations in the

‘‘After true leak time’’ scenario. This picture is better interpreted in

the colored version of the paper (color figure online)



hydraulic condition of the two networks. As discussed in

[21], the larger the flow in nominal conditions, the higher

the relative impact of a leak of a given size would be on the

pressure measurements. Thus, considering that the overall

flow values in the Limassol DMA is rather small, the

pressure fall due to a leak should be almost negligible for

the considered leak sizes. This is the reason why leak

localization performance—when analyzing pressure mea-

surements—are very poor for all the considered techniques.

In the Nova Icària DMA, the flow is larger in leak-free

conditions, and the few pressures sensors employed are

able to sense the leak. The proposed solution in the realistic

scenario, where it is configured from the estimates pro-

vided by the leak detection algorithm, can localize leaks

with the lowest pipe distance.

8 Conclusions

In this paper, we proposed a comprehensive leak moni-

toring solution for WDNs, which wisely combines machine

learning models and information coming from domain

experts to tackle the challenging problems of WDN mon-

itoring. The proposed method covers both leak detection

and localization tasks in an integrated manner. In particu-

lar, the proposed ad hoc validation module is used in

cascade with the detection module and allows detecting

subtle leaks leading to a reduced FNR and DD. Leak

detection has been proven effective on real data with real

and injected leaks, outperforming other methods. The

experiments also demonstrate that monitoring the eMNF is

particularly effective in small networks, where the daily

patterns are subject to large fluctuations compared to their

standard consumption. Also, the proposed leak detection

algorithm yields very reliable estimates of the leak time

and size, which are used by the leak localization algorithm.

The proposed leak localization algorithm is entirely

data-driven, and requires only a hydraulic model of the

network to generate a meaningful training set by data-

augmentation. The leak localization algorithm is very

accurate, and outperforms all the competing methods in

combination characterized by flow sensors in networks

with low water consumption. Our experiments indicate that

analyzing flow and pressure differences before and after

the estimated leak starting time yields superior localization

performance than directly classifying residuals, which is

the mainstream approach in the literature [32, 47]. Finally,

we present a algorithm to cluster nodes where leaks cannot

be distinguished, which turns also in an inspection method

to identify regions of the DMA where leak localization is

too difficult due to the limited number of sensors installed

inside the network.

Our solution shares a few limitations of other methods in

the literature as it detects and localizes one leak at a time

and it assumes that leaks occur at nodes only. Moreover,

the number of the sensors deployed inside the network and

their locations are key for an effective leak localization.

This is particularly relevant for branches of the WDN

without sensors, where leak localization might not be

possible. Another relevant aspect influencing both detec-

tion and localization performance is the service pressure,

which can increase the leak size and make pressure drop

more apparent. Despite these limitations, we have shown

that our solution successfully combines machine learning

methods and knowledge from WDN engineers, e.g., for

setting the minimum leak size to be detected and in the

clustering procedure.

Finally, although our proposed solution addresses leak

detection and localization in WDNs, the general method-

ology and the key ideas on which it is based (leak detection

improved with leak validation, leak localization based on

distributed measurements and classifiers, dataset augmen-

tation using simulation, use of clustering procedure to

gather nodes where classification is not possible, role of

domain experts to tune the solution) have the potential to

be applied to other types of critical large-scale distribution

networks such as oil and gas networks.
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10. Casillas MV, Garza-Castañón LE, Puig V (2012) Extended-

horizon analysis of pressure sensitivities for leak detection in

water distribution networks. In: 8th IFAC symposium on fault

detection, supervision and safety of technical processes. Elsevier,

pp 570–575

11. Covas DIC, Ramos HM (2010) Case studies of leak detection and

location in water pipe systems by inverse transient analysis.

J Water Resour Plan Manag 136(2):248–257
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